JPH06264310A - Production of high-performance carbon fiber and/or graphite fiber - Google Patents

Production of high-performance carbon fiber and/or graphite fiber

Info

Publication number
JPH06264310A
JPH06264310A JP7512393A JP7512393A JPH06264310A JP H06264310 A JPH06264310 A JP H06264310A JP 7512393 A JP7512393 A JP 7512393A JP 7512393 A JP7512393 A JP 7512393A JP H06264310 A JPH06264310 A JP H06264310A
Authority
JP
Japan
Prior art keywords
fiber
flameproof
flame
moisture
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7512393A
Other languages
Japanese (ja)
Inventor
Kunio Maruyama
國男 丸山
Akira Okazaki
章 岡崎
Akiyoshi Yukatani
明吉 床谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Hercules Co Ltd
Original Assignee
Sumika Hercules Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Hercules Co Ltd filed Critical Sumika Hercules Co Ltd
Priority to JP7512393A priority Critical patent/JPH06264310A/en
Publication of JPH06264310A publication Critical patent/JPH06264310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce a high-performance carbon fiber and/or a high-performance graphite fiber by preventing rapid absorption of moisture in the atmosphere while a flameproof fiber being sent from a flameproofing device to a carbonizing device or drying the fiber to remove absorbed water, and then carbonizing. CONSTITUTION:A device for preventing moisture absorption of a flameproof fiber or a device for removing water of the flameproof fiber having absorbed moisture is set between a flameproofing device and a carbonizing device, the water content of the flameproof fiber is reduced to <=2wt.%, preferably <=1.5wt.% and the flameproof fiber is carbonized. Or the carbon fiber thus carbonized is optionally graphitized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高性能炭素繊維及び/又
は黒鉛繊維の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high performance carbon fiber and / or graphite fiber.

【0002】[0002]

【従来の技術】炭素繊維及び/又は黒鉛繊維は、その前
駆体繊維であるアクリロニトリル系、レーヨン系、ポリ
ビニールアルコール系等の有機繊維やピッチ系の無機繊
維を、200〜300℃の加熱された酸化性の雰囲気中
で酸化繊維(耐炎化繊維と称されることが多い)に転換
した後、更に不活性雰囲気中で熱処理することにより工
業的に製造されている。
2. Description of the Related Art Carbon fibers and / or graphite fibers are precursor fibers of acrylonitrile-based, rayon-based, polyvinyl alcohol-based, etc. organic fibers and pitch-based inorganic fibers heated at 200 to 300 ° C. It is industrially produced by converting it into an oxidized fiber (often called flame-resistant fiber) in an oxidizing atmosphere, and then heat treating it in an inert atmosphere.

【0003】酸化処理によって得られた耐炎化繊維は、
容易に大気中の水分を吸収することが古くから知られて
いる(例えば特公昭51−25487号参照)。
The flameproofed fiber obtained by the oxidation treatment is
It has long been known that water in the atmosphere can be easily absorbed (see, for example, Japanese Patent Publication No. 51-25487).

【0004】これは酸化処理により親水性の水酸基、カ
ルボニル基、イミノ基、アミノ基等が生成するためと考
えられている(例えば Carbon 29巻、8号、108
1頁、1991年参照)。
It is considered that this is because hydrophilic hydroxyl groups, carbonyl groups, imino groups, amino groups and the like are produced by the oxidation treatment (for example, Carbon Vol. 29, No. 8, 108).
See page 1, 1991).

【0005】このように耐炎化繊維が吸湿性であること
が知られていても、炭素化に供される耐炎化繊維が水分
を吸収した場合の炭素繊維及び/又は黒鉛繊維の品質に
及ぼす影響については文献や特許にも全く報告されてい
ない。
Even though it is known that the flameproof fiber is hygroscopic as described above, the effect of the flameproof fiber subjected to carbonization on the quality of the carbon fiber and / or the graphite fiber when absorbing moisture. Has not been reported at all in the literature or patents.

【0006】本発明者等も耐炎化繊維が水を吸収しても
炭素化炉内は高温であり、容易に水が除去されるので、
耐炎化繊維の水分は形成される炭素繊維及び/又は黒鉛
繊維の品質には影響しないと考えて今日まで何らの対策
もせずに炭素繊維及び/又は黒鉛繊維を生産して来た。
The present inventors have found that even if the flameproof fiber absorbs water, the temperature inside the carbonization furnace is high and water is easily removed.
It has been considered that the moisture content of the flame-resistant fiber does not affect the quality of the formed carbon fiber and / or graphite fiber, and thus far, carbon fiber and / or graphite fiber have been produced without any measures.

【0007】ところが超高強度の炭素繊維や黒鉛繊維が
要求される最近に至って、これらのより適切な製造方法
を見出さんがための詳細な研究を続けてきた結果、耐炎
化繊維の水分が、それを加工して得られる炭素繊維や黒
鉛繊維の品質、特に強度と伸度に大きな影響を与えるこ
とを見出した。
However, in recent years, when ultra-high strength carbon fibers and graphite fibers are required, and as a result of continuing detailed research to find a more suitable manufacturing method for these, the moisture content of the flame-resistant fiber is reduced. , It has been found that the quality of the carbon fiber and graphite fiber obtained by processing it, in particular, has a great influence on the strength and elongation.

【0008】即ち耐炎化繊維の含水量が高くなると炭素
繊維及び/又は黒鉛繊維の強度が低下すること、及び超
高強度と呼ばれるような炭素繊維や、高強度高弾性と呼
ばれるような高性能炭素繊維、又はこれらの高性能炭素
繊維を更に高温で処理して得られる高性能黒鉛繊維ほど
この水分の悪影響を受け易いことを確認した。
That is, when the water content of the flame-resistant fiber is increased, the strength of the carbon fiber and / or the graphite fiber is decreased, and the carbon fiber called ultra high strength and the high performance carbon called high strength and high elasticity. It was confirmed that the fibers, or the high-performance graphite fibers obtained by treating these high-performance carbon fibers at a higher temperature, are more likely to be adversely affected by this moisture.

【0009】耐炎化繊維の吸湿速度は可成り急速であ
り、乾燥しても通常の大気中では2〜3分で水分が2重
量%より大となる。特に日本の夏期のように大気の温度
と湿度が高い場合は耐炎化繊維の吸湿速度も吸湿量も著
しく増大する。後述する参考例にて示すように耐炎化繊
維の吸湿速度は乾燥剤として良く知られているシリカゲ
ルなどより遥かに速いことが判った。
The moisture absorption rate of the flameproofed fiber is quite rapid, and even if it is dried, the water content becomes more than 2% by weight in a normal atmosphere in a few minutes. In particular, when the temperature and humidity of the atmosphere are high as in the summer of Japan, both the moisture absorption rate and the moisture absorption amount of the flameproof fiber are remarkably increased. As shown in the reference example described later, it has been found that the moisture absorption rate of the flameproof fiber is much higher than that of silica gel which is well known as a desiccant.

【0010】炭素繊維の工業生産設備においては、耐炎
化装置と炭素化装置の間に耐炎化繊維を移送するための
ローラーや繊維の張力を調整するためのローラーが設置
されているが、その外にこれらの装置の点検や修理を行
うためのスペースも確保しなければならない等の理由に
より、耐炎化装置を出た耐炎化繊維が炭素化装置に入る
までに5分程度、或いはそれ以上の時間を要している。
In the carbon fiber industrial production facility, a roller for transferring the flame resistant fiber and a roller for adjusting the tension of the fiber are installed between the flame resistance device and the carbonization device. Due to reasons such as having to secure a space for inspecting and repairing these devices, it takes about 5 minutes or more for the flame-resistant fibers that have left the flame-resistant device to enter the carbonization device. Is needed.

【0011】従って耐炎化装置を出た耐炎化繊維は、次
の炭素化装置に入る前に大気中の水分を吸収してしまう
ため、炭素化反応が開始する以前に含有水分が2重量%
より大になってしまうのである。これがために特に大気
中の湿度や温度が高い場合には含水量が高くなり、高性
能炭素繊維及び/又は高性能黒鉛繊維を安定に製造する
のが困難になる。
Therefore, since the flameproof fiber that has exited the flameproofing device absorbs moisture in the atmosphere before entering the next carbonizing device, the content of moisture is 2% by weight before the carbonization reaction starts.
It becomes bigger. For this reason, especially when the humidity and temperature in the atmosphere are high, the water content becomes high, and it becomes difficult to stably produce the high performance carbon fiber and / or the high performance graphite fiber.

【0012】このように耐炎化繊維が吸湿した場合は、
後述するように得られる炭素繊維や黒鉛繊維の品質が低
下するが、この品質低下の程度は吸湿量によって異なる
ことが判った。
When the flameproof fiber absorbs moisture as described above,
As will be described later, the quality of the obtained carbon fibers and graphite fibers deteriorates, but it was found that the degree of this quality deterioration depends on the moisture absorption amount.

【0013】そのため常に一定の品質の炭素繊維や黒鉛
繊維を提供するといった工業製品にとって、最も重要な
品質変動の少ない安定な製品を供給するという目的を満
足に達成することが出来なくなることが判った。
Therefore, it has been found that it is impossible to satisfactorily achieve the purpose of supplying a stable product with the least quality fluctuation, which is the most important for industrial products such as always providing carbon fiber or graphite fiber of constant quality. .

【0014】[0014]

【発明が解決しようとする課題】かかる問題点を解決す
る手段を鋭意検討した結果、本発明は品質の安定した高
性能炭素繊維及び/又は高性能黒鉛繊維の製造法に到達
した。
As a result of intensive studies on means for solving such problems, the present invention has reached a method for producing high-performance carbon fibers and / or high-performance graphite fibers with stable quality.

【0015】即ち本発明の目的は、吸湿し易い耐炎化繊
維が水分を吸収しないように処置するか、又は吸収した
水分を除去することにより、品質の安定した高性能炭素
繊維及び/又は高性能黒鉛繊維を工業的に有利な方法で
製造することを可能ならしめるための製造法を提供する
ことにある。
That is, an object of the present invention is to treat high-performance carbon fiber and / or high-performance carbon fiber of stable quality by treating the flame-resistant fiber which easily absorbs moisture so as not to absorb the moisture, or by removing the absorbed moisture. It is an object of the present invention to provide a manufacturing method for making it possible to manufacture graphite fibers by an industrially advantageous method.

【0016】[0016]

【課題を解決するための手段】本発明の目的は、アクリ
ロニトリルを90重量%以上含有するアクリロニトリル
系前駆体繊維(以下プレカーサーと称する)を酸化性雰
囲気中で耐炎化繊維に転換せしめた後、不活性雰囲気中
で炭素化処理するに当り、前記耐炎化繊維を200℃以
下の温度でその含有水分を2重量%以下、好ましくは
1.5重量%以下に保持するか又は減少せしめた後に、
不活性雰囲気中で熱処理して炭素繊維及び/又は黒鉛繊
維に転換することによって達成することが出来る。
The object of the present invention is to convert acrylonitrile-based precursor fibers (hereinafter referred to as precursors) containing 90% by weight or more of acrylonitrile into flame-resistant fibers in an oxidizing atmosphere, and In the carbonization treatment in an active atmosphere, the moisture resistance of the flameproofed fiber is maintained at 200 ° C. or less and 2% by weight or less, preferably 1.5% by weight or less, or
This can be achieved by heat treatment in an inert atmosphere and conversion into carbon fibers and / or graphite fibers.

【0017】耐炎化繊維の含有水分を2重量%以下、好
ましくは1.5重量%以下に保持又は減少せしめる方法
としては以下のようなものがあり、その概念図を図2及
び図3に示す。
There are the following methods for holding or reducing the water content of the flameproof fiber to 2% by weight or less, preferably 1.5% by weight or less, and the conceptual diagrams thereof are shown in FIGS. 2 and 3. .

【0018】1.耐炎化装置からでた耐炎化繊維の吸湿
を防止し、含有水分を2重量%以下に保持する方法:図
2に示す如く通常耐炎化は200℃以上の酸化性雰囲気
中で処理されるため、耐炎化装置1の出口1′における
耐炎化繊維9の水分は通常1重量%以下である。従って
該耐炎化繊維9を湿度の高い大気に触れないようにすれ
ば良い。このためには耐炎化装置1の出口1′から炭素
化装置2の入り口2′までの間に吸湿防止装置3を設
け、その中に乾燥空気もしくは乾燥したガスを送気口5
から送気して湿った大気と遮断することにより容易に達
成される。尚図1中4a,4b,4c,4d,4eは耐
炎化繊維移送用ローラーであり、6a及び6bは吸湿防
止装置3の入り口及び出口スリットである。
1. Method for preventing moisture absorption of the flameproofing fiber from the flameproofing device and keeping the water content at 2% by weight or less: As shown in FIG. 2, since normally flameproofing is performed in an oxidizing atmosphere at 200 ° C. or higher, The moisture content of the flameproof fiber 9 at the outlet 1'of the flameproof device 1 is usually 1% by weight or less. Therefore, it suffices that the flameproof fiber 9 is not exposed to the high-humidity atmosphere. For this purpose, a moisture absorption prevention device 3 is provided between the outlet 1'of the flameproofing device 1 and the inlet 2'of the carbonization device 2, and dry air or dry gas is introduced thereinto.
This is easily accomplished by insufflating air from the air and isolating it from the moist atmosphere. In FIG. 1, 4a, 4b, 4c, 4d and 4e are flame resistant fiber transfer rollers, and 6a and 6b are entrance and exit slits of the moisture absorption prevention device 3.

【0019】2.吸湿した耐炎化繊維の水分を減少する
方法:図3に示す如く耐炎化装置1と炭素化装置2の間
が長かったり、装置が複雑で大気を遮蔽することが難し
い場合は、炭素化装置2の直前に乾燥装置7を設け、加
熱ローラー8a,8b又は乾燥した加熱空気(図示せ
ず)等を用いて乾燥し、耐炎化繊維9の含有水分を2重
量%以下に減少せしめてから、炭素化装置2に導入すれ
ば良い。この場合は乾燥装置7を出てから炭素化装置2
に入る迄の時間を2〜3分以下になるようにして水分の
再吸収を防ぐことが必要である。
2. Method for reducing water content of moisture-absorbed flameproofing fiber: When the distance between the flameproofing device 1 and the carbonization device 2 is long as shown in FIG. 3 or the device is complicated and it is difficult to shield the atmosphere, the carbonization device 2 The drying device 7 is provided immediately before, and drying is performed using the heating rollers 8a, 8b or dried heated air (not shown) to reduce the water content of the flame resistant fiber 9 to 2% by weight or less, and It may be introduced into the rectification device 2. In this case, after leaving the drying device 7, the carbonization device 2
It is necessary to prevent re-absorption of water by setting the time until entering into the water to 2-3 minutes or less.

【0020】上述の1又は2の何れかの方法、又は1と
2を組み合わせた方法等を採用しても構わないが、耐炎
化繊維の吸湿を防止したり、水分を乾燥したりする際に
は、その温度は200℃以下で行う必要がある。これは
後述する如く200℃より高い温度の雰囲気に曝される
と、耐炎化繊維が更に酸化処理を受けたり、熱収縮を起
こしたりするために最適な酸化状態で炭素化装置に導入
することが困難になることが判ったからである。
Although any one of the above methods 1 or 2 or a method combining 1 and 2 may be adopted, when preventing the moisture absorption of the flameproof fiber or drying the water content, The temperature must be 200 ° C. or lower. This is because when exposed to an atmosphere having a temperature higher than 200 ° C. as described later, the flame-resistant fiber may be further oxidized or may be thermally shrunk, so that it may be introduced into the carbonization device in an optimum oxidation state. Because it turned out to be difficult.

【0021】本発明において、大気を遮断して耐炎化繊
維の吸湿を防止したり、除湿するために用いる乾燥空気
の乾燥程度は、耐炎化繊維と乾燥空気の接触時間、温度
等により異なるが、絶対湿度が水5g/kg・乾燥空気
以下の低湿度の空気が好ましい。耐炎化繊維の吸湿速度
は湿度だけでなく温度にも影響されるため、ここで用い
る乾燥空気の乾燥程度は相対湿度を目安にするよりも、
絶対湿度又は露点で規制する方が適切であるため絶対湿
度で管理する方法を採用した。
In the present invention, the drying degree of the dry air used for blocking the atmosphere to prevent the moisture absorption of the flameproof fiber or for dehumidifying depends on the contact time between the flameproof fiber and the dry air, the temperature, etc. Low humidity air having an absolute humidity of 5 g / kg of water or less than dry air is preferable. Since the moisture absorption rate of the flameproofed fiber is affected not only by humidity but also by temperature, the degree of drying of the dry air used here is better than the relative humidity as a guideline.
Since it is more appropriate to regulate by absolute humidity or dew point, the method of controlling by absolute humidity was adopted.

【0022】この乾燥空気の絶対湿度の上限値は、上述
したように乾燥空気との接触時間や温度との関係だけで
なく、大気の湿り具合や対象となる耐炎化繊維の水分
や、大気を遮断するための遮蔽装置の気密性及び風量等
にも関係するので、一概に設定することは困難ではある
が、耐炎化繊維の水分が炭素化装置に入る前に少なくと
も2重量%以下になるように調整出来るような乾燥空気
でなければならないことは言うまでもない。
The upper limit of the absolute humidity of the dry air is not limited to the relationship with the contact time with the dry air and the temperature as described above, but also the wetness of the atmosphere, the moisture content of the target flameproof fiber and the atmosphere. It is difficult to set it in a general way because it is related to the airtightness and the air volume of the shielding device for shutting off, but the moisture content of the flameproof fiber should be at least 2% by weight or less before entering the carbonization device. It goes without saying that it must be dry air that can be adjusted to.

【0023】乾燥空気の他に、他の不活性乾燥ガス等を
用いることも可能であるが、工業的には乾燥空気が安価
で且つ安全なため好適に用いられる。
In addition to dry air, other inert dry gas or the like can be used, but industrially dry air is inexpensive and safe, and is preferably used.

【0024】炭素化装置に導入される耐炎化繊維の水分
と、それを炭素化して得た炭素繊維の強度の関係の一例
は後記実施例1及び図1に示す。
An example of the relationship between the water content of the flameproof fiber introduced into the carbonization apparatus and the strength of the carbon fiber obtained by carbonizing the same is shown in Example 1 and FIG. 1 described later.

【0025】この図1からも明らかな如く炭素化に供さ
れる各耐炎化繊維の水分が2重量%を越えた場合は高強
度の炭素繊維が得られにくい事が理解される。尚詳細は
後述する。
As is apparent from FIG. 1, it is understood that it is difficult to obtain a carbon fiber having high strength when the water content of each flameproof fiber used for carbonization exceeds 2% by weight. The details will be described later.

【0026】特により高強度の炭素繊維が要求される場
合には、各耐炎化繊維の水分が1.5重量%以下である
のが好ましい。
Particularly when higher strength carbon fibers are required, the water content of each flame-resistant fiber is preferably 1.5% by weight or less.

【0027】又炭素繊維や黒鉛繊維の強度や伸度の変動
を少なくするためには、炭素化に供される前の耐炎化繊
維の水分の変動を±0.2重量%以内にコントロールし
ながら炭素化装置に供給することがより好ましい。
In order to reduce the fluctuations in the strength and elongation of the carbon fibers and graphite fibers, the fluctuation of the water content of the flame-resistant fiber before being carbonized is controlled within ± 0.2% by weight. More preferably, it is fed to a carbonizer.

【0028】[0028]

【作用】なぜ耐炎化繊維の水分が高いと得られる炭素繊
維の強度が低下するのかについては明確な理由は分から
ないが、炭素化工程において、炭素化反応以外の副反応
(例えば炭素材料を水蒸気賦活によって活性炭に転換さ
せるような反応)が耐炎化繊維中の水又は耐炎化繊維か
ら放出された水によって引き起こされるためであろうと
推定される。
[Function] Although there is no clear reason why the strength of the carbon fiber obtained when the moisture content of the flame-resistant fiber is high decreases, a side reaction other than the carbonization reaction (for example, the carbon material is changed to steam) in the carbonization process. It is presumed that this is because the reaction such as conversion to activated carbon by activation) is caused by water in the flame-resistant fiber or water released from the flame-resistant fiber.

【0029】水分含有量の高い耐炎化繊維から得られた
炭素繊維について、その単繊維の引っ張り試験を行い、
単繊維の強度を測定すると共に、その破断面を走査型電
子顕微鏡で観察すると、外表面の小さな凹みや溝のよう
な欠陥から破壊が開始しているように見受けられるもの
が、低水分の耐炎化繊維から得た炭素繊維より多いこと
から水が炭素繊維の外表面の欠陥を増大させていること
は確かなようである。
A carbon fiber obtained from a flame-resistant fiber having a high water content was subjected to a tensile test of its single fiber,
When measuring the strength of single fibers and observing the fracture surface with a scanning electron microscope, it seems that the fracture starts from defects such as small dents and grooves on the outer surface. It seems certain that water increases the defects on the outer surface of the carbon fiber, as it is more than the carbon fiber obtained from the synthetic fiber.

【0030】[0030]

【実施例】本発明をより具体的に説明するために、以下
に代表的な実施例及び参考例を示すが本発明はこれらの
実施例によってその範囲に何らの限定を受けるものでは
ない。尚以下の実施例及び参考例に示す%は特に限定の
ない限りは重量%である。
EXAMPLES In order to explain the present invention more specifically, representative examples and reference examples are shown below, but the present invention is not limited to the scope thereof by these examples. The% shown in the following examples and reference examples is% by weight unless otherwise specified.

【0031】本実施例中の耐炎化繊維の水分、ストラン
ド物性及び空気の湿度は以下の方法により測定した。
The water content of the flame-resistant fiber, the physical properties of the strand and the humidity of the air in this example were measured by the following methods.

【0032】(1)耐炎化繊維の水分:約5gの耐炎化
繊維を減圧乾燥機(約30mmHg)を用い、70℃で
2時間乾燥し、乾燥前後の重量変化により算出した。
(1) Water content of flame resistant fiber: About 5 g of flame resistant fiber was dried at 70 ° C. for 2 hours using a vacuum dryer (about 30 mmHg), and the weight change before and after drying was calculated.

【0033】(2)ストランド物性測定:JIS−76
01の方法に従い、マトリックス樹脂液としては ARALD
ITE XD911(エポキシ樹脂の商標名、長瀬チバ株
式会社製)/フルフリルアルコール=3/2の混合溶液
を用いて樹脂含浸ストランドを作成し、150℃で45
分間硬化したものについて引っ張り試験を行って強度、
弾性率を求めた。
(2) Measurement of physical properties of strand: JIS-76
According to the method of 01, ARALD is used as the matrix resin liquid.
A resin-impregnated strand was prepared by using a mixed solution of ITE XD911 (trade name of epoxy resin, manufactured by Nagase Ciba Co., Ltd.) / Furfuryl alcohol = 3/2, and the resin-impregnated strand was prepared at 45 ° C. at 150 ° C.
Tensile test was performed on the cured product for
The elastic modulus was calculated.

【0034】(3)大気及び乾燥空気の湿度:テストタ
ーム株式会社製、温湿度測定装置FC−452を用いて
温度、相対湿度、絶対湿度を測定した。尚絶対湿度は水
g/kg・乾燥空気に換算した。
(3) Humidity of air and dry air: Temperature, relative humidity and absolute humidity were measured using a temperature and humidity measuring device FC-452 manufactured by Testterm Co., Ltd. The absolute humidity was converted to g / kg of water and dry air.

【0035】実施例 1 アミノ変成ポリシロキサン系の油剤を付与した単糸デニ
ールの異なる下記表1に示す5種のプレカーサーA,
A′,B,C及びDを、表1に示すそれぞれ温度の異な
る3台の熱風循環式耐炎化装置中に各20分間滞留する
ように連続的に通過させて耐炎化繊維を得た。尚耐炎化
繊維の比重は3台の耐炎化装置の設定温度を変えること
により調整した。又AとA′は同じプレカーサーである
が、耐炎化温度を変えて処理した点が異なる。
Example 1 Five kinds of precursor A shown in the following Table 1 having different single yarn denier to which an amino-modified polysiloxane oil agent was applied,
A ', B, C and D were continuously passed through three hot air circulation type flameproofing devices having different temperatures shown in Table 1 so as to be retained for 20 minutes each to obtain a flameproofing fiber. The specific gravity of the flameproof fiber was adjusted by changing the set temperatures of the three flameproofing devices. Also, A and A'are the same precursors, but are different in that they are treated with different flameproofing temperatures.

【0036】 [0036]

【0037】これらの耐炎化繊維9を、図2のような吸
湿防止装置3を用いて5から送入する空気の絶対湿度
を、水0.5〜15kg・乾燥空気の範囲で変えること
により、炭素化装置2に入る耐炎化繊維の水分を変化さ
せた。ここにおいて吸湿防止装置3の出口スリット6b
から炭素化装置2の入り口2′までの距離は極力短くな
るように工夫したため、この間の滞留時間はわずか10
秒である。
By changing the absolute humidity of the air fed from the flame resistant fibers 9 from 5 by using the moisture absorption preventing device 3 as shown in FIG. 2 within the range of 0.5 to 15 kg of water / dry air, The moisture content of the flameproof fiber entering the carbonization device 2 was changed. Here, the outlet slit 6b of the moisture absorption prevention device 3
Since the distance from the carbonizer to the inlet 2'of the carbonizer 2 was designed to be as short as possible, the residence time during this period was only 10 minutes.
Seconds.

【0038】このようにしてそれぞれ水分の異なる耐炎
化繊維を、最高温度が500℃、1000℃、1400
℃の炭素化装置2中に各1分間滞留するようにして連続
的に炭素化した。但しプレカーサーDの場合は最後の炭
素化装置2の最高温度は1300℃とした。
In this way, the flame-resistant fibers having different water contents have maximum temperatures of 500 ° C., 1000 ° C. and 1400 ° C., respectively.
It was continuously carbonized by being retained in the carbonization apparatus 2 at 0 ° C. for 1 minute each. However, in the case of the precursor D, the maximum temperature of the last carbonization device 2 was 1300 ° C.

【0039】このようにして得た炭素繊維を重炭酸アン
モニウムを電解質とした電解酸化法により表面処理した
後、水洗し、これに水溶性エポキシ樹脂からなるサイジ
ング剤を付与して乾燥後ワインダーで巻き取った。
The carbon fiber thus obtained is surface-treated by an electrolytic oxidation method using ammonium bicarbonate as an electrolyte, washed with water, and a sizing agent made of a water-soluble epoxy resin is added to the carbon fiber, which is dried and wound with a winder. I took it.

【0040】このようにして得た炭素繊維のストランド
強度、弾性率及び耐炎化繊維の比重、炭素化装置に入る
直前の耐炎化繊維の水分を後掲の表2に示す。
The strand strength, elastic modulus, specific gravity of the flameproof fiber, and water content of the flameproof fiber immediately before entering the carbonization apparatus are shown in Table 2 below.

【0041】耐炎化繊維の水分と炭素繊維の強度の関係
は図1に示す。
The relationship between the water content of the flameproof fiber and the strength of the carbon fiber is shown in FIG.

【0042】この結果から明らかな如く炭素化装置に入
る直前の耐炎化繊維の水分が2%以下の場合に対して、
2%より多い水分を含むものは得られた炭素繊維の強度
が低い。特に高強度の炭素繊維を得ることを目的とした
プレカーサーA,B,Cにおいてこの傾向が強いことが
判る。
As is clear from this result, when the moisture content of the flameproof fiber immediately before entering the carbonization device is 2% or less,
Those containing more than 2% of water have low strength of the obtained carbon fiber. It can be seen that this tendency is particularly strong in the precursors A, B, and C for the purpose of obtaining carbon fibers having high strength.

【0043】参考例 1 実施例1のプレカーサーCを3台の耐炎化装置1の温度
を変えることにより、比重が1.34g/cc、1.3
6g/cc、1.38g/ccの3種の耐炎化繊維を作
成し、これを手で軽く解繊した後、水分測定と同様な条
件で乾燥し、温度35℃、相対湿度52%(絶対湿度1
8.3g/kg・乾燥空気)の室内において、吸湿速度
を測定した。更に乾燥剤として良く用いられるシリカゲ
ルについても同様に乾燥して同じ室内で吸湿速度を測定
した。これらの結果を図4に示す。
Reference Example 1 The precursor C of Example 1 had a specific gravity of 1.34 g / cc and 1.3 by changing the temperatures of the three flameproofing apparatuses 1.
6 g / cc and 1.38 g / cc of 3 types of flameproof fibers were created, lightly defibrated by hand, and then dried under the same conditions as for moisture measurement, temperature 35 ° C, relative humidity 52% (absolute Humidity 1
The moisture absorption rate was measured in a room of 8.3 g / kg / dry air). Further, silica gel, which is often used as a desiccant, was similarly dried and the moisture absorption rate was measured in the same room. The results are shown in FIG.

【0044】この図4で明らかな如く、耐炎化繊維の吸
湿速度は非常に早く、大気中の湿度や温度が高い場合に
は数分間曝されるだけで水分が2%を越えてしまう。
As is clear from FIG. 4, the moisture absorption rate of the flameproof fiber is very high, and if the humidity and temperature in the atmosphere are high, the moisture content exceeds 2% after only a few minutes of exposure.

【0045】従って耐炎化装置を出てから炭素化装置に
入るまでの間に吸湿を防止する手段を講じるか、或いは
炭素化装置に入る直前で乾燥しないと水分を2%以下に
保持させることは困難であることが理解される。特に耐
炎化繊維の比重が高い場合にはより吸湿速度が早く吸湿
水分の量も多いので、本発明のような特別な配慮が必要
となるのである。
Therefore, it is necessary to take measures to prevent moisture absorption between the time when the flameproofing device is left and the time when the carbonizing device is entered, or to keep the water content at 2% or less unless it is dried just before entering the carbonization device. Understood difficult. In particular, when the specific gravity of the flame-resistant fiber is high, the moisture absorption speed is higher and the amount of moisture absorbed is larger, so that special consideration as in the present invention is required.

【0046】実施例 2 実施例1のプレカーサーBの耐炎化〜炭素化工程におい
て図2のような吸湿防止装置3を設ける替わりに、炭素
化装置の直前に図3のような加熱乾燥ローラー8a,8
bを設けた乾燥装置7を設置して耐炎化繊維を乾燥して
から炭素化に供するように改良した外は実施例1と同様
に処理して炭素繊維を作成した。
Example 2 Instead of providing the moisture absorption preventing device 3 as shown in FIG. 2 in the flame resistance to carbonization process of the precursor B of Example 1, a heating and drying roller 8a as shown in FIG. 8
A carbon fiber was prepared in the same manner as in Example 1 except that the drying device 7 provided with b was installed to improve the flameproof fiber to be dried and then subjected to carbonization.

【0047】尚ここで用いた耐炎化繊維の比重は1.3
4g/ccである。耐炎化繊維の水分は加熱ローラーの
温度と、ローラーへの巻き回数を変えることによる滞留
時間の変更で調整した。加熱ローラーの出口から炭素化
装置に入るまでの時間は30秒以下に止めるようにし
た。
The specific gravity of the flameproof fiber used here is 1.3.
It is 4 g / cc. The water content of the flameproof fiber was adjusted by changing the temperature of the heating roller and the residence time by changing the number of windings on the roller. The time from the exit of the heating roller to the carbonization device was set to 30 seconds or less.

【0048】このようにして乾燥した耐炎化繊維の水分
と、これを炭素化して得た炭素繊維のストランド強度を
表3に示す。
Table 3 shows the water content of the flame-resistant fiber thus dried and the strand strength of the carbon fiber obtained by carbonizing the same.

【0049】表3の結果から明らかな如く、乾燥しない
で炭素化したものは水分が2%を越えており、高強度の
炭素繊維が得られない。一方220℃で乾燥したものは
水分は低いが、乾燥中に繊維の収縮に伴う応力発生(熱
収縮する繊維をローラーに巻き付けているため自由収縮
が起こらず緊張状態となることによる発生応力)により
炭素化装置内の繊維の張力が増加し、炭素化工程中での
毛羽が多発したため商品価値の劣るものであった。又炭
素繊維の強度も未乾燥の場合よりも更に低い結果となっ
た。
As is clear from the results shown in Table 3, the carbonized product which has not been dried has a water content of more than 2%, and high strength carbon fibers cannot be obtained. On the other hand, the one dried at 220 ° C has a low water content, but due to the stress generation due to the shrinkage of the fiber during drying (the stress generated by the heat shrinking fiber being wound around the roller, free contraction does not occur and becomes a tension state). The commercial value was inferior because the tension of the fiber in the carbonization device increased and many fluffs occurred during the carbonization process. Also, the strength of the carbon fiber was even lower than that when it was not dried.

【0050】これは熱収縮応力により、耐炎化繊維が加
熱したローラーに強い力で押しつけられるので繊維に不
均一に熱がかかったり、発熱反応に伴う熱の拡散を妨げ
ているために繊維同志の接着を起こし、耐炎化繊維とし
ての好適な性質を損なっているためと思われる。従って
乾燥ローラーの温度は収縮や耐炎化反応が起こらない2
00℃以下が適切である。
This is because the heat-shrinkable stress presses the flame-resistant fiber against the heated roller with a strong force, so that the fiber is unevenly heated, and the heat diffusion due to the exothermic reaction is prevented, so that the fibers are separated from each other. It is thought that this is because adhesion has occurred and the suitable properties as a flame-resistant fiber have been impaired. Therefore, the drying roller temperature does not cause shrinkage or flame resistance reaction. 2
A temperature of 00 ° C or lower is suitable.

【0051】実施例 3 実施例1に示したプレカーサーAとBから得られた耐炎
化繊維を用いて、図2に示した方法で吸湿水分を調節し
て炭素化した後、表面処理することなく更にアルゴン雰
囲気中で2450℃で2%の伸張を与えながら3分間熱
処理して黒鉛繊維を得た。得られた黒鉛繊維の物性は表
4に示す。
Example 3 Using the flameproofed fibers obtained from the precursors A and B shown in Example 1, the moisture absorption was adjusted by the method shown in FIG. Further, heat treatment was performed for 3 minutes at 2450 ° C. in an argon atmosphere while giving 2% elongation to obtain a graphite fiber. Table 4 shows the physical properties of the obtained graphite fiber.

【0052】耐炎化繊維の水分が、炭素繊維のみならず
これを黒鉛化して得た黒鉛繊維の品質に大きく影響する
事が確認された。耐炎化繊維の水分は炭素繊維より黒鉛
化した繊維の方により大きな影響を与えている。これは
黒鉛化されることにより繊維の表面の欠陥が更に増大
し、この欠陥が破断の開始点となり、強度に重大な影響
を与えているためと考えられる。
It was confirmed that the water content of the flameproofed fiber greatly affects not only the carbon fiber but also the quality of the graphite fiber obtained by graphitizing the carbon fiber. The water content of the flameproofed fiber has a greater effect on the graphitized fiber than on the carbon fiber. It is considered that this is because the defects on the surface of the fiber are further increased by the graphitization, and these defects serve as the starting points of the breakage, which seriously affects the strength.

【0053】本発明の如く耐炎化繊維の水分を極力減少
させてから炭素化及び黒鉛化処理を行うことにより、こ
れまで達成することの出来なかった1%以上の伸度を有
する高弾性黒鉛繊維が初めて得られた。
By subjecting the flame-resistant fiber to moisture reduction as much as possible and then subjecting it to carbonization and graphitization as in the present invention, a highly elastic graphite fiber having an elongation of 1% or more, which has hitherto been unattainable. Was obtained for the first time.

【0054】 [0054]

【0055】 [0055]

【0056】 [0056]

【0057】[0057]

【発明の効果】以上詳述した本願発明によればプレカー
サーを酸化雰囲気中で耐炎化繊維に転換した後、該耐炎
化繊維を炭素化装置に導入する工程において、該耐炎化
繊維が急速に大気中の湿気を吸収することを防止し、又
は吸収した水分を200℃以下で乾燥除去して耐炎化繊
維の水分を2重量%以下にせしめた後に炭素化すること
により品質の安定化した高性能炭素繊維及び/又は高性
能黒鉛繊維の工業的な生産を容易にする。
According to the present invention described in detail above, in the step of introducing the flameproof fiber into the carbonization device after converting the precursor into the flameproof fiber in an oxidizing atmosphere, the flameproof fiber is rapidly exposed to the atmosphere. Prevents absorption of internal moisture, or removes absorbed moisture by drying at 200 ° C or lower to reduce the moisture content of the flame-resistant fiber to 2% by weight or less and then carbonizes it to achieve high quality and high performance. Facilitates industrial production of carbon fibers and / or high performance graphite fibers.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐炎化繊維の水分含有率と炭素繊維の強度の関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the water content of flame-resistant fibers and the strength of carbon fibers.

【図2】耐炎化繊維が炭素化装置に入る前にその吸湿を
防止する装置の略図である。
FIG. 2 is a schematic diagram of an apparatus for preventing the moisture absorption of flame resistant fibers before they enter the carbonizer.

【図3】乾燥して耐炎化繊維の水分を低下させる装置の
略図である。
FIG. 3 is a schematic diagram of an apparatus for drying to reduce the moisture content of flame-resistant fibers.

【図4】耐炎化繊維及びシリカゲルの吸湿速度を示す図
である。
FIG. 4 is a diagram showing the moisture absorption rates of flameproofed fibers and silica gel.

【符号の説明】[Explanation of symbols]

1 耐炎化装置 2 炭素化装置 3 吸湿防止装置 4a 耐炎化繊維移送用ローラー 4b 耐炎化繊維移送用ローラー 4c 耐炎化繊維移送用ローラー 4d 耐炎化繊維移送用ローラー 4e 耐炎化繊維移送用ローラー 5 送気口 6a 耐炎化繊維の入り口スリット 6b 耐炎化繊維の出口スリット 7 乾燥装置 8a 加熱乾燥ローラー 8b 加熱乾燥ローラー 9 耐炎化繊維 1 Flameproofing Device 2 Carbonization Device 3 Moisture Absorption Prevention Device 4a Flameproofing Fiber Transfer Roller 4b Flameproofing Fiber Transfer Roller 4c Flameproofing Fiber Transfer Roller 4d Flameproofing Fiber Transfer Roller 4e Flameproofing Fiber Transfer Roller 5 Air Supply Mouth 6a Inlet slit of flame resistant fiber 6b Outlet slit of flame resistant fiber 7 Drying device 8a Heat drying roller 8b Heat drying roller 9 Flame resistant fiber

【手続補正書】[Procedure amendment]

【提出日】平成5年7月23日[Submission date] July 23, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】(2)ストランド物性測定:JIS−R7
601の方法に従い、マトリックス樹脂液としてはAR
ALDITE XD911(エポキシ樹脂の商標名、長
瀬チバ株式会社製)/フルフリルアルコール=3/2の
混合溶液を用いて樹脂含浸ストランドを作成し、150
℃で45分間硬化したものについて引っ張り試験を行っ
て強度、弾性率を求めた。
(2) Measurement of physical properties of strands: JIS-R7
According to the method of 601 , AR is used as the matrix resin liquid.
A resin impregnated strand was prepared using a mixed solution of ALDITE XD911 (trade name of epoxy resin, manufactured by Nagase Ciba Co., Ltd.) / Furfuryl alcohol = 3/2, and 150
A tensile test was performed on the cured product at 45 ° C. for 45 minutes to determine the strength and elastic modulus.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】これらの耐炎化繊維9を、図2のような吸
湿防止装置3を用いて5から送入する空気の絶対湿度
を、水0.5〜15g/kg・乾燥空気の範囲で変える
ことにより、炭素化装置2に入る耐炎化繊維の水分を変
化させた。ここにおいて吸湿防止装置3の出口スリット
6bから炭素化装置2の入り口2′までの距離は極力短
くなるように工夫したため、この間の滞留時間はわずか
10秒である。
The absolute humidity of the air sent from 5 to these flameproof fibers 9 by using the moisture absorption preventing device 3 as shown in FIG. 2 is changed within the range of 0.5 to 15 g / kg of water and dry air. As a result, the moisture content of the flameproof fiber entering the carbonization device 2 was changed. Here, since the distance from the outlet slit 6b of the moisture absorption prevention device 3 to the inlet 2'of the carbonization device 2 is devised so as to be as short as possible, the residence time during this period is only 10 seconds.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アクリロニトリルを90重量%以上含有
するアクリロニトリル系前駆体繊維を、酸化性雰囲気中
で耐炎化繊維に転換せしめた後、不活性雰囲気中で熱処
理するに当り、前記耐炎化繊維を200℃以下の温度で
その含有水分を2重量%以下に保持するか又は減少せし
めた後に、不活性雰囲気中で熱処理することを特徴とす
る高性能炭素繊維及び/又は黒鉛繊維の製造法。
1. An acrylonitrile-based precursor fiber containing 90% by weight or more of acrylonitrile is converted into a flame-resistant fiber in an oxidizing atmosphere, and then heat-treated in an inert atmosphere. A method for producing high-performance carbon fibers and / or graphite fibers, which comprises holding the moisture content at 2% by weight or less at a temperature of ℃ or less or reducing it, and then heat treating it in an inert atmosphere.
JP7512393A 1993-03-08 1993-03-08 Production of high-performance carbon fiber and/or graphite fiber Pending JPH06264310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7512393A JPH06264310A (en) 1993-03-08 1993-03-08 Production of high-performance carbon fiber and/or graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7512393A JPH06264310A (en) 1993-03-08 1993-03-08 Production of high-performance carbon fiber and/or graphite fiber

Publications (1)

Publication Number Publication Date
JPH06264310A true JPH06264310A (en) 1994-09-20

Family

ID=13567116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7512393A Pending JPH06264310A (en) 1993-03-08 1993-03-08 Production of high-performance carbon fiber and/or graphite fiber

Country Status (1)

Country Link
JP (1) JPH06264310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
WO2019146487A1 (en) * 2018-01-26 2019-08-01 東レ株式会社 Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
US11319648B2 (en) 2018-01-26 2022-05-03 Toray Industries, Inc. Stabilized fiber bundle and method of manufacturing carbon fiber bundle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8591859B2 (en) 2006-11-22 2013-11-26 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8734754B2 (en) 2006-11-22 2014-05-27 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8871172B2 (en) 2006-11-22 2014-10-28 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9121112B2 (en) 2006-11-22 2015-09-01 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9340905B2 (en) 2006-11-22 2016-05-17 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9677195B2 (en) 2006-11-22 2017-06-13 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9938643B2 (en) 2006-11-22 2018-04-10 Hexel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US10151051B2 (en) 2006-11-22 2018-12-11 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
WO2019146487A1 (en) * 2018-01-26 2019-08-01 東レ株式会社 Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
CN111601919A (en) * 2018-01-26 2020-08-28 东丽株式会社 Method for producing fire-resistant fiber bundle and method for producing carbon fiber bundle
US11319648B2 (en) 2018-01-26 2022-05-03 Toray Industries, Inc. Stabilized fiber bundle and method of manufacturing carbon fiber bundle
CN111601919B (en) * 2018-01-26 2022-06-28 东丽株式会社 Fire-resistant fiber bundle and method for producing carbon fiber bundle

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
US4284615A (en) Process for the production of carbon fibers
US20160160396A1 (en) Continuous carbonization process and system for producing carbon fibers
JP4392432B2 (en) Method for producing carbonized fabric
US4661336A (en) Pretreatment of pan fiber
US3297405A (en) Method of carbonizing animal fiber materials
JPH06264310A (en) Production of high-performance carbon fiber and/or graphite fiber
US3705236A (en) Method of producing carbon fibers
US4473372A (en) Process for the stabilization of acrylic fibers
US3677705A (en) Process for the carbonization of a stabilized acrylic fibrous material
JPH06264311A (en) Production of high-performance carbon fiber and/or graphite fiber
JP4392433B2 (en) Method for producing carbonized fabric
KR102687569B1 (en) Method for preparing carbon fiber precusrors
JP2009221619A (en) Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JP2001248025A (en) Method for producing carbon fiber
JPH0258367B2 (en)
JPS5930914A (en) Preparation of carbon fiber
JP4392435B2 (en) Method for producing carbonized fabric
JPH0213046B2 (en)
JP2012117161A (en) Method for manufacturing carbon fiber bundle
EP0068751B1 (en) Boronated mesophase pitch derived carbon fibres
JPH06264313A (en) Production of graphite fiber
JPH09268478A (en) Production of carbon fiber precursor yarn
JPS5976926A (en) Modification of carbon fiber
JPS6254889B2 (en)