JP3345105B2 - Solid-liquid mixed fluid transfer device - Google Patents

Solid-liquid mixed fluid transfer device

Info

Publication number
JP3345105B2
JP3345105B2 JP16835093A JP16835093A JP3345105B2 JP 3345105 B2 JP3345105 B2 JP 3345105B2 JP 16835093 A JP16835093 A JP 16835093A JP 16835093 A JP16835093 A JP 16835093A JP 3345105 B2 JP3345105 B2 JP 3345105B2
Authority
JP
Japan
Prior art keywords
ipf
pipe
solid
liquid
mixed fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16835093A
Other languages
Japanese (ja)
Other versions
JPH06265184A (en
Inventor
幸夫 浜岡
充 山本
泰司 大野
旬一 相沢
卓史 横山
大和 森川
正博 宮脇
健 藤本
知広 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd, Kansai Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Nikken Sekkei Ltd
Priority to JP16835093A priority Critical patent/JP3345105B2/en
Publication of JPH06265184A publication Critical patent/JPH06265184A/en
Application granted granted Critical
Publication of JP3345105B2 publication Critical patent/JP3345105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、地域冷房等において、
熱源貯溜部に蓄積された冷熱を、氷等の潜熱物質と水等
の液体との固液混合流体により搬送する固液混合流体の
搬送装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to
The present invention relates to a solid-liquid mixed fluid transfer device that transfers cold heat accumulated in a heat source storage unit using a solid-liquid mixed fluid of a latent heat substance such as ice and a liquid such as water.

【0002】[0002]

【従来の技術】地域冷房等において、熱源貯溜部に蓄積
されている冷熱を、負荷部に搬送する場合、単一の流体
を用いて顕熱を搬送する方法が提供されている。一方近
年は、前記顕熱と併せて潜熱を利用して冷熱を搬送する
方式、即ち冷熱の移送を固液二相の混合流体(例えば氷
とブラインの固液混合流体)によって行う方式が多く採
用されるようになった。かかる冷暖房システムにあって
は、固液混合流体中の潜熱物質混合充填率(以下“IP
F”と称する)を、負荷の変動又は前記熱源貯溜部内の
IPFの変動に応じて調整して、固液混合流体を前記負
荷に供給する必要がある。
2. Description of the Related Art In district cooling or the like, a method for transferring sensible heat using a single fluid when transferring cold stored in a heat source storage section to a load section has been provided. On the other hand, in recent years, a system in which cold heat is conveyed using latent heat in combination with the sensible heat, that is, a system in which cold heat is transferred by a solid-liquid two-phase mixed fluid (for example, a solid-liquid mixed fluid of ice and brine) is often used. It was started. In such a cooling and heating system, the latent heat substance mixed filling rate (hereinafter referred to as “IP
F ″) must be adjusted in accordance with the fluctuation of the load or the fluctuation of the IPF in the heat source reservoir, and the solid-liquid mixed fluid needs to be supplied to the load.

【0003】図4に、前記固液混合流体搬送システムの
従来例を示す。図において1は氷と水との固液混合流体
が収容される熱源貯溜部即ち氷槽であり、該貯氷槽1内
の固液混合流体は、搬送主管7に設けられた搬送ポンプ
2により加圧、吐出され、吐出側に設けられたIPF調
整器14に導入され、ここで一部の水が抜き出され、水
抜き配管16を経て貯氷槽1に戻される。貯氷槽1に戻
される水の流量はIPF調整器14の下流に設けられた
質量流量計6の密度値の検出により調節される。そして
IPF制御の一例を数値により説明すると、所要の供給
流量をQm3 /minとし、所要のIPFが30%であ
るとして、貯氷槽1内の固液混合流体即ち氷水のIPF
が10%であるときは、貯氷槽1の氷水流量3Qが搬送
ポンプ2により4kg/cm2 ・Gの圧力に加圧されて
搬送主管7に送り出され、IPF調整器14により2Q
の水流量が水抜き配管16を経て貯氷槽1に戻され、こ
れによりIPFを30%に調節された氷水流量Qが地域
導管8を経て負荷9に供給され冷熱を供給する。なお、
8aは戻り導管、15は水抜き流量を制御する自動調整
弁である。
FIG. 4 shows a conventional example of the solid-liquid mixed fluid transfer system. In FIG. 1, reference numeral 1 denotes a heat source storage unit or an ice tank in which a solid-liquid mixed fluid of ice and water is stored. The solid-liquid mixed fluid in the ice storage tank 1 is pumped by a transfer pump 2 provided in a transfer main pipe 7. The water is discharged under pressure and introduced into the IPF regulator 14 provided on the discharge side, where a part of the water is extracted and returned to the ice storage tank 1 through the drainage pipe 16. The flow rate of the water returned to the ice storage tank 1 is adjusted by detecting the density value of the mass flow meter 6 provided downstream of the IPF regulator 14. An example of the IPF control will be described with numerical values. Assuming that the required supply flow rate is Qm 3 / min and the required IPF is 30%, the IPF of the solid-liquid mixed fluid in the ice storage tank 1, that is, the IPF
Is 10%, the ice water flow rate 3Q in the ice storage tank 1 is pressurized to a pressure of 4 kg / cm 2 · G by the transport pump 2 and sent out to the transport main pipe 7, and the IPF adjuster 14 controls the 2Q.
Is returned to the ice storage tank 1 through the drainage pipe 16, whereby the ice water flow rate Q whose IPF is adjusted to 30% is supplied to the load 9 via the regional conduit 8 to supply cold heat. In addition,
8a is a return conduit, 15 is an automatic regulating valve for controlling the drainage flow rate.

【0004】そして前記IPF調整器14は例えば図5
に示すように、搬送主管7と連設される内管141の周
囲に外管142を囲繞し、そして前記内管141を口径
0.5mm程度の孔14bが穿設されたパンチングメタ
ル製の管141で形成すると共に、前記外管142の両
端を閉塞すると共にその間に水抜き配管16を設け、I
PF調整用の液抜き部として機能させる。そしてかかる
構成により貯氷槽1からの固液混合流体が前記調整器1
4内に導入され、該パンチングメタルの孔14bから水
のみが抜き取られて外管142の水出口Cから水抜き配
管16を経て貯氷槽1に戻されることにより、IPFが
調整される。
The IPF adjuster 14 is, for example, shown in FIG.
As shown in FIG. 5, a pipe made of a punched metal surrounding an outer pipe 142 around an inner pipe 141 connected to the main transport pipe 7, and forming the inner pipe 141 with a hole 14b having a diameter of about 0.5 mm. 141, and both ends of the outer pipe 142 are closed, and a drain pipe 16 is provided therebetween.
It functions as a liquid drain for PF adjustment. With this configuration, the solid-liquid mixed fluid from the ice storage tank 1
4, only water is extracted from the holes 14 b of the punching metal, and is returned from the water outlet C of the outer pipe 142 to the ice storage tank 1 via the drain pipe 16, whereby the IPF is adjusted.

【0005】[0005]

【発明が解決しようとする課題】しかしながらかかる従
来システムにおいては、搬送ポンプ2の吐出側にIPF
調整器14が設けられているので、水抜き配管16を経
て貯氷槽1に戻される水抜き流量をも負荷9への供給圧
力(3〜4kg/cm2 ・G)まで余分に加圧すること
になり、無駄な動力を搬送ポンプ2にかけることにな
る。
However, in such a conventional system, an IPF is provided on the discharge side of the transport pump 2.
Since the regulator 14 is provided, the drainage flow rate returned to the ice storage tank 1 through the drainage pipe 16 is also increased to the supply pressure to the load 9 (3 to 4 kg / cm 2 · G). That is, unnecessary power is applied to the transport pump 2.

【0006】例えば、図6は、Q0 を固液混合流体即ち
氷水入口流量、Q1 を水抜き流量、Q2 を搬送氷水流量
とし、IPF0,IPF1及びIPF2を夫々Q0 ,Q
1 及びQ2 のIPF値として、IPF0=13.4%の
ときにおけるQ1 /Q0 と搬送氷水のIPF増加量との
関係を実験結果によりグラフ化したものである。(な
お、図中IPF1=0%とは抜き取られた水中に氷が含
まれていない場合の曲線を表わす)。同図から分かるよ
うに、Q1 /Q0 の値が0.4以上になると、水抜き配
管16側への氷の流出が多くなるため、氷の流出量に相
当するだけ、水抜き流量を余分に増加しなければならな
い。このため、搬送ポンプ2の容量を、少なくとも前記
水抜き量の増加分だけ増加しなければならず、固液混合
流体の搬送動力が増加する。
For example, FIG. 6 shows that Q0 is a solid-liquid mixed fluid, that is, an ice water inlet flow rate, Q1 is a drainage flow rate, Q2 is a carrier ice water flow rate, and IPF0, IPF1 and IPF2 are Q0 and Q, respectively.
FIG. 9 is a graph showing the relationship between Q1 / Q0 and the amount of IPF increase in transport ice water when IPF0 = 13.4% as the IPF values of 1 and Q2, based on experimental results. (Note that IPF1 = 0% in the figure represents a curve when ice is not contained in the extracted water). As can be seen from the figure, when the value of Q1 / Q0 is 0.4 or more, the amount of ice flowing out to the drainage pipe 16 increases, so that the amount of water drainage is increased by an amount corresponding to the amount of ice flowing out. Must increase. For this reason, the capacity of the transport pump 2 must be increased by at least the increase in the amount of drainage, and the transport power of the solid-liquid mixed fluid increases.

【0007】又前記IPF調整器14は混合流体が通過
する内管141をパンチングメタルにより形成されてい
るために、該パンチングメタル筒(内管)に流入してき
た氷水は該メタル筒141内を通過する間水が外管14
2側に抜けてIPFが高められて流出する。従ってパン
チングメタル141の出口に近いほどIPFは高くなる
ために調整器14出口側では氷の粒塊が停滞しやすく、
該調整器14内に氷水を連続的に通過させると、IPF
調整器14内で混合流体(氷水)側における閉塞も発生
し易くなる。これは、パンチングメタル筒141の氷水
通過の際に生じる圧損が直管の場合に比して6倍前後と
大きい為であると思慮される。本発明はかかる従来技術
の欠点に鑑み、搬送ポンプ動力の浪費を防止してシステ
ムの効率を向上せしめるとともに、IPF調整器の配管
系の閉塞の発生を防止する混合流体搬送装置を提供する
事を目的とする。
Since the IPF adjuster 14 is formed of a punching metal in the inner pipe 141 through which the mixed fluid passes, ice water flowing into the perforated metal pipe (inner pipe) passes through the metal pipe 141. While the outer pipe 14
The IPF rises to the side 2 and flows out. Therefore, the IPF becomes higher as it is closer to the exit of the punching metal 141, so that the ice particles tend to stagnate at the exit of the adjuster 14,
When ice water is continuously passed through the regulator 14, the IPF
Blockage on the mixed fluid (ice water) side in the adjuster 14 also easily occurs. It is considered that this is because the pressure loss generated when the punched metal tube 141 passes through the ice water is about six times as large as that in the case of the straight pipe. In view of the drawbacks of the prior art, the present invention is to provide a mixed fluid transfer device which prevents waste of power of a transfer pump, improves the efficiency of the system, and prevents the clogging of the piping system of the IPF regulator. Aim.

【0008】[0008]

【課題を解決するための手段】本発明は、貯氷槽等の熱
源貯溜部内に収容された氷等の潜熱物質と水等の液体と
の固液混合流体を、前記熱源貯溜部と冷房または暖房そ
の他の負荷とを接続する搬送管路に搬送ポンプを設け、
該搬送ポンプにより前記固液混合流体を前記負荷側に搬
送し、該負荷と熱交換した後に該混合流体を前記熱源貯
溜部側に戻すように構成した固液混合流体の搬送装置に
おいて、前記熱源貯溜部出口と前記搬送ポンプ吸込口と
の間の搬送管路上にIPF調整器を介装し、該IPF調
整器を構成する管路を前記搬送管路より太径に拡径して
形成するとともに、該太径の管路を平板状の液分離板を
介して上下2つに分離し、上側分離管路を搬送管路に連
設して固液混合水を搬送可能に形成し、又下側分離管路
側の両端を閉塞すると共に該下側分離管路側に前記氷等
の潜熱物質より比重の重い水等の液体を抜く液体抜き口
を設け、該IPF調整器の液体抜き口と前記熱源貯溜部
とを液体抜き管路を介して接続させたことを特徴とす
る。この場合、液体抜き管路にはポンプを設け、抜き量
を可変可能に構成するのが良い。又前記IPF調整器
は、該IPF調整器を構成する太径管路の軸方向両端を
漏斗部を介して搬送管路に連設するとともに、該IPF
調整器を、前記搬送管路に直列に複数個配置するのが好
ましい。
According to the present invention, a solid-liquid mixed fluid of a latent heat substance such as ice and a liquid such as water stored in a heat source storage section such as an ice storage tank is cooled or heated by the heat source storage section. A transfer pump is provided in the transfer line connecting other loads,
The solid-liquid mixed fluid transfer device configured to transfer the solid-liquid mixed fluid to the load side by the transfer pump and to return the mixed fluid to the heat source storage unit side after exchanging heat with the load. An IPF adjuster is interposed on a transfer pipe between the storage section outlet and the transfer pump suction port, and a pipe configuring the IPF adjuster is expanded to a larger diameter than the transfer pipe.
In addition, the large-diameter pipeline is separated into two upper and lower via a flat liquid separation plate, and the upper separation pipeline is connected to the transport pipeline so that the solid-liquid mixed water can be transported. A liquid drain port for closing both ends of the lower separation pipe side and draining a liquid such as water having a higher specific gravity than the latent heat substance such as ice on the lower separation pipe side; And the heat source storage section are connected via a liquid drain pipe. In this case, it is preferable to provide a pump in the liquid drain pipe so that the drain amount can be changed. In addition, the IPF adjuster may be configured such that both ends in the axial direction of a large-diameter pipe constituting the IPF adjuster are disposed.
It is connected to the transport pipeline via the funnel and the IPF
An adjuster, to a plurality arranged in series in the conveying conduit is not better good <br/>.

【0009】[0009]

【作用】本発明によれば混合流体を搬送する搬送ポンプ
の吸込側にIPF調整器を設けたので、負荷側の要求冷
熱量に対応した混合流体量分のみを搬送ポンプで搬送す
れば済み、言換えれば液体抜き管路に抽出される液体の
分に相当する量のポンプ動力が不要となる。従って、従
来の装置に較べ、ポンプ動力の節減が達成される。又I
PF調整器を構成する管路を平板状の液分離板を介して
上下2つに分離し、上側分離管路を搬送管路に連設し、
又下側分離管路側を液抜き部として機能させた為に、氷
水通過の際に生じる圧損を大幅に低減でき、これにより
IPF調整器の配管系の閉塞を有効に防止出来る。即
ち、氷は水より比重が軽いために、前記上側分離管路内
では氷が上方に浮遊した状態で搬送させることになる。
そして上側分離管路の上側には管路の内壁のみが存在
し、パンチメタル(液分離板)は底側にのみ存在するた
めに、氷がパンチングメタルに接触することなく従って
圧損も生じることはない。
According to the present invention, since the IPF regulator is provided on the suction side of the transport pump for transporting the mixed fluid, only the amount of the mixed fluid corresponding to the required amount of cold heat on the load side needs to be transported by the transport pump. In other words, an amount of pump power corresponding to the amount of liquid extracted into the liquid drain pipe is not required. Thus, a saving in pump power is achieved as compared to conventional devices. Again I
The pipeline constituting the PF adjuster is separated into upper and lower two via a flat liquid separation plate, and the upper separation pipeline is connected to the transport pipeline,
In addition, since the lower separation pipe side functions as a liquid drain section, pressure loss generated when ice water passes can be greatly reduced, and thereby the blockage of the piping system of the IPF regulator can be effectively prevented. That is, since the specific gravity of the ice is lower than that of the water, the ice is transported in the upper separation pipe in a state where the ice floats upward.
Since only the inner wall of the pipeline exists above the upper separation pipeline and the punch metal (liquid separation plate) exists only on the bottom side, the ice does not contact the punching metal, so that a pressure loss does not occur. Absent.

【0010】又液分離板下方の液抜き部として機能する
下側分離管路側の両端は閉塞され、言換えれば水滞留部
より水抜きを行なう為に、水抜きが容易で且つ精度良い
水抜きを行なうことが出来る。
Further, both ends on the lower separation pipe side functioning as a liquid drain portion below the liquid separation plate are closed. In other words, since water is drained from the water retaining portion, the drainage is easy and accurate. Can be performed.

【0011】[0011]

【実施例】以下図面を参照して本発明の実施例について
詳細に説明する。但し、この実施例に記載されている構
成要素の形状、数値、仕様、相対配置等、特に特定的な
記載がない限りは、この発明の範囲をそれのみに限定す
る趣旨でなく、単なる説明例に過ぎないものである。本
発明の実施例に係る固液混合流体搬送装置について説明
する。図1は本発明の第1実施例を示す系統図であり、
図において1は氷と水との混合流体(氷水)が収容され
る熱源貯溜部即ち貯氷槽、7は搬送管路、2は搬送ポン
プで、前記熱源貯溜部1出口と前記搬送ポンプ2吸込口
との間の搬送管路上に前記氷水の水抜き口を具えた複数
の第1、第2のIPF調整器3A、3Bを直列して設け
るとともに、前記IPF調整器3A、3Bの水抜き口に
夫々水抜き枝管11,12が引き出され、貯氷槽1に接
続される水抜き配管16に合流している。5は水抜き配
管路16に設けられた水抜き用ポンプで、水抜き量を任
意に制御可能に構成している。尚、6は質量流量計、8
は戻り導管、9は冷熱負荷である。
Embodiments of the present invention will be described below in detail with reference to the drawings. However, unless otherwise specified, the shapes, numerical values, specifications, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. It is nothing more than a thing. A solid-liquid mixed fluid transfer device according to an embodiment of the present invention will be described. FIG. 1 is a system diagram showing a first embodiment of the present invention,
In the figure, 1 is a heat source storage unit or ice storage tank in which a mixed fluid of ice and water (ice water) is stored, 7 is a transfer pipeline, 2 is a transfer pump, and an outlet of the heat source storage unit 1 and a suction port of the transfer pump 2. A plurality of first and second IPF adjusters 3A and 3B having the ice water drainage port are provided in series on a transfer conduit between the first and second IPF adjusters 3A and 3B. The drainage branch pipes 11 and 12 are drawn out, respectively, and join the drainage pipe 16 connected to the ice storage tank 1. Reference numeral 5 denotes a drainage pump provided in the drainage pipe passage 16, which is capable of arbitrarily controlling the amount of drainage. 6 is a mass flow meter, 8
Is a return conduit, and 9 is a cooling load.

【0012】前記IPF調整器3A、3B(以下総称し
て3という)の構成を図3に基づいて説明するに、前記
IPF調整器3を構成する管路50は、前記搬送管路7
より太径に構成され、その軸方向両端を漏斗部59を介
して連設している。そして前記管路50は平板状のパン
チメタル55を介して上下2つに分離され、該パンチメ
タル55の両端側に前記管路50と同径の半円状盲蓋5
6を取り付ける。この結果前記パンチメタル55上側の
分離管路50Aが搬送管路7に連設し、又パンチメタル
55下側の分離管路50B側の両端は閉塞される。そし
て該分離管路50Bの底側に水抜き口57を設け、該水
抜き口57に枝管11、12を連設する。
The configuration of the IPF adjusters 3A and 3B (hereinafter collectively referred to as 3) will be described with reference to FIG.
It is configured to have a larger diameter, and both ends in the axial direction are continuously provided via a funnel portion 59. The pipe 50 is separated into two parts, upper and lower, via a flat plate-shaped punch metal 55, and a semicircular blind lid 5 having the same diameter as the pipe 50 is provided at both ends of the punch metal 55.
6 is attached. As a result, the separation pipe 50A on the upper side of the punch metal 55 is connected to the transfer pipe 7, and both ends of the separation pipe 50B on the lower side of the punch metal 55 are closed. A drain port 57 is provided on the bottom side of the separation pipe 50B, and the branch pipes 11 and 12 are connected to the drain port 57.

【0013】次にかかる実施例の動作を簡単に説明する
に、前記貯氷槽1内の氷水は、搬送管路7に設けられた
第1のIPF調整器3A、第2のIPF調整器3Bを経
て搬送ポンプ2に吸入され、該ポンプ2にて例えば4k
g/cm2 ・Gの圧力に加圧され質量流量計6を経て地
域導管8に搬送される。地域導管8には多数の冷熱負荷
9が連結されている。これらの冷熱負荷9に冷熱を与え
た氷水は水となって貯氷槽1に戻される。そして貯氷槽
1への氷の供給は、夜間の安い電力を使用して不図示の
製氷機120を運転し製氷することにより行なわれる。
尚、この実施例においては、第1、第2のIPF調整器
3A、3Bを搬送管路7に直列に2個配設したが、該I
PF調整器3A、3Bを1個設けることも、また3個以
上直列に設けることも本発明の範囲に含まれる。
Next, to briefly explain the operation of this embodiment, the ice water in the ice storage tank 1 is supplied to the first IPF adjuster 3A and the second IPF adjuster 3B provided in the transfer pipe 7 by using the first IPF adjuster 3A and the second IPF adjuster 3B. Is sucked into the transfer pump 2 and the pump 2
It is pressurized to a pressure of g / cm 2 · G and conveyed to a regional conduit 8 via a mass flow meter 6. A number of cooling loads 9 are connected to the regional conduit 8. The ice water that has given the cold heat to the cold load 9 is returned to the ice storage tank 1 as water. The ice is supplied to the ice storage tank 1 by operating the ice maker 120 (not shown) using cheap electric power at night to make ice.
In this embodiment, two first and second IPF adjusters 3A and 3B are arranged in series in the transport line 7,
It is within the scope of the present invention to provide one PF adjuster 3A, 3B, or to provide three or more PF adjusters in series.

【0014】次に、本発明に係るIPFの調整方法及び
これによる搬送動力の低減の一例を図7に基づいて説明
する。今、貯氷槽1内のIPFが10%であり、これを
30%まで高め、供給圧力4kg/cm2 ・Gで供給流
量Qm3 /minを冷熱負荷9に供給する必要があるも
のとする。ポンプの理論動力の一般式は、流量をQ0m3
/min、ポンプ前後の差圧をΔPkg/cm2 とす
ると W=1.63Q0 ΔP(kW) で表わすことができる。
Next, an example of the method for adjusting the IPF according to the present invention and the reduction of the transport power thereby will be described with reference to FIG. Now, it is assumed that the IPF in the ice storage tank 1 is 10%, which is increased to 30%, and the supply flow rate Qm 3 / min needs to be supplied to the cooling load 9 at a supply pressure of 4 kg / cm 2 · G. The general formula of the theoretical power of the pump is that the flow rate is Q0m 3
/ Min, and the differential pressure before and after the pump is ΔPkg / cm 2 , it can be expressed as W = 1.63Q0ΔP (kW).

【0015】前記の必要条件を満たすためには、貯氷槽
1から3Q量の氷水を取り出し、水抜きポンプ5の回転
数を制御してIPF調整器3A、3BでそれぞれQ量の
水を抜き、2Q量の水を貯氷槽1に戻す。なお、水抜き
量は質量流量計6の密度値から算出される。一方、搬送
ポンプ2はQ量の氷水を4kg/cm2 ・Gに加圧し、
これを地域導管8へ搬送する。ポンプの理論動力W1
は、水抜きポンプ5と搬送ポンプ2とを合計して W1=1.63(2Q×1+Q×4)=9.78Q となる。
In order to satisfy the above requirements, 3Q amount of ice water is taken out from the ice storage tank 1, the rotation speed of the water removal pump 5 is controlled, and Q amount of water is drained by the IPF regulators 3A and 3B, respectively. Return the 2Q amount of water to the ice storage tank 1. The amount of drainage is calculated from the density value of the mass flow meter 6. On the other hand, the transport pump 2 pressurizes the Q amount of ice water to 4 kg / cm 2 · G,
This is conveyed to the regional conduit 8. Pump theoretical power W1
W1 = 1.63 (2Q × 1 + Q × 4) = 9.78Q when the drain pump 5 and the transport pump 2 are summed.

【0016】これに対し、図4に示す従来のものにおけ
るポンプの理論動力W2を図8に示すように前記と同一
条件下で計算すると W2=1.63×3Q×4=19.56Q したがって、本発明と従来のものとの理論ポンプ動力を
比較すると、 W1/W2=1/2 すなわち、本発明は従来のものに比べて混合水の搬送動
力を半減することが可能となる。
On the other hand, the theoretical power W2 of the conventional pump shown in FIG. 4 is calculated as shown in FIG. 8 under the same conditions as above, and W2 = 1.63 × 3Q × 4 = 19.56Q. Comparing the theoretical pump power of the present invention with that of the conventional one, W1 / W2 = 1/2. That is, the present invention makes it possible to reduce the transportation power of the mixed water by half compared to the conventional one.

【0017】また、前記のように、IPF調整器3A及
び3Bから同時に水抜きを行なうことにより、上側分離
管路50に流れる水抜き側への氷の流出も少なく、しか
も該調整器3A、3Bの氷水側における流路の閉塞も発
生する事はない。
Further, as described above, by simultaneously draining the water from the IPF regulators 3A and 3B, the outflow of ice to the drainage side flowing through the upper separation pipe 50 is reduced, and the regulators 3A and 3B are also removed. No blockage of the flow path on the ice water side occurs.

【0018】前記実施例においては、氷水を用いる地域
冷房の場合について説明したが、温度の上下により水と
固体との状態変化を生ずるような蓄熱材をカプセル等に
入れて潜熱物質として用い、これと水との固液混合流体
を用いて地域空調を行なう場合について次の実施例によ
り説明する。IPF調整器に利用可能な蓄熱材として、
蓄熱時に固形化(スラリー状、ゲル状も含め)する蓄熱
材を安全性及び耐腐食性等から搬送できるカプセル(例
えば20mm以下の球状カプセル)中に充填したものが
用いられる。このような蓄熱材を表1に、また該蓄熱剤
が冷却または加熱の用途に用いられた場合の状態を表2
によって示す。
In the above-described embodiment, the case of district cooling using ice water has been described. However, a heat storage material which causes a change in state between water and solid due to a change in temperature is used as a latent heat substance in a capsule or the like. A case in which regional air conditioning is performed using a solid-liquid mixed fluid of water and water will be described with reference to the following embodiment. As a heat storage material that can be used for the IPF regulator,
A capsule (for example, a spherical capsule of 20 mm or less) that can be conveyed from a heat storage material that is solidified (including a slurry or a gel) at the time of heat storage for safety and corrosion resistance is used. Table 1 shows such a heat storage material, and Table 2 shows the state when the heat storage agent is used for cooling or heating.
Indicated by

【0019】図2は、本発明の実施例に係る固液混合流
体の搬送装置として、前記のようなカプセルを用いる地
域空気調和システムの実施例を示すものである。図にお
いて、9は加熱または冷却の負荷(冷熱負荷)、21は
熱源貯溜部、22及び23はIPF調整器、24は搬送
管路、25は搬送ポンプ、26は液抜き配管、27は液
抜き専用ポンプ、28は自動調整弁、29は質量流量
計、30は地域導管、31は循環ポンプ、32は自動調
整弁、33はカプセル回収兼蓄熱器、34は該カプセル
回収兼蓄熱器33のパンチングメタル、35はヒートポ
ンプ装置、36ないし40及び46はそれぞれ流通管、
41ないし45はそれぞれ自動調整弁である。前記ヒー
トポンプ装置35は冷房運転のときは冷却器として、ま
た暖房運転のときは加熱器として切換え使用する。
FIG. 2 shows an embodiment of a regional air-conditioning system using the above-mentioned capsule as a solid-liquid mixed fluid conveying device according to an embodiment of the present invention. In the figure, 9 is a heating or cooling load (cold heat load), 21 is a heat source storage section, 22 and 23 are IPF adjusters, 24 is a transport pipeline, 25 is a transport pump, 26 is a drain pipe, and 27 is a drain pipe. Dedicated pump, 28 is an automatic regulating valve, 29 is a mass flow meter, 30 is a regional conduit, 31 is a circulating pump, 32 is an automatic regulating valve, 33 is a capsule collecting and regenerator, 34 is a punching of the capsule collecting and regenerator 33 Metal, 35 is a heat pump device, 36 to 40 and 46 are flow pipes, respectively.
Reference numerals 41 to 45 denote automatic adjustment valves. The heat pump device 35 is switched and used as a cooler during a cooling operation and as a heater during a heating operation.

【0020】先ず、安価な夜間電力を利用してヒートポ
ンプ装置35を運転し蓄熱(蓄冷)運転をする場合、自
動調整弁32を閉とし、熱源貯溜部21内の液温が蓄熱
温度に近いとき、自動調整弁41,45を開とし、自動
調整弁42,43,44を閉とし、循環ポンプ31を運
転する。熱源貯溜部21内の水は流通管36,37を通
りカプセル回収兼蓄熱器33に入り、次いで流通管38
を通りヒートポンプ装置35に入りここで加熱された
後、流通管39,40を通って熱源貯溜部21に戻り、
この循環を繰返す。この循環によりカプセル回収兼蓄熱
器33内のカプセル中に封入された蓄熱材に対し熱(冷
熱)が与えられる。
First, when the heat pump device 35 is operated by using inexpensive nighttime electric power to perform the heat storage (cool storage) operation, the automatic adjustment valve 32 is closed, and the liquid temperature in the heat source storage section 21 is close to the heat storage temperature. Then, the automatic adjustment valves 41 and 45 are opened, the automatic adjustment valves 42, 43 and 44 are closed, and the circulation pump 31 is operated. The water in the heat source storage section 21 enters the capsule recovery and heat storage device 33 through the flow pipes 36 and 37, and then flows into the flow pipe 38.
After passing through the heat pump device 35 and heated here, it returns to the heat source storage section 21 through the flow pipes 39 and 40,
This cycle is repeated. By this circulation, heat (cold heat) is given to the heat storage material sealed in the capsule in the capsule recovery and storage unit 33.

【0021】カプセル回収兼蓄熱器33における水の出
口温度または水の出入口温度差を検出してこの蓄熱が終
了するに至ったときは、自動調整弁42,43を開と
し、自動調整弁41,44,45を閉として、循環ポン
プ31を運転する。熱源貯溜部21の水は流通管36を
経て自動調整弁43を通りカプセル回収兼蓄熱器33に
流入し、該蓄熱器内のカプセルを伴って流通管46を経
て熱源貯溜部21に戻り、該貯溜部内にカプセルを蓄積
する。
When the temperature of the outlet of water or the temperature difference between the inlet and outlet of water in the capsule collecting and storing unit 33 is detected and the heat storage is completed, the automatic adjusting valves 42 and 43 are opened, and the automatic adjusting valves 41 and 43 are opened. The circulation pump 31 is operated with 44 and 45 closed. The water in the heat source reservoir 21 flows into the capsule collecting and storing device 33 through the automatic regulating valve 43 through the flow tube 36, and returns to the heat source storing portion 21 through the flow tube 46 with the capsule in the heat storage device. The capsule is stored in the reservoir.

【0022】空調負荷時の運転は次のように行なう。自
動調整弁32を開とする。搬送ポンプ25を運転して熱
源貯溜部21内のカプセルと水との固液混合流体をIP
F調整器22,23に導入し、液抜き専用ポンプ27を
運転することにより、水が適当量だけ抜き出されて熱源
貯溜部21へ戻される。水を抜く流量は、質量流量計2
9の密度値を検知して液抜き専用ポンプ27の回転数を
制御するか、液抜き専用ポンプ27の回転数は一定にし
自動調整弁28を制御することにより決定される。
The operation under the air-conditioning load is performed as follows. The automatic adjustment valve 32 is opened. By operating the transport pump 25, the solid-liquid mixed fluid of the capsule and water in the heat source storage section 21 is subjected to IP
The water is introduced into the F adjusters 22 and 23 and the exclusive draining pump 27 is operated, whereby an appropriate amount of water is extracted and returned to the heat source storage 21. The flow rate for draining water is mass flow meter 2
The number of rotations of the dedicated pump 27 is controlled by detecting the density value of No. 9 or by controlling the automatic adjustment valve 28 while keeping the number of rotations of the dedicated pump 27 constant.

【0023】このようにして、所要のIPFに調整され
た固液混合流体は、地域導管30に搬送され負荷9に熱
の授受を行なうことにより、空調を遂行する。自動調整
弁41,42,43が閉、自動調整弁44または45が
開となると、熱授受後の固液混合流体はカプセル回収兼
蓄熱器33を流通し、次いで流通管40を経て熱源貯溜
部21へと戻る。このため固液混合流体中の潜熱使用済
カプセルは、カプセル回収兼蓄熱器33内に、カプセル
の径よりも小さな目開きのパンチングメタル34により
捕捉されて収容される。
In this manner, the solid-liquid mixed fluid adjusted to the required IPF is conveyed to the local conduit 30 and transfers heat to and from the load 9 to perform air conditioning. When the automatic adjustment valves 41, 42, 43 are closed and the automatic adjustment valves 44 or 45 are opened, the solid-liquid mixed fluid after heat transfer flows through the capsule collection and heat storage unit 33, and then flows through the flow pipe 40 to the heat source storage unit. Return to 21. For this reason, the latent heat used capsule in the solid-liquid mixed fluid is captured and accommodated in the capsule collecting and storing unit 33 by the punching metal 34 having an opening smaller than the diameter of the capsule.

【0024】前記固液混合流体のカプセル回収兼蓄熱器
33から熱源貯溜部21への返流は、2つの経路があ
る。すなわち、固液混合流体の温度が蓄熱温度とほぼ等
しいときは自動調整弁44を経て熱源貯溜部21へ返流
され、固液混合流体が顕熱まで利用され、その温度が熱
源貯溜部21の蓄熱温度と温度差のあるときは、固液混
合流体は自動調整弁45を経てヒートポンプ装置35に
入り、ここで冷却または加熱されてほぼ蓄熱温度とされ
た後、熱源貯溜部21へ返流される。
There are two routes for returning the solid-liquid mixed fluid from the capsule recovery and regenerator 33 to the heat source storage section 21. That is, when the temperature of the solid-liquid mixed fluid is substantially equal to the heat storage temperature, the solid-liquid mixed fluid is returned to the heat source storage section 21 through the automatic adjustment valve 44, and the solid-liquid mixed fluid is used up to sensible heat. When there is a temperature difference from the heat storage temperature, the solid-liquid mixed fluid enters the heat pump device 35 via the automatic adjustment valve 45, where it is cooled or heated to approximately the heat storage temperature, and then returned to the heat source storage unit 21. You.

【0025】空調装置が全負荷運転をするときは、前記
の夜間運転方式と追いかけ運転方式とを併用するのが一
般的な方式である。したがって、最大負荷時には、前記
の蓄熱運転も必要となるので、カプセル回収兼蓄熱器3
3数基を並列に設置し、パッチ式でヒートポンプ装置3
5からの冷水または温水をカプセル回収を終えた容器へ
流し、蓄熱運転を行ない、その後に前記方式で蓄熱した
カプセルを熱源貯溜部21へ戻すようにする。
When the air conditioner operates at full load, it is a general method to use both the night operation method and the chasing operation method. Therefore, at the time of maximum load, the above-mentioned heat storage operation is also required, so that the capsule recovery and heat storage 3
Three units are installed in parallel, and the heat pump device 3
The cold water or hot water from 5 is flowed into the container where the capsules have been collected, a heat storage operation is performed, and then the capsules stored by the above-mentioned method are returned to the heat source storage unit 21.

【0026】尚、以上の実施例は地域冷房の場合である
が、本発明はこれに限定されることなく、暖房の場合も
含み、従って「負荷」には「冷却負荷」と「加熱負荷」
とを、「熱源貯溜部」には「貯氷槽」と「高熱源」をそ
れぞれ含む。
Although the above embodiment is directed to district cooling, the present invention is not limited to this, and includes heating. Therefore, "load" includes "cooling load" and "heating load".
The “heat source storage section” includes an “ice storage tank” and a “high heat source”, respectively.

【0027】[0027]

【発明の効果】以上記載した如く本発明によれば、固液
混合流体の搬送ポンプの吸込側にIPF調整器を設け、
該調整器において適当量の水(水)を抜いて熱源貯溜部
へ戻すようにしたから、従来のもののような搬送ポンプ
の吐出側にIPF調整器を設けたものに比べて搬送動力
を著しく節減することができる。
As described above, according to the present invention, an IPF regulator is provided on the suction side of a transport pump for a solid-liquid mixed fluid,
Since an appropriate amount of water (water) is drained and returned to the heat source storage section in the adjuster, the transfer power is significantly reduced as compared with a conventional transfer pump having an IPF adjuster on the discharge side of the transfer pump. can do.

【0028】またIPF調整器は熱源貯溜部の近くに設
置することができるので該調整器から前記貯溜部に至る
水抜き配管での流れ抵抗は地域導管と比べて極めて小さ
く、したがって、水抜き専用ポンプを用いても、その加
圧は1kg/cm2 ・G程度でありそれによる搬送動力
の増加分はきわめて小さい。
Also, since the IPF regulator can be installed near the heat source storage part, the flow resistance in the drainage pipe from the regulator to the storage part is extremely small as compared with the local conduit, and therefore, the IPF regulator is exclusively used for drainage. Even if a pump is used, the pressurization is about 1 kg / cm 2 · G, and the increase in transport power due to this is extremely small.

【0029】また従来のものにおいては、IPF調整器
において、水抜き流量/固液混合流体入口流量(入口と
は調整器の入口のことである)の値が0.4以上になる
と、水抜き側からの氷の流量が多くなり効率は低下し、
またIPF調整器の混合流体側での閉塞も起り易くなる
が、IPF調整器を直列に数基設置すれば、これによ
り、一基の調整器から抜かれる水の流量を所定の許容値
(40%)以下に抑えることができるので、IPFの値
を高めなければならない割合の大きいときであっても、
各個のIPF調整器の効率を低下するおそれはなく、し
かも安全で、確実で効率のよい装置の運転をすることが
できる。更に冷熱負荷の変動に応じて冷熱負荷部に搬送
される固液混合流体の流速を搬送ポンプの運転を調節す
ることによって制御するとともに、熱源貯溜部内の攪拌
機の運転を調節することにより、熱源貯溜部から流出す
る固液混合流体のIPFを制御することができるので、
前記制御を無段階に行なう場合に適しており、前記と同
様、効率の高い地域冷暖房運転ができる。
In the conventional apparatus, when the value of the drainage flow rate / the solid-liquid mixed fluid inlet flow rate (the inlet means the inlet of the regulator) becomes 0.4 or more in the IPF regulator, the drainage is performed. Ice flow from the side increases, efficiency decreases,
In addition, although it is easy for the IPF regulator to be clogged on the mixed fluid side, if several IPF regulators are installed in series, the flow rate of water drained from one regulator can be reduced to a predetermined allowable value (40). %) Or less, so even when the rate at which the value of IPF must be increased is large,
There is no danger that the efficiency of each IPF regulator will be reduced, and a safe, reliable and efficient operation of the device can be achieved. Further, the flow rate of the solid-liquid mixed fluid conveyed to the cold load section is controlled by adjusting the operation of the transfer pump in accordance with the fluctuation of the cold load, and the operation of the stirrer in the heat source storage section is adjusted to control the heat source storage. Since the IPF of the solid-liquid mixed fluid flowing out of the section can be controlled,
This is suitable for the case where the control is performed in a stepless manner, and similarly to the above, a highly efficient district heating and cooling operation can be performed.

【0030】又本発明はIPF調整器を構成する管路5
0を平板状の液分離板を介して上下2つに分離し、上側
分離管路50を搬送管路に連設し、又下側分離管路50
側を液抜き部として機能させた為に、氷水通過の際に生
じる圧損を大幅に低減でき、これによりIPF調整器の
配管系の閉塞を有効に防止出来る。更に液分離板下方の
液抜き部として機能する下側分離管路50側の両端は閉
塞され、言換えれば水滞留部より水抜きを行なう為に、
水抜きが容易で且つ精度良い水抜きを行なうことが出来
る。等の種々の著効を有す。
The present invention also relates to a line 5 constituting an IPF adjuster.
0 is separated into two upper and lower parts via a plate-like liquid separation plate, an upper separation line 50 is connected to a conveying line, and a lower separation line 50 is connected.
Since the side functions as a liquid drain portion, pressure loss generated when ice water passes can be greatly reduced, and thereby the blockage of the piping system of the IPF regulator can be effectively prevented. Further, both ends on the lower separation pipe 50 side functioning as a liquid drain portion below the liquid separation plate are closed, in other words, in order to drain water from the water retaining portion,
Drainage is easy and accurate. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る固液混合流体搬送装
置の系統図。
FIG. 1 is a system diagram of a solid-liquid mixed fluid transfer device according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る固液混合流体搬送装
置の系統図。
FIG. 2 is a system diagram of a solid-liquid mixed fluid transfer device according to a second embodiment of the present invention.

【図3】前記実施例に適用されるIPF調整器の一例を
示し、(A)は全体透視図、(B)はパンチングメタル
の要部斜視図。
3A and 3B show an example of an IPF adjuster applied to the embodiment, wherein FIG. 3A is an overall perspective view, and FIG. 3B is a perspective view of a main part of a punching metal.

【図4】従来の搬送装置を示す系統図。FIG. 4 is a system diagram showing a conventional transport device.

【図5】従来のIPF調整器の一例を示す断面略図。FIG. 5 is a schematic sectional view showing an example of a conventional IPF adjuster.

【図6】従来のIPF調整器の機能を示す線図。FIG. 6 is a diagram showing functions of a conventional IPF adjuster.

【図7】本発明2装置の作用説明図。FIG. 7 is a diagram illustrating the operation of the second device of the present invention.

【図8】従来例の作用説明図。FIG. 8 is an operation explanatory view of a conventional example.

【符号の説明】[Explanation of symbols]

1 熱源貯溜部としての貯氷槽 2 搬送ポンプ 3A、3B 潜熱物質充填率調整器(IPF調整器) 5 水抜きポンプ 7 搬送管路 8 地域導管 9 冷熱負荷 1a 固液混合流体取出口 1b 水抜き配管 51 金網またはパンチングメタル 52 攪拌機 DESCRIPTION OF SYMBOLS 1 Ice storage tank as heat source storage part 2 Transport pump 3A, 3B Latent heat substance filling rate regulator (IPF regulator) 5 Drain pump 7 Transport pipeline 8 Regional conduit 9 Cold load 1a Solid-liquid mixed fluid outlet 1b Drain pipe 51 Wire mesh or punching metal 52 Stirrer

【表1】 [Table 1]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 充 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (72)発明者 大野 泰司 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (72)発明者 相沢 旬一 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (72)発明者 横山 卓史 東京都江東区牡丹2丁目13番1号 株式 会社前川製作所内 (72)発明者 森川 大和 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 宮脇 正博 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 藤本 健 大阪府大阪市中央区高麗橋4丁目6番2 号 株式会社日建設計内 (72)発明者 栗山 知広 大阪府大阪市中央区高麗橋4丁目6番2 号 株式会社日建設計内 (56)参考文献 特開 平3−236537(JP,A) 特開 平3−129227(JP,A) 実開 平3−34533(JP,U) 実開 平3−42932(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 102 F25C 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuru Yamamoto 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd. Inside Maekawa Manufacturing Co., Ltd. (72) Inventor Yasushi Ohno 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd. Inside the Maekawa Works (72) Inventor Shunichi Aizawa 2-3-1 Botan, Koto-ku, Tokyo Co., Ltd. Inside the Maekawa Works Co., Ltd. (72) Inventor Takushi Yokoyama 2-3-1 Botan, Koto-ku, Tokyo Co., Ltd. (72) Inventor Yamato Morikawa 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Inside Kansai Electric Power Company (72) Inventor Masahiro Miyawaki 3-2-2, Nakanoshima, Kita-ku, Osaka City, Osaka Kansai Electric Power Company (72) Inventor Ken Fujimoto 4-6-2 Komyobashi, Chuo-ku, Osaka-shi, Osaka Inside Nikken Sekkei Co., Ltd. (72) Inventor Tomohiro Kuriyama, Chuo-ku, Osaka-shi, Osaka 4-6-2 Hashi, Nikken Sekkei Co., Ltd. (56) References JP-A-3-236537 (JP, A) JP-A-3-129227 (JP, A) JP-A-3-34533 (JP, U ) Hikaru Hei 3-42932 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00 102 F25C 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 貯氷槽等の熱源貯溜部内に収容された氷
等の潜熱物質と水等の液体との固液混合流体を、前記熱
源貯溜部と冷房または暖房その他の負荷とを接続する搬
送管路に搬送ポンプを設け、該搬送ポンプにより前記固
液混合流体を前記負荷側に搬送し、該負荷と熱交換した
後に該混合流体を前記熱源貯溜部側に戻すように構成し
た固液混合流体の搬送装置において、 前記熱源貯溜部出口と前記搬送ポンプ吸込口との間の搬
送管路上にIPF調整器を介装し、該IPF調整器を構
成する管路を前記搬送管路より太径に拡径して形成する
とともに、該太径の管路を平板状の液分離板を介して上
下2つに分離し、上側分離管路を搬送管路に連設して固
液混合水を搬送可能に形成し、 又下側分離管路側の両端を閉塞すると共に、該下側分離
管路側に前記氷等の潜熱物質より比重の重い水等の液体
を抜く液体抜き口を設け、該IPF調整器の液体抜き口
と前記熱源貯溜部とを液体抜き管路を介して接続させた
ことを特徴とする固液混合流体の搬送装置。
1. A conveyance for connecting a solid-liquid mixed fluid of a latent heat substance such as ice and a liquid such as water stored in a heat source storage section such as an ice storage tank to connect the heat source storage section to a cooling or heating or other load. A solid-liquid mixing unit configured to provide a transfer pump in a pipeline, transfer the solid-liquid mixed fluid to the load side by the transfer pump, and return the mixed fluid to the heat source storage unit side after exchanging heat with the load; In the fluid transfer device, an IPF adjuster is interposed on a transfer pipe between the heat source storage section outlet and the transfer pump suction port, and a pipe forming the IPF adjuster has a larger diameter than the transfer pipe. Forming by expanding
At the same time, the large-diameter pipe is separated into upper and lower two via a flat liquid separation plate, and an upper separation pipe is connected to the transfer pipe so as to be able to transfer the solid-liquid mixed water. Both ends of the lower separation pipe side are closed, and a liquid drain port for draining a liquid such as water having a higher specific gravity than the latent heat substance such as ice is provided on the lower separation pipe side, and a liquid drain port of the IPF regulator is provided. A solid-liquid mixed fluid transfer device, wherein the heat source storage section is connected via a liquid drain pipe.
【請求項2】 前記IPF調整器を構成する太径管路の
軸方向両端を漏斗部を介して搬送管路に連設するととも
に、該IPF調整器を、前記搬送管路に直列に複数個配
置したことを特徴とする請求項1記載の固液混合流体の
搬送装置。
2. A large-diameter pipeline constituting the IPF adjuster.
2. The solid-liquid mixed fluid according to claim 1, wherein both ends in the axial direction are connected to the conveying line via a funnel , and a plurality of the IPF adjusters are arranged in series on the conveying line. Transport device.
JP16835093A 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device Expired - Fee Related JP3345105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16835093A JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17974992 1992-07-07
JP4-179749 1992-07-07
JP16835093A JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Publications (2)

Publication Number Publication Date
JPH06265184A JPH06265184A (en) 1994-09-20
JP3345105B2 true JP3345105B2 (en) 2002-11-18

Family

ID=26492083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16835093A Expired - Fee Related JP3345105B2 (en) 1992-07-07 1993-06-16 Solid-liquid mixed fluid transfer device

Country Status (1)

Country Link
JP (1) JP3345105B2 (en)

Also Published As

Publication number Publication date
JPH06265184A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US20230023068A1 (en) Feed water supplementary thermal exchange apparatus, system and method
CN105264305A (en) Apparatus and methods for pre-heating water with air conditioning unit or water pump
SG176966A1 (en) Device for recovering heat from wastewater, thermal system including such a device, and method
CN107560207B (en) Screw type water chilling unit and control method thereof
US10845106B2 (en) Accumulator and oil separator
JP3345105B2 (en) Solid-liquid mixed fluid transfer device
EP1431685A1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
RU2011938C1 (en) Refrigerating plant
JP3097161B2 (en) Thermal storage type air conditioner
JP3062472B2 (en) In-pipe cleaning equipment for heat exchangers
JPH07253227A (en) Air conditioner
JP3302782B2 (en) Transfer control method for solid-liquid mixed fluid
JP2701558B2 (en) Oil return control device for refrigeration equipment
US4640100A (en) Refrigeration system
WO2020220107A1 (en) Feed water supplementary thermal exchange apparatus, system and method
JPS57192735A (en) Room cooling, heating and hot-water supplying device
CN218884164U (en) High-water-temperature heat pump oil-cooling air conditioning system
JPH01266455A (en) Cooling device using ice water
JP2727754B2 (en) Ice making equipment
JPH037833A (en) Heat transfer apparatus
JP3433306B2 (en) Improvement of cooling operation in heat medium circulation type air conditioning system
JP3505733B2 (en) Ice storage method and ice storage pipe system in ice thermal storage system
CA3041579A1 (en) Feed water supplementary thermal exchange apparatus, system and method
JPS5844287Y2 (en) solar water heater
SU1211533A1 (en) Air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees