JPH0626397Y2 - Water treatment equipment for fish tank - Google Patents

Water treatment equipment for fish tank

Info

Publication number
JPH0626397Y2
JPH0626397Y2 JP1988043495U JP4349588U JPH0626397Y2 JP H0626397 Y2 JPH0626397 Y2 JP H0626397Y2 JP 1988043495 U JP1988043495 U JP 1988043495U JP 4349588 U JP4349588 U JP 4349588U JP H0626397 Y2 JPH0626397 Y2 JP H0626397Y2
Authority
JP
Japan
Prior art keywords
oxygen
enriched
hollow fiber
tank
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988043495U
Other languages
Japanese (ja)
Other versions
JPH01170498U (en
Inventor
興彦 平佐
愛造 山内
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1988043495U priority Critical patent/JPH0626397Y2/en
Publication of JPH01170498U publication Critical patent/JPH01170498U/ja
Application granted granted Critical
Publication of JPH0626397Y2 publication Critical patent/JPH0626397Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、養魚槽用の水処理装置に関するものである。
さらに詳しくいえば、本発明は中空糸状の酸素富化膜の
外側を菌体を固定化する能力のある繊維または高分子材
料で被覆した酸素富化型微生物固定化担体と、酸素富化
膜型中空糸とを共存させ、水の浄化と溶存酸素の増加と
を行う養魚槽用水処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a water treatment device for a fish tank.
More specifically, the present invention relates to an oxygen-enriched microbial immobilization carrier coated on the outside of a hollow-fiber oxygen-enriched membrane with a fiber or polymer material capable of immobilizing bacterial cells, and an oxygen-enriched membrane-type carrier. TECHNICAL FIELD The present invention relates to a fish tank water treatment device that coexists with hollow fibers to purify water and increase dissolved oxygen.

<従来の技術> 陳列、展示、鑑賞用、運搬用、養殖用等のため種々の養
魚槽が用いられている。そして、養魚槽では、水の汚濁
防止のため、水処理装置を設ける必要がある。
<Prior Art> Various fish tanks are used for display, exhibition, appreciation, transportation, aquaculture, and the like. In the fish tank, it is necessary to provide a water treatment device to prevent water pollution.

従来、好気性の水処理装置としては、活性汚泥法、浸漬
ろ床法、回転円板法等があり、産業排水下水等の処理に
広く用いられている。しかしこれらの方法は、装置が大
型であるとか、管理の困難さ、生成汚泥の処理等、問題
があって、養魚槽用には適用できない。
Conventionally, as an aerobic water treatment apparatus, there are an activated sludge method, a submerged filter method, a rotating disk method, and the like, which are widely used for treating industrial wastewater and sewage. However, these methods cannot be applied to fish tanks because of problems such as large-sized equipment, difficulty in management, and treatment of generated sludge.

近年、バイオテクノロジーの進展に伴い、水処理分野で
も水処理用微生物を固定化した材料を用い、効率的に水
処理を行うことが試みられている。
In recent years, with the progress of biotechnology, even in the water treatment field, attempts have been made to efficiently perform water treatment using a material on which microorganisms for water treatment are immobilized.

酸素や微生物菌体を固定化する方法は、包括法、架橋
法、担体結合法に大別され、担体結合法はさらに共有結
合法、イオン結合法および物理吸着法に分類することが
できる。
Methods for immobilizing oxygen and microbial cells are roughly classified into entrapping method, crosslinking method and carrier binding method, and the carrier binding method can be further classified into covalent method, ionic bond method and physical adsorption method.

これらの方法で得られた固定化微生物菌体は通常ゲルビ
ーズ状、もしくはフィルム状であり、カラムなどの反応
容器に充填して用いられる。
The immobilized microbial cells obtained by these methods are usually in the form of gel beads or film, and are used by filling them in a reaction container such as a column.

これらの固定化微生物が水中の汚濁物を好気的に分解処
理する場合、汚濁物および溶存酸素がビーズ状の固定化
材中を拡散して微生物に供給される必要があり、反応速
度がおそく、場合によってはビーズの内部が嫌気性にな
り微生物の活性が落ちる欠点を有している。従って、こ
のものも養魚槽用の水処理装置としては適さない。
When these immobilized microorganisms aerobically decompose pollutants in water, the contaminants and dissolved oxygen must be diffused in the bead-shaped immobilization material and supplied to the microorganisms, which slows the reaction rate. However, in some cases, the inside of the beads becomes anaerobic and the activity of microorganisms is deteriorated. Therefore, this is also not suitable as a water treatment device for a fish tank.

そこで、本考案者らは、先に酸素富化機能を有する中空
糸の外面に、菌体を固定化しうる繊維を被覆した酸素富
化型微生物固定化担体を提案している(特願昭61−1
54616号)。
Therefore, the present inventors have previously proposed an oxygen-enriched microorganism-immobilized carrier in which a fiber capable of immobilizing cells is coated on the outer surface of a hollow fiber having an oxygen-enriching function (Japanese Patent Application No. 61-61). -1
54616).

このものは、微生物の活性度が高く、かつ処理速度が速
く、水処理装置として好適である。
This product has a high activity of microorganisms and a high treatment speed, and is suitable as a water treatment device.

<考案が解決しようとする課題> しかし、このものを養魚槽用の水処理装置として適用し
た場合、特に活魚を大量輸送するように、槽内に大量の
魚を収容しようとすると、処理能力が低く、汚濁が増大
する。また、溶存酸素量が低下する。
<Problems to be solved by the invention> However, when this is applied as a water treatment device for a fish tank, especially when a large amount of fish is to be accommodated in the tank so that a large amount of live fish is transported, the treatment capacity is reduced. Low, increased pollution. In addition, the amount of dissolved oxygen decreases.

このためには、槽内に空気を送入すればよいが、通常の
空気のバブリング等の送入法では実効がない。
For this purpose, air may be fed into the tank, but a normal feeding method such as bubbling of air is not effective.

本考案の目的は、大量の魚を収容しても、微生物の活性
度が高く、かつ処理速度が速く、汚濁が少なく、溶存酸
素量が低下しない養魚槽用の水処理装置を提供すること
にある。
An object of the present invention is to provide a water treatment device for a fish tank that has a high activity of microorganisms, a high treatment speed, little pollution, and a reduced amount of dissolved oxygen even when a large amount of fish is accommodated. is there.

<問題を解決するための手段> このような目的は下記の本考案によって達成される。す
なわち本考案は、酸素富化機能を有する中空糸の外側
を、菌体を固定化する能力のある維または高分子材料に
て被覆した酸素富化型微生物固定化担体と、酸素富化膜
型中空糸とを有し、前記両中空糸内に空気を供給し、前
記酸素富化型微生物固定化担体と酸素富化膜型中空糸を
養魚槽内の水と接触させ、水の浄化と溶存酸素の増加と
を行う養魚槽用水処理装置である。
<Means for Solving Problems> Such an object is achieved by the present invention described below. That is, the present invention provides an oxygen-enriched microorganism-immobilized carrier in which the outer surface of a hollow fiber having an oxygen-enriching function is coated with a fiber or a polymeric material capable of immobilizing cells, and an oxygen-enriched membrane-type carrier. A hollow fiber is provided, and air is supplied into both the hollow fibers, and the oxygen-enriched microorganism-immobilized carrier and the oxygen-enriched membrane hollow fiber are brought into contact with water in a fish tank to purify and dissolve water. It is a fish tank water treatment device that increases oxygen.

本考案に用いられる反応担体の構成材料の一つである酸
素富化型中空糸としては、ポリジメチルシロキサン系中
空糸を挙げることができる。
Examples of the oxygen-enriched hollow fiber, which is one of the constituent materials of the reaction carrier used in the present invention, include polydimethylsiloxane hollow fibers.

また、菌体固定用の繊維としてはアミノアセタール化ポ
リビニルアルコール系繊維、スルホン化ポリビニルアル
コール系繊維、ビニルピリジングラフト化ポリオレフィ
ン繊維、ビニルピリジングラフト化ポリエステル繊維な
どのカチオン化ないしはアニオン化された合成繊維を挙
げることができる。
Further, as the fiber for fixing the microbial cells, aminoacetalized polyvinyl alcohol fiber, sulfonated polyvinyl alcohol fiber, vinyl pyridine grafted polyolefin fiber, vinyl pyridine grafted polyester fiber and the like cationized or anionized synthetic fiber. Can be mentioned.

また固定化用高分子材料としては、ポリアクリル酸、ポ
リビニルピリジンなどのアニオン性ないしはカチオン性
の高分子電解質を挙げることができる。
Examples of the immobilizing polymer material include polyacrylic acid, polyvinyl pyridine, and other anionic or cationic polymer electrolytes.

菌体としては馴養により自然に繁殖した好気性微生物、
硝化菌など公知の種々のものが使用可能である。
Aerobic microorganisms that naturally propagated as a bacterium,
Various known substances such as nitrifying bacteria can be used.

被覆は、(1)酸素富化型中空糸の周りを上記繊維にて
組紐状に編織する、 (2)同中空糸の周りに上記繊維を巻き付ける、 (3)同中空糸と上記繊維とを混織する、 (4)同中空糸の外側にアクリル酸、ビニルピリジンな
どの高分子電解質モノマーをグラフト重合する、 (5)同中空糸の外側を水処理用微生物菌体を含む高分
子電解質水溶液にてコーティングしたのち、カルシウム
等の金属塩にて不溶化する、等の方法によって達成され
る。
The coating includes (1) weaving the oxygen-enriched hollow fiber around the hollow fiber in the form of a braid, (2) winding the fiber around the hollow fiber, (3) the hollow fiber and the fiber (4) A polymer electrolyte monomer such as acrylic acid or vinylpyridine is graft-polymerized on the outside of the hollow fiber, (5) A polymer electrolyte aqueous solution containing the microbial cells for water treatment on the outside of the hollow fiber And then insolubilizing it with a metal salt such as calcium.

酸素富化型微生物固定化担体1は、第1図に示されるよ
うに、酸素富化型中空糸2の外側を繊維状または高分子
材料の微生物固定化担体3にて被覆したものである。
As shown in FIG. 1, the oxygen-enriched microorganism-immobilized carrier 1 is obtained by coating the oxygen-enriched hollow fiber 2 with an outer surface of a microorganism-immobilized carrier 3 of a fibrous or polymeric material.

そして、第2図に示されるように、この担体1を束ね、
担体束15の末端の中空糸2部分をイリコーンゴム等の
シーラント4にて包埋し、中空糸の内側より空気を送る
ことができるように成型し、締め具5を装着してモジュ
ール化できる。
Then, as shown in FIG. 2, the carriers 1 are bundled,
The hollow fiber 2 portion at the end of the carrier bundle 15 is embedded with a sealant 4 such as iricorn rubber, molded so that air can be sent from the inside of the hollow fiber, and a fastener 5 is attached to form a module.

モジュール10の形としては、担体3が紐状であり、第
3図に示されるような担体束15、第4図に示されるよ
うな担体3と中空糸2との織物、第5図に示されるよう
な担体3の織物を中空糸2の束に巻いた状態など反応槽
の形状に合わせて形成することができ、接触効率および
処理効率のよいモジュールを作成することができる。
As for the shape of the module 10, the carrier 3 is in the form of a string, the carrier bundle 15 as shown in FIG. 3, the woven fabric of the carrier 3 and the hollow fiber 2 as shown in FIG. 4, and the structure shown in FIG. The woven fabric of the carrier 3 as described above can be formed according to the shape of the reaction tank such as a state of being wound around a bundle of the hollow fibers 2, and a module with good contact efficiency and treatment efficiency can be prepared.

このようにして得られたモジュール15の酸素富化型中
空糸2の内側より空気を供給することにより、外側の固
定化担体3の固定化されている微生物に、通常の空気に
よる溶存酸素濃度以上の濃度にて酸素が供給されるた
め、活性度の高い微生物相が形成される。
By supplying air from the inside of the oxygen-enriched hollow fiber 2 of the module 15 thus obtained, the microorganisms immobilized on the immobilization carrier 3 on the outer side have a dissolved oxygen concentration equal to or higher than that of normal air. Since oxygen is supplied at a concentration of, a highly active microflora is formed.

本考案の水処理装置は、第6図に示されるように、微生
物固定化機能と酸素富化機能とを合わせ持つ処理効率よ
い酸素富化型微生物固定化モジュール10を備えた好気
性反応槽6に、上記の酸素富化型中空糸2のモジュール
20を用いた溶存酸素向上槽7を付加することにより構
成される。
As shown in FIG. 6, the water treatment apparatus of the present invention is an aerobic reaction tank 6 equipped with an oxygen-enriched microorganism immobilization module 10 having both a microorganism-immobilizing function and an oxygen-enriching function with good treatment efficiency. In addition, a dissolved oxygen improving tank 7 using the module 20 of the oxygen-enriched hollow fiber 2 described above is added.

この場合、酸素富化型中空糸2のモジュール20は、前
記に準じ、中空糸2を重ね、この中空糸束からモジュー
ル化すればよい。
In this case, the module 20 of the oxygen-enriched hollow fiber 2 may be obtained by stacking the hollow fibers 2 and modularizing the hollow fiber bundle in accordance with the above.

このようにして得られたモジュール20の中空糸2の内
側に空気を供給することにより、外側の水には通常の空
気のエアレーションにより得られる溶存酸素以上の濃度
にて酸素が供給される。この結果、活魚を大量に収容し
たときの酸素不足が解消し、しかも処理能力の低下が防
止される。
By supplying air to the inside of the hollow fiber 2 of the module 20 thus obtained, oxygen is supplied to the outside water at a concentration equal to or higher than the dissolved oxygen obtained by ordinary aeration of air. As a result, the oxygen deficiency when a large amount of live fish is stored is eliminated, and the processing capacity is prevented from decreasing.

これに対して、養魚槽8に空気をバブリングしたり、あ
るいは酸素富化機能のない中空糸を用いたときには、本
発明の効果は格段と減少してしまう。
On the other hand, when air is bubbled in the fish tank 8 or a hollow fiber having no oxygen enrichment function is used, the effect of the present invention is significantly reduced.

このような構成において、好気性反応槽6および溶存酸
素向上槽7に、循環ポンプ9にて養魚槽8内の水を循環
し、モジュール10、20の外面に水を接触させる。ま
た、両モジュール10、20の中空糸内には好ましくは
圧縮空気を供給する。
In such a configuration, water in the fish tank 8 is circulated in the aerobic reaction tank 6 and the dissolved oxygen improving tank 7 by the circulation pump 9 to bring the water into contact with the outer surfaces of the modules 10 and 20. Also, compressed air is preferably supplied into the hollow fibers of both modules 10, 20.

図示例では、好気性反応槽6および溶存酸素向上槽7が
別槽となっているが、これらは同一槽であってもよく、
あるいは一方または両方が養魚槽8内に存在していても
よい。ただし、好気性反応槽6は保守の点で養魚槽8と
は別の槽とすることが好ましい。
In the illustrated example, the aerobic reaction tank 6 and the dissolved oxygen improving tank 7 are separate tanks, but they may be the same tank,
Alternatively, one or both may be present in the fish tank 8. However, the aerobic reaction tank 6 is preferably a tank different from the fish-raising tank 8 in terms of maintenance.

また、水および圧循空気の循環ないし送入の仕方は、図
示例の他、それぞれ独立に循環ないし送入することもで
きる。ただし、水の循環については、モジュール20に
て溶存酸素量を増加してから好気性反応槽6に導入する
ことが好ましい。
In addition to the illustrated example, the water and the circulating air can be circulated or sent independently. However, regarding the circulation of water, it is preferable that the amount of dissolved oxygen be increased in the module 20 before being introduced into the aerobic reaction tank 6.

本考案の水処理装置は固定化されている微生物に濃厚な
酸素が容易に供給されるため処理効率が高く、しかも菌
体が固定化されているため汚泥分離の必要がない省エネ
ルギー的な装置である。
The water treatment device of the present invention is an energy-saving device that has high treatment efficiency because concentrated oxygen is easily supplied to the immobilized microorganisms and does not require sludge separation because the cells are immobilized. is there.

<実施例> 次に実施例により本考案をさらに詳細に説明する。<Examples> Next, the present invention will be described in more detail with reference to Examples.

実施例1 本考案装置の一例として、第6図に示される酸素富化型
水処理装置を作製した。
Example 1 As an example of the device of the present invention, an oxygen-enriched water treatment device shown in FIG. 6 was produced.

担体1は、内径0.175mm外径0.35mmのポリジルメチルシ
ロキサン中空糸2の周りを、ジメチルアミノアセタール
化したポリビニルアルコール系微生物固定化繊維3にて
編織して形成した。
The carrier 1 was formed by weaving a poly (dimethylmethylsiloxane) hollow fiber 2 having an inner diameter of 0.175 mm and an outer diameter of 0.35 mm around a polyvinyl alcohol-based microorganism-immobilized fiber 3 which was dimethylaminoacetalized.

この50cmの酸素富化型微生物固定化担体1を250本
束ねた酸素富化型微生物固定化モジュール10を収納し
て容量2の好気性反応槽6とした。
An aerobic reaction tank 6 having a capacity of 2 was prepared by accommodating an oxygen-enriched microorganism immobilization module 10 in which 250 pieces of the oxygen-enriched microorganism-immobilized carrier 1 of 50 cm were bundled.

また、内径0.175mm、外径0.35mm、長さ50cmのポリジ
メチルシロキサン中空系2を1000本束ねた酸素富化
型中空糸モジュール20を収納して4の溶存酸素向上
槽7を形成した。
Further, the oxygen-enriched hollow fiber module 20 in which 1000 polydimethylsiloxane hollow systems 2 having an inner diameter of 0.175 mm, an outer diameter of 0.35 mm and a length of 50 cm were bundled was housed to form a dissolved oxygen improving tank 4 of 4.

これらを150の養魚槽8および循環ポンプ9と連結
した。
These were connected to 150 fish tanks 8 and circulation pumps 9.

養魚槽8にTOC0.3ppmの井戸水140及び体重
50グラムの琉金250匹を入れ、モジュール10、2
0には100kpaの圧縮空気を毎分30cc流し、、ポ
ンプ9にて養魚槽8の水を毎分5の流速にて、好気性
反応槽6及び溶存酸素向上槽7を通して循環させた。
To the fish tank 8, put well water 140 with TOC of 0.3 ppm and 250 pieces of Ryukin with a weight of 50 g, and use modules 10 and 2.
At 0, 30 cc of compressed air of 100 kpa was flowed, and the water in the fish tank 8 was circulated by the pump 9 at a flow rate of 5 per minute through the aerobic reaction tank 6 and the dissolved oxygen improving tank 7.

この結果、溶存酸素濃度は20℃で11.2ppmに維持
され、一ケ月後の琉金の生存率は96%で、水のTOC
は0.5ppm、アンモニア性窒素の濃度は0.03ppmと
良好であった。
As a result, the dissolved oxygen concentration was maintained at 11.2 ppm at 20 ° C, the survival rate of Ryukin after one month was 96%, and the TOC of water was
Was 0.5 ppm and the concentration of ammoniacal nitrogen was 0.03 ppm, which was good.

これに対し、溶存酸素向上槽7を用いない場合は溶存酸
素濃度が20℃で5.2ppmになり、一ケ月後の琉金の
生存率は80%、TOCは0.7ppm、アンモニア性窒
素は0.1ppmであった。
On the other hand, when the dissolved oxygen improving tank 7 is not used, the dissolved oxygen concentration becomes 5.2 ppm at 20 ° C., the survival rate of Ryukin after one month is 80%, TOC is 0.7 ppm, and ammonia nitrogen is 0%. It was 0.1 ppm.

また、従来のエアレーション、砂ろ過方式による場合、
水量140の養魚槽に毎分2の空気をバブリングし
たときには、溶存酸素は4.5ppmになり、一ケ月後の
TOCは4.3ppm、アンモニア性窒素は0.8ppmと高
くなり、しかもバブリングによる水の攪はんのため、魚
体の損傷があり、琉金の生存率は65%と低下した。
Also, when using the conventional aeration and sand filtration methods,
When bubbling 2 air per minute into a fish tank with a water volume of 140, dissolved oxygen will be 4.5 ppm, TOC after one month will be 4.3 ppm, ammonia nitrogen will be as high as 0.8 ppm, and water due to bubbling will increase. Due to the agitation of Ryukin, the survival rate of Ryukin was reduced to 65%.

<考案の効果> 本考案によれば、大量に魚類等を収容したときにも、汚
濁防止処理能力がきわめて高く、溶存酸素量の低下がき
わめて少ない養魚槽水処理装置が実現する。
<Effects of the Invention> According to the present invention, it is possible to realize a fish tank water treatment device which has an extremely high pollution prevention treatment capacity and a very small decrease in the amount of dissolved oxygen even when a large amount of fish and the like are stored.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案に用いる酸素富化型微生物固定化担体
の1例を示す部分斜視図である。 第2図は酸素富化型微生物固定化担体のモジュールの1
例を示す部分斜視図である。 第3図、第4図および第5図は、それぞれ、酸素富化型
微生物固定化担体のモジュールの具体例を示す正面図で
ある。 第6図は、本考案の養魚槽用水処理装置の1例を示す概
略構成図である。 符号の説明 1……酸素富化型微生物固定化担体、 2……中空糸、 3……固定担体、 10……酸素富化型微生物固定化担体のモジュール、 20……酸素富化型中空糸のモジュール、 6……好気性反応槽、 7……溶存酸系向上槽、 8……養魚槽、 9……循環ポンプ、
FIG. 1 is a partial perspective view showing an example of an oxygen-enriched microorganism-immobilized carrier used in the present invention. Fig. 2 is a module 1 of the oxygen-enriched microorganism immobilization carrier
It is a partial perspective view which shows an example. FIG. 3, FIG. 4 and FIG. 5 are front views showing specific examples of modules of the oxygen-enriched microorganism-immobilized carrier. FIG. 6 is a schematic configuration diagram showing an example of a fish tank water treatment device of the present invention. DESCRIPTION OF SYMBOLS 1 ... Oxygen-enriching microorganism-immobilized carrier, 2 ... Hollow fiber, 3 ... Immobilized carrier, 10 ... Oxygen-enriched microorganism-immobilized carrier module, 20 ... Oxygen-enriched hollow fiber Module, 6 ... Aerobic reaction tank, 7 ... Dissolved acid system improvement tank, 8 ... Fish tank, 9 ... Circulation pump,

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】酸素富化機能を有する中空糸の外側を、菌
体を固定化する能力のある繊維または高分子材料にて被
覆した酸素富化型微生物固定化担体と、酸素富化膜型中
空糸とを有し、前記両中空糸内に空気を供給し、前記酸
素富化型微生物固定化担体と酸素富化膜型中空糸を養魚
槽内の水と接触させ、水の浄化と溶存酸素の増加とを行
う養魚槽用水処理装置。
1. An oxygen-enriched microorganism-immobilized carrier in which the outer surface of a hollow fiber having an oxygen-enriching function is coated with a fiber or polymer material capable of immobilizing bacterial cells, and an oxygen-enriched membrane type carrier. A hollow fiber is provided, and air is supplied into both the hollow fibers, and the oxygen-enriched microorganism-immobilized carrier and the oxygen-enriched membrane hollow fiber are brought into contact with water in a fish tank to purify and dissolve water. A water treatment device for fish tanks that increases oxygen.
JP1988043495U 1988-03-31 1988-03-31 Water treatment equipment for fish tank Expired - Lifetime JPH0626397Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988043495U JPH0626397Y2 (en) 1988-03-31 1988-03-31 Water treatment equipment for fish tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988043495U JPH0626397Y2 (en) 1988-03-31 1988-03-31 Water treatment equipment for fish tank

Publications (2)

Publication Number Publication Date
JPH01170498U JPH01170498U (en) 1989-12-01
JPH0626397Y2 true JPH0626397Y2 (en) 1994-07-20

Family

ID=31269890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988043495U Expired - Lifetime JPH0626397Y2 (en) 1988-03-31 1988-03-31 Water treatment equipment for fish tank

Country Status (1)

Country Link
JP (1) JPH0626397Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524024A (en) * 2014-03-11 2015-09-16 Univ Dublin An aerated biofilm reactor fibre membrane

Also Published As

Publication number Publication date
JPH01170498U (en) 1989-12-01

Similar Documents

Publication Publication Date Title
CA1177977A (en) Biochemical process for purifying contaminated water
EP1423338B1 (en) Reaktor with membrane module for gas transfer and membrane supported biofilm process
US7597808B2 (en) Apparatus and method for treating wastewater containing nitrogen-containing dyes
CN100448509C (en) Filtering medium and use of the said filtering medium for pollution removal from lagoons
KR20140067271A (en) Core-shell composite having poly-vinylalcohol and alginate and method for fabricating the same
Wenten et al. Membrane biosorption: recent advances and challenges
JP5165866B2 (en) Method and apparatus for supplying electron donor to microorganism and bioreactor using the same
JPH0626397Y2 (en) Water treatment equipment for fish tank
JP2000325973A (en) Sewage treatment method and apparatus
Li et al. Membrane aerated biofilm reactors: a brief current review
JPH067789A (en) Bacteria immobilized carrier and biologically nitrogen removing apparatus using the carrier
CN110656103A (en) Composite immobilization carrier for improving microorganism immobilization efficiency and preparation method and application thereof
Liu et al. Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment
JP2002210486A (en) Method and apparatus for treating waste water after washing
JPH1146754A (en) Bioreactor
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
JPH07241584A (en) Waste water treatment method and apparatus using composite activated sludge carrier
JP4734182B2 (en) Bioreactor and method for decomposing and removing ammonia gas using the bioreactor
JPH02229590A (en) Water treatment
JPS6265795A (en) Treatment of high concentration waste water
JP2901323B2 (en) Biological nitrogen removal method
JPS6335319B2 (en)
JP2003033776A (en) Bioreactor and method for water treatment
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPH0929278A (en) Method for treating waste water and device therefor