JPH06264467A - Working machine support device for bulldozer - Google Patents

Working machine support device for bulldozer

Info

Publication number
JPH06264467A
JPH06264467A JP7898393A JP7898393A JPH06264467A JP H06264467 A JPH06264467 A JP H06264467A JP 7898393 A JP7898393 A JP 7898393A JP 7898393 A JP7898393 A JP 7898393A JP H06264467 A JPH06264467 A JP H06264467A
Authority
JP
Japan
Prior art keywords
working machine
bulldozer
vibration
vehicle body
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7898393A
Other languages
Japanese (ja)
Inventor
Kenzo Kimoto
健蔵 木元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7898393A priority Critical patent/JPH06264467A/en
Publication of JPH06264467A publication Critical patent/JPH06264467A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations

Abstract

PURPOSE:To suppress the generation of vibration of a car body during a work and during running by forming the dynamic vibration absorber of a vehicle body such that an accumulator is connected to the head port of the shift cylinder of each of a bulldozer working machine and a ripper working machine. CONSTITUTION:Solenoid switching valves 17 and 18 are respectively arranged to circuits 13', 14' and 15', 16' branched from circuits 13, 14, 15, and 16 through which working oil is fed to lift cylinders 4 and 5. A check valve 19 and an orifice 20 are arranged in parallel in a position situated downstream therefrom and one on the downstream side is coupled to accumulators 6 and 7. When two vehicle bodies 1 are run and a bulldozer working machine 2 and a ripper working machine 3 are both not worked, the switching valves 17 and 18 are switched to an ON-position by means of electric signals 22 and 23 from a controller 21. The working machines 2 and 3 are both vertically excited owing to vibration from a road and head ports 4a and 5a connected to the accumulators 6 and 7 are caused to perform spring operation, and the orifice 20 is caused to perform damping operation by effecting resistance against the passage of oil during expansion and contraction of the cylinders 4 and 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建設車両において、その
作業機装置を振動吸収器として作用させ、走行時および
作業時の車体振動を抑制するようにした作業機支持装置
に係り、特にブルド−ザの作業機支持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a construction machine support device for a construction vehicle, in which the construction machine device acts as a vibration absorber to suppress vehicle body vibrations during traveling and at work, and more particularly to a bulldozer. The work machine support device of the.

【0002】[0002]

【従来の技術】例えば、図11に示すようなブルド−ザ
においては車両本体1の前部にトラックフレ−ム1aを
介してド−ザ作業機2が装着され、後部にはリッパ作業
機3が装着されている。そしてエンジン8で駆動された
油圧ポンプ9は作動油タンク10からの油を、ド−ザ作
業機用コントロ−ルバルブ11,リッパ作業機用コント
ロ−ルバルブ12に導入させ、これら各バルブ11,1
2からそれぞれブレ−ドリフトシリンダ4、リッパリフ
トシリンダ5に油を供給して作動させそれぞれの作業機
2,3をピン31,32を支点として回動するようにな
っている。
2. Description of the Related Art For example, in a bulldozer as shown in FIG. 11, a dozer working machine 2 is mounted on a front part of a vehicle body 1 via a track frame 1a, and a ripper working machine 3 is mounted on a rear part thereof. Is installed. The hydraulic pump 9 driven by the engine 8 introduces the oil from the hydraulic oil tank 10 into the control valve 11 for the dozer working machine and the control valve 12 for the ripper working machine, and these respective valves 11, 1
Oil is supplied to the blower drift cylinder 4 and the ripper lift cylinder 5 from 2, respectively, and they are operated to rotate the working machines 2 and 3 with pins 31 and 32 as fulcrums.

【0003】しかして、前記構成を模式的に示すと図1
2に示すようになる。ここでM:車両全体質量、K:車
両全体のばね定数、F:従来の車両全体がある速度で地
面に衝突した時の衝撃力、c1 :車両全体ばね系の減衰
係数、x1 :車両全体の上下振動の変位、u:地面の凹
凸等からくる車体に加えられる振動の上下方向の変位で
ある。これからも分かるように各作業機2,3と、車両
本体1との間に走行時や作業時の車体振動抑制機構とし
ては何も設けられていない。
Therefore, FIG. 1 is a schematic diagram showing the above configuration.
As shown in 2. Here, M is the mass of the entire vehicle, K is the spring constant of the entire vehicle, F is the impact force when the entire conventional vehicle collides with the ground at a certain speed, c1 is the damping coefficient of the entire vehicle spring system, x1 is the entire vehicle. Vertical vibration displacement, u: Vertical displacement of vibration applied to the vehicle body due to unevenness of the ground. As can be seen from heretofore, nothing is provided between the working machines 2 and 3 and the vehicle body 1 as a vehicle body vibration suppressing mechanism during running or working.

【0004】[0004]

【発明が解決しようとする課題】しかしながらブルド−
ザおいては作業時の衝撃負荷が大きいため、振動が大き
くなって耐久性が劣るので、耐久性を確保するには足回
りを始めとした各部を強化しなければならず、必然的に
重量が重くなり、原価高となる欠点があった。
However, Bulld-
In this case, since the impact load during work is large, the vibration becomes large and the durability is inferior, so in order to secure durability, it is necessary to strengthen each part such as the suspension and inevitably the weight. Has the drawback of becoming heavy and costly.

【0005】本発明はこれに鑑み、作業機を動吸振器と
して作用させ、作業時および走行時の車体振動を抑制す
ることができるブルド−ザの作業機支持装置を提供して
従来技術の持つ欠点の解消を図ることを目的としてなさ
れたものである。
In view of the above, the present invention provides a working machine support device for a bulldozer, which allows the working machine to act as a dynamic vibration absorber and suppresses vibration of the vehicle body during working and traveling, and has the prior art. The purpose is to eliminate the drawbacks.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の請求項1は車両本体の前部にド−ザ作業機を、
後部にリッパ作業機をそれぞれ備えたブルド−ザの作業
機支持装置において、該ド−サ作業機のリフトシリンダ
と、該リッパ作業機のリフトシリンダの各ヘッドポ−ト
にそれぞれアキュムレ−タを接続して前記車両本体の動
吸振器を構成することを特徴とし、請求項2は請求項1
において、前記各作業機を車両本体に支持するアキュ−
ムレ−タのばね定数と、該アキュ−ムレ−タの上流側の
オリフィスの減衰係数は前記車両本体への振動伝達率を
最小とするように選定することを特徴とする。
In order to achieve the above object, the first aspect of the present invention is to provide a dozer working machine at the front of the vehicle body.
In a work machine support device of a bulldozer equipped with a ripper work machine at the rear part, an accumulator is connected to each lift port of the dresser work machine and each head port of the lifter work machine. And a dynamic vibration reducer of the vehicle body is configured,
In the above, the accu
The spring constant of the mullet and the damping coefficient of the orifice on the upstream side of the accumulator are selected so as to minimize the vibration transmissibility to the vehicle body.

【0007】[0007]

【作用】上記構成によれば、請求項1ではアキュ−ムレ
−タにより作業機の振動が吸収され、請求項2ではアキ
ュ−ムレ−タのばね定数と、該アキュ−ムレ−タの上流
側のオリフィスの減衰係数は所定の値を選定することに
より、前記車両本体への振動伝達率を最小とすることが
できる。
According to the above construction, in claim 1, the vibration of the working machine is absorbed by the accumulator, and in claim 2, the spring constant of the accumulator and the upstream side of the accumulator. By selecting a predetermined value for the damping coefficient of the orifice, the vibration transmissibility to the vehicle body can be minimized.

【0008】[0008]

【実施例】図1は本発明の請求項1にかかるブルド−ザ
の作業機支持装置の一実施例を示すブルド−ザの側面を
含む油圧回路図、図2は図1のブルザ−ザの走行姿勢
図、図3は図1のブルド−ザのド−ジング作業時の状態
図、図4は図1のブルド−ザのリッピング作業時の状態
図、図5は本発明の構成のモデル図、図6は本発明およ
び従来の振動波形イメ−ジを示すグラフ、図7は本発明
の振動数比と振動伝達率の関係を示すグラフ、図8は図
1のブルド−ザの岩石乗り上げ状態図、図9は図1のブ
ルド−ザの岩石乗り越え・落下状態を示し、(a)は落
下寸前、(b)は落下時、図10は本発明の軟式マウン
ト重量比と緩衝率の関係を示すグラフである。
1 is a hydraulic circuit diagram including a side surface of a bulldozer showing an embodiment of a working machine supporting device for a bulldozer according to claim 1 of the present invention, and FIG. 2 is a hydraulic circuit diagram of the bulldozer of FIG. FIG. 3 is a running posture diagram, FIG. 3 is a state diagram of the bulldozer shown in FIG. 1 during a dozing work, FIG. 4 is a state diagram of the bulldozer shown in FIG. 1 during a ripping work, and FIG. 5 is a model diagram of the configuration of the present invention. FIG. 6 is a graph showing the vibration waveform image of the present invention and the conventional one, FIG. 7 is a graph showing the relationship between the frequency ratio and the vibration transmissibility of the present invention, and FIG. 8 is the rock riding state of the bulldozer of FIG. FIGS. 9 and 9 show the rock climbing / falling state of the bulldozer shown in FIG. 1. (a) is on the verge of falling, (b) is during falling, and FIG. 10 shows the relationship between the soft mount weight ratio of the present invention and the buffer ratio. It is a graph shown.

【0009】本発明の請求項1は図1(図11と同一の
部品は図11と同符号)で示すように車両本体1の前部
にド−ザ作業機2を、後部にリッパ作業機3をそれぞれ
備えたブルド−ザの作業機支持装置において、該ド−サ
作業機2のリフトシリンダ4と、該リッパ作業機3のリ
フトシリンダ5の各ヘッドポ−ト4a,5aにそれぞれ
アキュムレ−タ6,7を接続して前記車両本体1の動吸
振器を構成したもので、請求項2は請求項1において前
記各作業機2,3を車両本体1に支持するアキュムレ−
タ6,7のばね定数kと、該アキュムレ−タの上流側の
オリフィスの減衰係数c2 は前記車両本体1への振動伝
達率Tを最小とするように選定するものである。
According to claim 1 of the present invention, as shown in FIG. 1 (the same parts as in FIG. 11 have the same reference numerals as in FIG. 11), a dozer working machine 2 is provided at the front of the vehicle body 1 and a ripper working machine is provided at the rear. In a work machine supporting device for a bulldozer, each of which is provided with a lift cylinder 3, a lift cylinder 4 of the dresser work machine 2 and head heads 4a and 5a of a lift cylinder 5 of the ripper work machine 3 are respectively accumulators. A dynamic vibration absorber of the vehicle body 1 is configured by connecting 6, 7 and claim 2 is an accumulator for supporting the working machines 2, 3 to the vehicle body 1 in claim 1.
The spring constant k of the actuators 6 and 7 and the damping coefficient c2 of the orifice on the upstream side of the accumulator are selected so as to minimize the vibration transmissibility T to the vehicle body 1.

【0010】ド−ザ作業機2、およびリッパ作業機3を
作動させるにはエンジン8により駆動される油圧ポンプ
9があって、作動油タンク10から吸い上げた油をド−
ザ作業機用コントロ−ルバルブ11,およびリッパ作業
機用コントロ−ルバルブ12に導き、各バルブ11,1
2の操作で、それぞれのリフトシリンダ4、および5に
供給される回路13,14の何れか、および15,16
の何れかを経て行われるが、本発明では、回路13,1
4,15,16からそれぞれ回路13′,14′,1
5′,16′をそれぞれ分岐して分岐した回路13′と
14′、および15′と16′とにそれぞれON,OF
F2位置を有する電磁切換弁(油圧パイロット式でも
可)17,18を設け、その下流にそれぞれチェック弁
19とオリフィス20とを並列に配置してさらにその下
流の一方を前記アキュ−ムレ−タ6,7に連結し、他方
をタンク10,10に流れるようにしたものである。図
中21はコントロ−ラで、コントロ−ラ21へ入力され
る信号iは走行ON−OFF、ド−ジング作業中か否
か、リッピング作業中か否か等がセンシングされ入って
くるものとする。22,23はコントロ−ラ21から発
せられる電気信号である。
To operate the dozer working machine 2 and the ripper working machine 3, there is a hydraulic pump 9 driven by an engine 8 and the oil sucked from a hydraulic oil tank 10 is drained.
The control valve 11 for the working machine and the control valve 12 for the ripper working machine are led to the respective valves 11, 1.
In operation 2, any of the circuits 13 and 14 supplied to the respective lift cylinders 4 and 5 and 15, 16
However, in the present invention, the circuits 13 and 1 are used.
4, 15 and 16 to circuits 13 ', 14' and 1 respectively
5'and 16 'are respectively branched to branch circuits 13' and 14 ', and 15' and 16 'to turn ON and OF, respectively.
Electromagnetic switching valves (or hydraulic pilot type) 17 and 18 having the F2 position are provided, a check valve 19 and an orifice 20 are arranged in parallel downstream of each of them, and one of the downstreams thereof is connected to the accumulator 6 , 7 and the other is made to flow to the tanks 10, 10. In the figure, reference numeral 21 designates a controller, and a signal i input to the controller 21 is detected by the traveling ON-OFF, whether or not dozing work is being performed, whether or not ripping work is being performed, and the like. . 22 and 23 are electric signals emitted from the controller 21.

【0011】つぎに作動を説明する。まず、走行中、図
2に示すように各作業機2,3を地面から離れた状態と
して走行しているものとすると、ド−ザ作業機2、およ
びリッパ作業機3は共に作業していないので、電磁切換
弁17,18はON位置にコントロ−ラ21からの電気
信号22,23により切換えられる。この状態で路面か
らの振動に対しては、ド−ザ作業機2、およびリッパ作
業機3は共に上下に加振されるが、各シリンダ4,5の
ヘッドポ−ト4a,5aがアキュ−ムレ−タ6,7にそ
れぞれ接続されているため、ばね作用をする。また、各
オリフィス20が各シリンダ4,5の伸縮時の油の通過
に対して抵抗を示すことにより減衰作用をする。また、
図3はド−ジング作業時を示すもので、このときはド−
ザ作業機2を使用しているため、電磁切換弁17は作用
せず、18のみがON位置に切換えられるが、作用効果
は前述と同じである。同様に図4はリッピング作業時を
示すもので、このときはリッパ作業機3を使用している
ため、電磁切換弁18は作用せず、17のみがON位置
に切換えられて動吸振器のマスとなり前述のように制振
作用をする。このことは図5に模式的に示される2自由
度系の扱われる振動解析が当てはまることになり、図1
2に示した従来の1自由度系で決まる車両の振動変位x
1 に対してk,c2 を適度に設定することにより小さな
x1 にすることができる。ここで、図12で示した分を
除いた記号説明を下記に示す。 x2 :作業機全体の上下方向変位(ド−ザ作業機、リッ
パ作業機の平均値) F1 :本発明の車両全体がある速度で地面に衝突したと
きの衝撃力 m1 :M−m2 =車両本体質量 m2 :作業機全質量(ド−ザ作業機+リッパ作業機) c2 :アキュムレ−タ手前のオリフィスの減衰係数 umax :地面の凹凸等からくる車体に加えられる振動の
上下方向の最大変位 k:アキュムレ−タのばね定数
Next, the operation will be described. First, when the working machines 2 and 3 are traveling while being separated from the ground as shown in FIG. 2, the dozer working machine 2 and the ripper working machine 3 are not working together. Therefore, the electromagnetic switching valves 17 and 18 are switched to the ON position by the electric signals 22 and 23 from the controller 21. In this state, both the dozer work machine 2 and the ripper work machine 3 are vertically vibrated against vibrations from the road surface, but the head ports 4a, 5a of the cylinders 4, 5 are accumulated. -Because they are respectively connected to the switches 6 and 7, they act as springs. Further, each orifice 20 has a damping action by showing resistance to the passage of oil when the cylinders 4 and 5 expand and contract. Also,
Figure 3 shows the dozing work.
Since the working machine 2 is used, the electromagnetic switching valve 17 does not operate and only 18 is switched to the ON position, but the effects are the same as described above. Similarly, FIG. 4 shows the time of ripping work. At this time, since the ripper working machine 3 is used, the electromagnetic switching valve 18 does not operate, and only 17 is switched to the ON position, and the mass of the dynamic vibration reducer is changed. Next, it acts as a vibration suppressor as described above. This applies to the vibration analysis handled in the two-degree-of-freedom system schematically shown in FIG.
Vehicle vibration displacement x determined by the conventional 1-DOF system shown in 2
A small x1 can be obtained by appropriately setting k and c2 with respect to 1. Here, the explanation of the symbols other than those shown in FIG. 12 is shown below. x2: Vertical displacement of the entire working machine (average value of the dozer working machine and ripper working machine) F1: Impact force when the entire vehicle of the present invention collides with the ground at a certain speed m1: M-m2 = vehicle body Mass m2: Total mass of working machine (dozer working machine + ripper working machine) c2: Attenuation coefficient of orifice in front of accumulator umax: Maximum vertical displacement of vibration applied to vehicle body due to unevenness of ground k: Accumulator spring constant

【0012】つぎに図12に示す従来の振動モデルと比
較しながら、図5に示す2自由度系の振動モデルにより
動吸振器の作動原理について説明する。図12において
周期的に変位する凹凸状の地面上を振動モデルが移動す
る強制振動に関する運動の方程式、Mx1 ″+c1 (x
1 ′−u′)+K(x1 −u)=0を立て、その解を求
めると、x1 =a1 cos{ωt−φ1 )},u=a0
cosωtとなる。なお、a1 はx1 の振幅、a0 はu
の振幅、ωは円振動数、φ1 は位相である。また、a1
=a0 √{K2 +(c1 ω)2 }/√{(K−Mω)2
+(c1 ω)2}、tanδ=c1 ω/(k−Mω2
),tanα=−c1 ω/kである。
Next, the operating principle of the dynamic vibration absorber will be described with reference to the vibration model of the two-degree-of-freedom system shown in FIG. 5 while comparing it with the conventional vibration model shown in FIG. In FIG. 12, the equation of motion relating to the forced vibration in which the vibration model moves on the uneven ground that is periodically displaced, Mx1 ″ + c1 (x
1'-u ') + K (x1 -u) = 0 is set and the solution is obtained. X1 = a1 cos {ωt-φ1)}, u = a0
cos ωt. Where a1 is the amplitude of x1 and a0 is u
, Ω is the circular frequency, and φ1 is the phase. Also, a1
= A0 √ {K2 + (c1 ω) 2} / √ {(K-Mω) 2
+ (C1 ω) 2}, tan δ = c1 ω / (k-Mω2
), Tan .alpha. =-C1 .omega. / K.

【0013】これに対して、図5に示す本考案における
2自由度系の振動モデルが、周期的に変位する凹凸状の
地面上を移動する場合は、図6(a),(b),(c)
に示すものとなる。即ち、図6(a)に示すように、地
面の凹凸による強制振動のための上下方向変位をu=a
0 cosωtとすると、該強制振動のための車両本体1
の上下方向変位x1 は図6(b)に示すようにx1 =a
1 cos(ωt−φ1)で表され、作業機2,3の上下
方向変位x2 は図6(c)に示すようにx2 =a1 co
s(ωt−φ2 )で表される。ここでφ2 −φ1 =π、
あるいはこれに近似する値となるように設計することに
よりx1 とx2 の符号は互いに逆となるため、作業機
2,3の上下方向変位:x2 を考慮した車両本体1の上
下方向変位:x1 ′は図6(b)に示すように、x1 ′
=a1 ′cos(ωt−φ1 )となり、作業機2,3の
上下方向変位を考慮しない従来の技術に較べ、振動によ
る車両本体1の振幅がa1 からa1 ′に減少することが
分かる。
On the other hand, when the vibration model of the two-degree-of-freedom system according to the present invention shown in FIG. 5 moves on an uneven ground surface which is periodically displaced, the vibration model shown in FIGS. (C)
It will be as shown in. That is, as shown in FIG. 6A, the vertical displacement due to the forced vibration due to the unevenness of the ground is u = a.
0 cos ωt, the vehicle body 1 for the forced vibration
The vertical displacement x1 of x1 is x1 = a as shown in FIG. 6 (b).
It is represented by 1 cos (ωt-φ1), and the vertical displacement x2 of the working machines 2 and 3 is x2 = a1 co as shown in FIG. 6 (c).
It is represented by s (ωt-φ2). Where φ 2 −φ 1 = π,
Alternatively, by designing to be a value close to this, the signs of x1 and x2 are opposite to each other, so the vertical displacement of the vehicle body 1 in consideration of the vertical displacement: x2 of the working machines 2 and 3: x1 ' X1 'as shown in FIG. 6 (b).
= A1'cos (.omega.t-.phi.1), and it can be seen that the amplitude of the vehicle body 1 due to vibration is reduced from a1 to a1 ', as compared with the conventional technique which does not consider the vertical displacement of the working machines 2,3.

【0014】また、図1に示されるド−ザおよびリッパ
作業機2,3を車両本体1に支持することにより構成し
た動吸振器による車両本体1(運転室)への振動伝達率
Tは一般に次のように表される。 振動伝達率T=x1 /umax =√〔{(α2 −p2 )2
+(2ζαp)2 }/[{(α2 −p2 )(1−p2 )
−α2 p2 μ}2 +(2ζαp)2 (1−p2−p2
μ)2 }〕 ここで上式の記号は下記の通りとする。 α:固有振動数比(=ω2 /ω1 ) ω1 :主系(車両本体)の固有振動数 ω2 :副系(作業機による動吸振器)の固有振動数 p:振動数比(=ω2 /ω1 ) ω:車両本体からの加振振動数 μ:質量比(=m2 /m1 ) ζ:減衰比〔=c2 /{2√(m2 /k)}〕 前記振動伝達率Tを示す式において、α(=ω2 /ω1
)はω2 =√(k/m2)で示されるので、α=√(k
/m2 )/ω1 と表すことができるが、m2 は作業機の
形状と強度上から決まる定数であるため、あるω1 に対
してα=f(k)となる。また、μ(=m2 /m1 )は
作業機と車体の質量により決まる定数であり、ζ〔=c
2 /{2√(m2 /k)}〕は前記同様、=f(c2 ,
k)となる。従って、作業機をばね定数:kのアキュム
レ−タにより車両本体1に支持するものとすれば、オリ
フィス20の減衰係数:c2 がほぼ一定の場合には、結
局、T=f(k)となる。そのため、請求項2は前記振
動伝達率Tが最小となるアキュムレ−タのばね定数:k
を決定すれば良いことになり、図7に示すように振動伝
達率Tを低くすることができ、乗り心地を向上させるこ
とができる。
Further, the vibration transmissibility T to the vehicle body 1 (driver's cab) by the dynamic vibration absorber constructed by supporting the dozer and ripper working machines 2 and 3 shown in FIG. 1 on the vehicle body 1 is generally. It is expressed as follows. Vibration transmissibility T = x1 / umax = √ [{(α2-p2) 2
+ (2ζαp) 2} / [{(α2-p2) (1-p2)
-Α2 p2 μ} 2 + (2ζαp) 2 (1-p2-p2
μ) 2}] where the symbols in the above equation are as follows. α: Natural frequency ratio (= ω2 / ω1) ω1: Natural frequency of main system (vehicle body) ω2: Natural frequency of secondary system (dynamic vibration absorber by working machine) p: Frequency ratio (= ω2 / ω1) ): Ω: Vibration frequency from the vehicle body μ: Mass ratio (= m2 / m1) ζ: Damping ratio [= c2 / {2√ (m2 / k)}] In the equation showing the vibration transmissibility T, α (= Ω2 / ω1
) Is represented by ω 2 = √ (k / m 2), so α = √ (k
/ M2) / ω1. Since m2 is a constant determined by the shape and strength of the working machine, α = f (k) for a certain ω1. Further, μ (= m2 / m1) is a constant determined by the mass of the working machine and the vehicle body, and ζ [= c
2 / {2√ (m2 / k)}] is the same as the above, = f (c2,
k). Therefore, assuming that the working machine is supported on the vehicle body 1 by an accumulator having a spring constant of k, T = f (k) after all when the damping coefficient c2 of the orifice 20 is substantially constant. . Therefore, in claim 2, the spring constant of the accumulator that minimizes the vibration transmissibility T: k
Then, as shown in FIG. 7, the vibration transmissibility T can be lowered and the riding comfort can be improved.

【0015】さらに図8に示すように岩石への乗り上げ
時、図9に示す乗り越え、落下時に足回りにかかる衝撃
負荷をFとすると、それぞれの作業機2,3をアキュム
レ−タ6,7で作業機2,3の重量分の運動エネルギ−
を吸収することになり、衝撃負荷F1 は小さくなると云
う緩衝効果を有する。その量は作業機2,3の車両本体
1に対する重量割合とばね定数により決まるが、本発明
によるブルド−ザで試算すると、図10に示すように従
来のものを100%とした場合、約87%の衝撃負荷に
減少することが分かる。このことから足回りを始めとし
た車体各部の耐久制向上と共にオペレ−タの乗り心地の
向上を図ることができる。
Further, as shown in FIG. 8, assuming that the impact load applied to the undercarriage at the time of climbing over the rock when climbing on the rock and falling is F, the respective working machines 2, 3 are accumulators 6, 7. Kinetic energy equivalent to the weight of work machines 2 and 3
Is absorbed, and the shock load F1 has a buffering effect that it becomes small. The amount is determined by the weight ratio of the working machines 2 and 3 to the vehicle body 1 and the spring constant, but when calculated by the bulldozer according to the present invention, it is about 87% when the conventional one is 100%. It can be seen that the impact load is reduced to%. As a result, it is possible to improve the durability of each part of the vehicle body including the suspension and improve the ride comfort of the operator.

【0016】[0016]

【発明の効果】以上説明したように本発明の請求項1は
車両本体の前部にド−ザ作業機を、後部にリッパ作業機
をそれぞれ備えたブルド−ザの作業機支持装置におい
て、該ド−サ作業機のリフトシリンダと、該リッパ作業
機のリフトシリンダの各ヘッドポ−トにそれぞれアキュ
ムレ−タを接続して前記車両本体の動吸振器を構成し、
請求項2は請求項1において前記各作業機を車両本体に
支持するアキュ−ムレ−タのばね定数と、該アキュ−ム
レ−タの上流側のオリフィスの減衰係数は前記車両本体
への振動伝達率を最小とするように選定するようにした
から、足回りへの負荷が軽減されることによる足回り装
置を始めとした各部の耐久性の向上、または重量軽減に
よる原価低減、および動吸振作用による車体振動(揺
動)を抑制できるため、オペレ−タの乗り心地が向上で
きる。
As described above, according to claim 1 of the present invention, there is provided a working apparatus supporting device for a bulldozer, comprising a dozer working machine at a front portion of a vehicle body and a ripper working machine at a rear portion thereof. A lift cylinder of the dresser working machine, and an accumulator is connected to each head port of the lift cylinder of the ripper working machine to form a dynamic vibration reducer of the vehicle body.
According to a second aspect of the present invention, the spring constant of the accumulator supporting each of the working machines in the vehicle body and the damping coefficient of the orifice on the upstream side of the accumulator are the vibration transmission to the vehicle body. Since the selection is made to minimize the ratio, the durability of each part such as the undercarriage device is improved by reducing the load on the undercarriage, or the cost is reduced by reducing the weight and the dynamic vibration absorption function Since the vehicle body vibration (swing) due to the vibration can be suppressed, the ride comfort of the operator can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1にかかるブルド−ザの作業機
支持装置の一実施例を示すブルド−ザの側面を含む油圧
回路の説明図である。
FIG. 1 is an explanatory view of a hydraulic circuit including a side surface of a bulldozer, showing an embodiment of a working machine support device for a bulldozer according to claim 1 of the present invention.

【図2】図1のブルド−ザの走行姿勢を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a traveling posture of the bulldozer shown in FIG.

【図3】図1のブルド−ザのド−ジング作業時の状態の
説明図である。
FIG. 3 is an explanatory view of the bulldozer shown in FIG. 1 during a dosing operation.

【図4】図1のブルド−ザのリッピング作業時の状態の
説明図である。
4 is an explanatory view of a state of the bulldozer shown in FIG. 1 during a ripping operation.

【図5】本発明の構成のモデルの説明図である。FIG. 5 is an explanatory diagram of a model of the configuration of the present invention.

【図6】本発明および従来の振動波形イメ−ジを示すグ
ラフによる説明図である。
FIG. 6 is an explanatory diagram with a graph showing a vibration waveform image of the present invention and a conventional one.

【図7】本発明の振動数比と振動伝達率の関係を示すグ
ラフによる説明図である。
FIG. 7 is an explanatory diagram with a graph showing the relationship between the frequency ratio and the vibration transmissibility of the present invention.

【図8】図1のブルド−ザの岩石乗り上げ状態を示す説
明図である。
FIG. 8 is an explanatory diagram showing a rock climbing state of the bulldozer shown in FIG. 1;

【図9】図1のブルド−ザの岩石乗り越え落下状態を示
し、(a)は落下寸前、(b)は落下時の説明図であ
る。
9A and 9B show a state in which the bulldozer of FIG. 1 falls over a rock, in which FIG. 9A is a drawing on the verge of falling and FIG.

【図10】本発明の軟式マウント重量比と緩衝率の関係
を示すグラフによる説明図である。
FIG. 10 is an explanatory diagram with a graph showing the relationship between the soft mount weight ratio and the buffer rate of the present invention.

【図11】従来のブルド−ザの作業機支持装置の一実施
例を示すブルド−ザの側面を含む油圧回路の説明図であ
る。
FIG. 11 is an explanatory view of a hydraulic circuit including a side surface of a bulldozer, showing an embodiment of a conventional work implement supporting device for a bulldozer.

【図12】従来の構成のモデルの説明図である。FIG. 12 is an explanatory diagram of a model having a conventional configuration.

【符号の説明】[Explanation of symbols]

1 車両本体 2 ド−ザ作業機 3 リッパ作業機 4,5 リフトシリンダ 4a,5a ヘッドポ−ト 6,7 アキュムレ−タ k ばね定数 c2 減衰係数 T 振動伝達率 1 vehicle body 2 dozer working machine 3 ripper working machine 4,5 lift cylinders 4a, 5a head port 6,7 accumulator k spring constant c2 damping coefficient T vibration transmissibility

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両本体の前部にド−ザ作業機を、後部
にリッパ作業機をそれぞれ備えたブルド−ザの作業機支
持装置において、該ド−サ作業機のリフトシリンダと、
該リッパ作業機のリフトシリンダの各ヘッドポ−トにそ
れぞれアキュムレ−タを接続して前記車両本体の動吸振
器を構成することを特徴とするブルド−ザの作業機支持
装置。
1. A working machine support device for a bulldozer, comprising a dozer working machine at a front portion of a vehicle body and a ripper working machine at a rear portion thereof, and a lift cylinder of the dozer working machine,
A work machine support device for a bulldozer, characterized in that an accumulator is connected to each head port of a lift cylinder of the ripper work machine to form a dynamic vibration absorber of the vehicle body.
【請求項2】 前記各作業機を車両本体に支持するアキ
ュ−ムレ−タのばね定数と、該アキュ−ムレ−タの上流
側のオリフィスの減衰係数は前記車両本体への振動伝達
率を最小とするように選定することを特徴とする請求項
1記載のブルド−ザの作業機支持装置。
2. The spring constant of an accumulator that supports each of the working machines on the vehicle body and the damping coefficient of the orifice on the upstream side of the accumulator have a minimum vibration transmissibility to the vehicle body. The working machine support device for the bulldozer according to claim 1, wherein the working machine support device is selected as follows.
JP7898393A 1993-03-12 1993-03-12 Working machine support device for bulldozer Pending JPH06264467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7898393A JPH06264467A (en) 1993-03-12 1993-03-12 Working machine support device for bulldozer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7898393A JPH06264467A (en) 1993-03-12 1993-03-12 Working machine support device for bulldozer

Publications (1)

Publication Number Publication Date
JPH06264467A true JPH06264467A (en) 1994-09-20

Family

ID=13677132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7898393A Pending JPH06264467A (en) 1993-03-12 1993-03-12 Working machine support device for bulldozer

Country Status (1)

Country Link
JP (1) JPH06264467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072692A1 (en) 2007-12-21 2009-06-24 Caterpillar Inc. Machine having selective ride control
WO2011073721A1 (en) * 2009-12-17 2011-06-23 Volvo Compact Equipment Sas Construction equipment machine with improved boom suspension

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072692A1 (en) 2007-12-21 2009-06-24 Caterpillar Inc. Machine having selective ride control
US20090158726A1 (en) * 2007-12-21 2009-06-25 Caterpillar Inc. Machine having selective ride control
US8307641B2 (en) 2007-12-21 2012-11-13 Caterpillar Inc. Machine having selective ride control
WO2011073721A1 (en) * 2009-12-17 2011-06-23 Volvo Compact Equipment Sas Construction equipment machine with improved boom suspension

Similar Documents

Publication Publication Date Title
JPH063239B2 (en) Adjustable vibration damper
JP4048391B2 (en) Railway vehicle vibration control method
JP5914389B2 (en) Suspension device
JP4191013B2 (en) Damping device and vehicle with damping function
JP3583504B2 (en) Road finishing machine
JPH06264467A (en) Working machine support device for bulldozer
JP4972479B2 (en) Active suspension device for work vehicle
JP2008087590A (en) Vehicle body supporting system
JPH0790803B2 (en) Suspension device for tracked vehicle
JPH0930229A (en) Suspension device for working vehicle
CN204385795U (en) A kind of land leveller and rear bridge mechanism thereof
JP3455868B2 (en) Construction vehicle seat damping device
JP3213144B2 (en) Working machine with cab
JPH07242114A (en) Suspension device for working vehicle
JPH05255950A (en) Driver's cab for working machine
JP4339644B2 (en) Anti-vibration support device
JPH0932037A (en) Work machine having driver's cab
JPH07132723A (en) Attitude control device for work vehicle
JPH0640002Y2 (en) Active vibration suppressor for motor grader
WO2009116199A1 (en) Vibration damping device for industrial machine
JPH0671553U (en) Working equipment support device for hydraulic excavator
JPH07113248A (en) Working machine with operator cab
JP5914370B2 (en) Wheeled work vehicle
JPH07113247A (en) Working machine with operator cab
CN105692459B (en) Vibration-proof structure and crane