JPH0626387A - Air/fuel ratio control device for spark-ignition type internal combustion engine - Google Patents

Air/fuel ratio control device for spark-ignition type internal combustion engine

Info

Publication number
JPH0626387A
JPH0626387A JP20443392A JP20443392A JPH0626387A JP H0626387 A JPH0626387 A JP H0626387A JP 20443392 A JP20443392 A JP 20443392A JP 20443392 A JP20443392 A JP 20443392A JP H0626387 A JPH0626387 A JP H0626387A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
load
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20443392A
Other languages
Japanese (ja)
Inventor
Akihiro Nishimura
章広 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yanmar Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yanmar Diesel Engine Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP20443392A priority Critical patent/JPH0626387A/en
Publication of JPH0626387A publication Critical patent/JPH0626387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate affection by variation in load to make a stable air/fuel ratio control by providing a rotational speed detecting means and a comparison means to compare a particular frequency component taken out from a faulty component detecting means and output a control signal. CONSTITUTION:A voltage signal corresponding to the number of rotations is detected by a speed detecting means A. From it, a particular frequency component which becomes especially large when an engine burns unstably is taken out by a faulty component detecting means B. A comparator means C compares the magnitude of the taken-out particular frequency component with a reference value, and outputs a control signal to reduce a difference between them. An air/fuel ratio adjusting means D operates according to the control signal. Also a load detecting means E to detect a load on the engine to correct the operating condition of the air/fuel ratio adjusting means D according to the detected load. Thus the device can cope with a fault resulting in variation in rotational speed which differs from that in normal condition, and the engine can be operated while an air/fuel ratio is controlled properly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、火花点火式内燃機関
における空燃比制御装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an air-fuel ratio control device in a spark ignition type internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排ガス浄化を行うための空燃
比制御において、吸気負圧や吸気温度等の入力条件に応
じて空燃比をオープン制御することは周知である。しか
しこのような方式の制御では、例えば使用部品の劣化等
による機関性能の変化には対応できない。その例を図2
について説明すると、図示のように機関から排出される
NOx量は空燃比λが薄くなると低下するという特性を
示すが、この特性は例えば気温が高くなれば破線のよう
に図の右に移動し、あるいは点火プラグのギャップが大
きくなって点火しにくい状態になれば鎖線のように左に
移動するのであり、種々の条件に応じて実線の標準状態
から大きく変動する。なお、X印より右寄りは失火領域
である。
2. Description of the Related Art In air-fuel ratio control for purifying exhaust gas of an internal combustion engine, it is well known that the air-fuel ratio is open-controlled according to input conditions such as intake negative pressure and intake temperature. However, the control of such a system cannot cope with a change in engine performance due to deterioration of used parts, for example. Figure 2
As shown in the figure, the NOx amount discharged from the engine has a characteristic that it decreases as the air-fuel ratio λ becomes thinner, but this characteristic moves to the right of the figure as shown by the broken line when the temperature becomes high, Alternatively, if the gap of the spark plug becomes large and it becomes difficult to ignite, it will move to the left as shown by the chain line, and will greatly fluctuate from the solid line standard state according to various conditions. The area to the right of the X mark is the misfire area.

【0003】従来の制御では、このように特性に影響を
与える条件を検出してマップの切り替えや補正を実施す
ることにより適正な制御を行うようにしているのである
が、例えば点火系の劣化や空燃比制御デバイスの異常な
どに対しては適当な検出手段がないため全く対応できな
い。従って、制御用のマップが実際の状態からずれて目
標の性能が出せなくなり、あるいは失火が起きやすくな
って甚だしい場合には機関停止に至るのであり、様々な
環境の変化に適切に対応することができなかった。な
お、一般的なクローズド制御としては三元触媒を用いた
フィードバック方式があるが、これには高価な三元触媒
が必要となる。
In conventional control, proper control is performed by detecting the conditions that affect the characteristics and performing map switching and correction as described above. For example, deterioration of the ignition system and Abnormality of the air-fuel ratio control device cannot be dealt with at all because there is no suitable detection means. Therefore, if the control map deviates from the actual state and the target performance cannot be obtained, or if misfire is likely to occur and the engine is stopped in an extreme case, it is possible to appropriately respond to various environmental changes. could not. As a general closed control, there is a feedback system using a three-way catalyst, but this requires an expensive three-way catalyst.

【0004】[0004]

【発明が解決しようとする課題】この発明はこのような
点に着目し、機関の劣化、特に燃焼状態の異常時におい
ても空燃比制御を適切に行い、安定した排ガス浄化を実
施することを課題としてなされたものである。
SUMMARY OF THE INVENTION The present invention focuses on such a point, and it is an object of the present invention to appropriately control the air-fuel ratio even when the engine is deteriorated, especially when the combustion state is abnormal, and to carry out stable exhaust gas purification. It was made as.

【0005】[0005]

【課題を解決するための手段】上記の課題を達成するた
めに、この発明では、機関回転数を常時検出して回転数
に対応した電圧信号に変換する回転数検出手段と、得ら
れた電圧信号から機関の不安定燃焼時に特に大きくなる
特定の周波数成分を取り出す異常成分検出手段と、取り
出された特定周波数成分の大きさを基準値と比較して両
者の差を少なくするような制御信号を出力する比較手段
と、制御信号に応じて作動する空燃比調整手段、とを備
えている。また、機関の負荷を検出する負荷検出手段を
設け、検出された負荷に応じて空燃比調整手段の作動状
態を補正するようにしている。図1はこの発明の構成を
示す図であり、Aは回転数検出手段、Bは異常成分検出
手段、Cは比較手段、Dは空燃比調整手段、Eは負荷検
出手段である。
In order to achieve the above object, in the present invention, a rotation speed detecting means for constantly detecting the engine rotation speed and converting it into a voltage signal corresponding to the rotation speed, and the obtained voltage. An abnormal component detection means for extracting a specific frequency component that becomes particularly large during unstable combustion of the engine from the signal, and a control signal for reducing the difference between the extracted specific frequency component and a reference value. It is provided with a comparing means for outputting and an air-fuel ratio adjusting means which operates according to a control signal. Further, load detecting means for detecting the load of the engine is provided, and the operating state of the air-fuel ratio adjusting means is corrected according to the detected load. FIG. 1 is a diagram showing the configuration of the present invention, in which A is rotational speed detecting means, B is abnormal component detecting means, C is comparing means, D is air-fuel ratio adjusting means, and E is load detecting means.

【0006】[0006]

【作用】機関は各気筒の燃焼行程ごとに加速されて細か
く周期的に変動しているため、回転数に対応した電圧信
号には変動周期に応じた周波数成分が最も多く含まれて
いる。すなわち、この電圧信号には燃焼が行われた結果
が反映されているのであり、例えばある気筒が失火する
と加速が行われないのでその気筒の燃焼行程に対応する
時刻では電圧信号が低下し、正常時の周期の2倍の周期
の成分、つまり正常時の周波数の1/2の周波数成分
(0.5次成分)が発生する。この1/2の周波数成分は
正常時にはほとんど含まれていない異常成分であり、こ
の成分の増加を検出することにより、完全な失火はもち
ろん、一時的な失火や部分燃焼のような現象でも確実に
検出される。
Since the engine is accelerated in each combustion stroke of each cylinder and minutely and periodically fluctuates, the voltage signal corresponding to the rotational speed contains most frequency components according to the fluctuation period. That is, this voltage signal reflects the result of combustion.For example, when a cylinder misfires, acceleration is not performed, so the voltage signal decreases at the time corresponding to the combustion stroke of that cylinder, and Component with twice the period of time, that is, half the frequency component of normal time
(0.5th order component) occurs. This 1/2 frequency component is an abnormal component that is rarely included in normal conditions, and by detecting an increase in this component, it is possible to ensure not only complete misfire but also temporary misfire and partial combustion. To be detected.

【0007】図3はNOxとPmi変動率(図示平均有効
圧力変動率)との関係を示す図である。Pmi変動率は失
火や部分燃焼など機関の燃焼状態が不安定になると増加
することが知られているが、このPmi変動率は負荷に関
わらず図のような関係を保っており、しかも本発明者の
研究によると、回転数に対応した電圧信号に含まれる異
常成分の量と密接な関係があり、この異常成分とPmi変
動率の値が図4のように非常によく一致することが見出
された。従って、異常成分検出手段から取り出された特
定周波数成分の大きさに応じて空燃比調整手段の作動状
態を制御すれば、正常時とは異なる回転数変動を生ずる
ような異常時でも空燃比制御を適正に実施することが可
能となるのである。
FIG. 3 is a graph showing the relationship between NOx and Pmi fluctuation rate (indicated average effective pressure fluctuation rate). It is known that the Pmi fluctuation rate increases when the combustion state of the engine becomes unstable due to misfire or partial combustion, but the Pmi fluctuation rate maintains the relationship as shown in the figure regardless of the load, and the present invention According to the research conducted by the researcher, there is a close relationship with the amount of the abnormal component contained in the voltage signal corresponding to the rotation speed, and it is found that the abnormal component and the value of the Pmi fluctuation rate match very well as shown in FIG. Was issued. Therefore, if the operating state of the air-fuel ratio adjusting means is controlled according to the magnitude of the specific frequency component extracted from the abnormal component detecting means, the air-fuel ratio control can be performed even in an abnormal situation where a rotation speed variation different from that in the normal state occurs. It becomes possible to carry out properly.

【0008】[0008]

【実施例】次に図示のガス機関における一実施例につい
て説明する。この発明は失火等の燃焼異常によって機関
の状態を検出しているので、この実施例では空燃比制御
と共に失火判定も行っている。図5において、1はガス
機関、2は回転数センサ、3はF/Vコンバータ、4は
バンドパスフィルタ、5は制御部、6は空燃比制御弁、
7はメインジェット、8はガスであり、空燃比制御弁6
はメインジェット7をバイパスするように設けられてい
る。11はミキサー、12は吸気管、13はスロットル
弁、14は空気であり、ガス8はミキサー11で空気1
4と混合され、吸気管12、スロットル弁13を経て機
関1に供給される。15は負荷検出用として吸気管12
に設けられた圧力センサ、16は点火パルサーである。
EXAMPLE An example of the illustrated gas engine will be described below. Since the present invention detects the state of the engine due to combustion abnormality such as misfire, in this embodiment, misfire determination is performed together with the air-fuel ratio control. In FIG. 5, 1 is a gas engine, 2 is a rotation speed sensor, 3 is an F / V converter, 4 is a bandpass filter, 5 is a control unit, 6 is an air-fuel ratio control valve,
7 is a main jet, 8 is gas, and the air-fuel ratio control valve 6
Are provided so as to bypass the main jet 7. 11 is a mixer, 12 is an intake pipe, 13 is a throttle valve, 14 is air, and gas 8 is the mixer 11 and air 1
4, and is supplied to the engine 1 through the intake pipe 12 and the throttle valve 13. 15 is an intake pipe 12 for load detection
A pressure sensor, 16 is provided in the.

【0009】制御部5の主要部はCPU5a、メモリ5
bなどを備えたマイクロコンピュータで構成されてお
り、メモリ5bにはマップや基準値等のデータを記憶さ
せてある。回転数センサ2には電磁ピックアップが用い
られており、その出力はF/Vコンバータ3に送られて
ここで電圧信号V0に変換され、更にバンドパスフィル
タ4を通過した特定の周波数成分の電圧信号V1が制御
部5に入力される。制御部5には圧力センサ15の出力
信号Lや点火パルサー16の点火信号も入力されてお
り、制御部5ではこれらの信号に基づいて制御信号S1
を出力して空燃比制御弁6を作動させ、あるいは警報信
号S2を出力して失火等の異常を所定の機器や部門に報
知する。
The main part of the control unit 5 is a CPU 5a and a memory 5
The memory 5b stores data such as maps and reference values. An electromagnetic pickup is used for the rotation speed sensor 2, the output of which is sent to an F / V converter 3 where it is converted into a voltage signal V 0 , and further the voltage of a specific frequency component that has passed through a bandpass filter 4. The signal V 1 is input to the control unit 5. The output signal L of the pressure sensor 15 and the ignition signal of the ignition pulsar 16 are also input to the control unit 5, and the control unit 5 controls the control signal S 1 based on these signals.
Is output to activate the air-fuel ratio control valve 6, or an alarm signal S 2 is output to notify a predetermined device or department of abnormality such as misfire.

【0010】上記の構成において、F/Vコンバータ3
からは図6のような電圧信号V0が出力されている。す
なわち、正常時には回転数に応じて電圧信号V0は実線
のように周期的に変動しており、機関1が例えば4気筒
であればこの変動の周期Tは丁度1回転に対応したもの
になっている。ここである気筒が失火すると、その気筒
の燃焼による加速がないため電圧信号V0は破線のよう
に低下し、この部分の変動周期は2Tとなって正常時の
周波数の1/2の周波数を持つ0.5次成分が発生する
ことになる。
In the above configuration, the F / V converter 3
Outputs a voltage signal V 0 as shown in FIG. That is, in the normal state, the voltage signal V 0 periodically fluctuates as indicated by the solid line, and if the engine 1 has, for example, four cylinders, the fluctuation cycle T corresponds to exactly one revolution. ing. When a cylinder here is misfiring, the voltage signal V 0 drops as shown by the broken line because there is no acceleration due to combustion of that cylinder, and the fluctuation cycle of this portion is 2T, which is half the frequency at normal times. The 0.5th order component that it has will be generated.

【0011】図7は電圧信号V0に含まれる周波数成分
の分布を例示したものであり、F1は周期Tに対応した
周波数成分、F2は成分F1の2倍の周波数を持つ周波数
成分、F3は成分F1の1/2倍、すなわち0.5次の周
波数の成分である。成分F1は燃焼によって発生するも
の、成分F2は慣性によって発生するものであって、実
線のように通常は成分F1が最も大きく、成分F3はほと
んど発生しないが、失火が起きた場合には破線のように
成分F3が異常に大きくなる。バンドパスフィルタ4は
上記の0.5次周波数成分F3を通過させるフィルタで
あり、制御部5はこのF3の周波数成分を持つ電圧信号
1を空燃比制御用の基準値あるいは失火判定用の基準
値と比較して、制御信号S1あるいは警報信号S2を出力
するように構成されている。なお、バンドパスフィルタ
4としては機関の設定回転数や気筒数に応じて通過帯域
を任意に変更できるものが望ましい。
FIG. 7 exemplifies the distribution of frequency components included in the voltage signal V 0. F 1 is a frequency component corresponding to the period T, F 2 is a frequency component having a frequency twice that of the component F 1. , F 3 are 1/2 times the component F 1 , that is, the components of the 0.5th frequency. The component F 1 is generated by combustion, and the component F 2 is generated by inertia. Usually, the component F 1 is the largest as shown by the solid line, and the component F 3 is hardly generated, but when a misfire occurs. , The component F 3 becomes abnormally large as indicated by the broken line. The band-pass filter 4 is a filter that passes the 0.5th-order frequency component F 3 described above, and the control unit 5 uses the voltage signal V 1 having the frequency component of F 3 as a reference value for air-fuel ratio control or for misfire determination. It is configured to output the control signal S 1 or the alarm signal S 2 in comparison with the reference value of. As the bandpass filter 4, it is desirable that the passband can be arbitrarily changed according to the engine speed and the number of cylinders.

【0012】ここで、図3においてNOxの規制値が
A、Pmi変動率の安定運転限界値がBとすれば、Pmi変
動率を図のCの範囲に制御すればよい。そして、図4の
ように異常成分、つまり上記の0.5次成分F3とPmi
変動率の値との間には一定の関係があるので、成分F3
がCの範囲に対応するDの範囲に入るように空燃比制御
弁6を制御することにより、燃焼状態に異常が生じた場
合でも空燃比を適正に制御することができるのである。
Here, assuming that the regulation value of NOx is A and the stable operation limit value of the Pmi fluctuation rate is B in FIG. 3, the Pmi fluctuation rate may be controlled within the range of C in the figure. Then, as shown in FIG. 4, the abnormal component, that is, the above-mentioned 0.5th-order component F 3 and Pmi
Since there is a fixed relationship with the value of the fluctuation rate, the component F 3
By controlling the air-fuel ratio control valve 6 so as to enter the range D corresponding to the range C, the air-fuel ratio can be properly controlled even when an abnormality occurs in the combustion state.

【0013】図9のフローチャートは上述の空燃比制御
の手順であり、まずステップS1でF3の周波数成分を
持つ電圧信号V1を所定のサンプリング間隔で逐次入力
し、入力回数が所定回数に達するとステップS2に進ん
で電圧信号V1の平均値Vm1を算出する。次いでステッ
プS3で平均値Vm1をあらかじめ設定された基準値Vt
と比較し、Vm1>VtであればステップS4に進んでメ
モリ5bのマップから空燃比制御弁6の開度を算出して
濃側に駆動し、Vm1>VtでなければステップS5に進
んで空燃比制御弁6を希薄側に駆動するのである。以上
は基本的な手順であり、補正のステップについては次に
述べる。
The flowchart of FIG. 9 shows the procedure of the air-fuel ratio control described above. First, in step S1, the voltage signal V 1 having the frequency component of F 3 is sequentially input at a predetermined sampling interval, and the number of times of input reaches a predetermined number. Then, the process proceeds to step S2 to calculate the average value Vm 1 of the voltage signal V 1 . Next, in step S3, the average value Vm 1 is set to the preset reference value Vt.
If Vm 1 > Vt, the process proceeds to step S4, the opening of the air-fuel ratio control valve 6 is calculated from the map of the memory 5b, and the air-fuel ratio control valve 6 is driven to the dark side. If Vm 1 > Vt, the process proceeds to step S5. Thus, the air-fuel ratio control valve 6 is driven to the lean side. The above is the basic procedure, and the correction steps will be described below.

【0014】F3の周波数成分を持つ電圧信号V1は負荷
によって変化するので、実際の制御は負荷に応じて補正
することが望ましい。すなわち、負荷が増加すると燃焼
行程でのピストンを押す力と圧縮行程での減速が共に大
きくなり、これに伴い回転変動の振幅が大きくなってバ
ンドパスフィルタ4を通過する電圧信号V1も大きくな
る。この信号V1と負荷とは図8の実線のように一定の
関係を保って変化するので、圧力センサ15で負荷を検
出してその結果に応じて信号V1を図8の破線のように
補正するのである。
Since the voltage signal V 1 having the frequency component of F 3 changes depending on the load, it is desirable to correct the actual control according to the load. That is, as the load increases, the force pushing the piston in the combustion stroke and the deceleration in the compression stroke both increase, and the amplitude of the rotational fluctuation increases accordingly, and the voltage signal V 1 passing through the bandpass filter 4 also increases. . Since the signal V 1 and the load change while maintaining a constant relationship as shown by the solid line in FIG. 8, the load is detected by the pressure sensor 15 and the signal V 1 is changed as shown by the broken line in FIG. 8 according to the result. Correct it.

【0015】図5の可変抵抗器20はこのための補正抵
抗であり、例えば図8の破線の特性になるように制御部
5で可変抵抗器20の抵抗値を調整することによって上
記の補正を行うことができる。図9のステップS11は
このような手段によって補正する場合のものであり、制
御部5には補正された電圧信号V1が入力されることに
なる。この補正は上述のような可変抵抗器20によらな
いで、例えば負荷に応じて使用するマップを切り替え、
あるいはマップから読み出したデータに負荷に応じた補
正を加える等の手段によっても行うことができる。図9
のステップS12及び13はこのような方法で補正する
場合を示したものである。
The variable resistor 20 in FIG. 5 is a correction resistor for this purpose. For example, the controller 5 adjusts the resistance value of the variable resistor 20 so that the characteristic shown by the broken line in FIG. It can be carried out. Step S11 in FIG. 9 is for correction by such means, and the corrected voltage signal V 1 is input to the control unit 5. This correction does not depend on the variable resistor 20 as described above. For example, the map to be used is switched according to the load,
Alternatively, the data read from the map can be corrected by a means such as a correction. Figure 9
Steps S12 and S13 of FIG. 9 show the case where the correction is performed by such a method.

【0016】なお、発明の目的ではないので詳細な説明
は省略するが、この実施例ではステップS3に相当する
ステップで平均値Vm1を失火判定用の基準値と比較する
ことにより失火判定も行い、平均値Vm1が基準値を超え
た場合には警報信号S2が出力されるように構成されて
いる。
Although not described in detail because it is not the object of the invention, in this embodiment, misfire determination is also performed by comparing the average value Vm 1 with a reference value for misfire determination in a step corresponding to step S3. The alarm signal S 2 is output when the average value Vm 1 exceeds the reference value.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、この発
明は、機関回転数に対応した電圧信号から機関の不安定
燃焼時に特に大きくなる特定の周波数成分を取り出し、
これを用いて空燃比を制御するようにしたものである。
従って、従来対応が困難であった正常時とは異なる回転
数変動を生ずるような異常にも対応することが可能とな
り、空燃比を適切に制御しながら機関を運転することが
できる。また、負荷に応じて空燃比調整手段の作動状態
を補正するものでは、負荷の変動の影響をなくしてより
安定した空燃比制御を行うことができる。
As is apparent from the above description, the present invention extracts a specific frequency component which becomes particularly large during unstable combustion of the engine from the voltage signal corresponding to the engine speed,
This is used to control the air-fuel ratio.
Therefore, it is possible to cope with an abnormality that causes a rotation speed variation different from that in a normal state, which has been difficult to deal with conventionally, and it is possible to operate the engine while appropriately controlling the air-fuel ratio. Further, in the case of correcting the operating state of the air-fuel ratio adjusting means according to the load, it is possible to eliminate the influence of load fluctuations and perform more stable air-fuel ratio control.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】空燃比とNOxの関係を示す図である。FIG. 2 is a diagram showing a relationship between an air-fuel ratio and NOx.

【図3】NOxとPmi変動率の関係を示す図である。FIG. 3 is a diagram showing a relationship between NOx and Pmi fluctuation rate.

【図4】Pmi変動率と異常成分の関係を示す図である。FIG. 4 is a diagram showing a relationship between a Pmi fluctuation rate and an abnormal component.

【図5】この発明の一実施例の概略構成図である。FIG. 5 is a schematic configuration diagram of an embodiment of the present invention.

【図6】回転数に対応した電圧信号の波形図である。FIG. 6 is a waveform diagram of a voltage signal corresponding to the rotation speed.

【図7】回転数に対応した電圧信号の周波数成分の分布
図である。
FIG. 7 is a distribution diagram of frequency components of a voltage signal corresponding to the rotation speed.

【図8】負荷と電圧信号の関係を示す図である。FIG. 8 is a diagram showing a relationship between a load and a voltage signal.

【図9】同実施例の制御の手順を示すフローチャートで
ある。
FIG. 9 is a flowchart showing a control procedure of the embodiment.

【符号の説明】 1 機関 2 回転数センサ 3 F/Vコンバータ 4 バンドパスフィルタ 5 制御部 5a CPU 5b メモリ 6 空燃比制御弁 15 圧力センサ 20 可変抵抗器 V0 回転数に対応した電圧信号 V1 特定の周波数成分の電圧信号 Vt 基準値 S1 制御信号[Explanation of Codes] 1 engine 2 rotation speed sensor 3 F / V converter 4 bandpass filter 5 control unit 5a CPU 5b memory 6 air-fuel ratio control valve 15 pressure sensor 20 variable resistor V 0 voltage signal corresponding to rotation speed V 1 Voltage signal of specific frequency component Vt Reference value S 1 Control signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関回転数を常時検出して回転数に対応
した電圧信号に変換する回転数検出手段と、得られた電
圧信号から機関の不安定燃焼時に特に大きくなる特定の
周波数成分を取り出す異常成分検出手段と、取り出され
た特定周波数成分の大きさを基準値と比較して両者の差
を少なくするような制御信号を出力する比較手段と、制
御信号に応じて作動する空燃比調整手段、とを備えたこ
とを特徴とする火花点火式内燃機関の空燃比制御装置。
1. A rotation speed detecting means for constantly detecting the engine rotation speed and converting it into a voltage signal corresponding to the rotation speed, and taking out a specific frequency component which becomes particularly large during unstable combustion of the engine from the obtained voltage signal. Abnormal component detecting means, comparing means for outputting a control signal for comparing the magnitude of the extracted specific frequency component with a reference value to reduce the difference between the two, and air-fuel ratio adjusting means that operates according to the control signal. An air-fuel ratio control device for a spark ignition type internal combustion engine, comprising:
【請求項2】 機関の負荷を検出する負荷検出手段を設
け、検出された負荷に応じて空燃比調整手段の作動状態
を補正するようにした請求項1記載の火花点火式内燃機
関の空燃比制御装置。
2. An air-fuel ratio of a spark ignition type internal combustion engine according to claim 1, wherein load detecting means for detecting the load of the engine is provided, and the operating state of the air-fuel ratio adjusting means is corrected according to the detected load. Control device.
JP20443392A 1992-07-07 1992-07-07 Air/fuel ratio control device for spark-ignition type internal combustion engine Pending JPH0626387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20443392A JPH0626387A (en) 1992-07-07 1992-07-07 Air/fuel ratio control device for spark-ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20443392A JPH0626387A (en) 1992-07-07 1992-07-07 Air/fuel ratio control device for spark-ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0626387A true JPH0626387A (en) 1994-02-01

Family

ID=16490462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20443392A Pending JPH0626387A (en) 1992-07-07 1992-07-07 Air/fuel ratio control device for spark-ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0626387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161008A1 (en) * 2012-04-24 2013-10-31 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2013014789A1 (en) * 2011-07-28 2015-02-23 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013014789A1 (en) * 2011-07-28 2015-02-23 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013161008A1 (en) * 2012-04-24 2013-10-31 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2013161008A1 (en) * 2012-04-24 2015-12-21 トヨタ自動車株式会社 Control device for internal combustion engine
EP2843219A4 (en) * 2012-04-24 2016-07-13 Toyota Motor Co Ltd Control device for internal combustion engine
CN104246188B (en) * 2012-04-24 2017-02-22 丰田自动车株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US4821194A (en) Cylinder combustion monitoring apparatus
US8347700B2 (en) Device for operating an internal combustion engine
US5357790A (en) Misfiring detecting apparatus for an internal combustion engine
US20020022921A1 (en) Engine self-diagnosis apparatus and control apparatus
JPS61132747A (en) Air-fuel ratio sensor judging device
US5554801A (en) Diagnosis apparatus and method for a cylinder pressure sensor
JP3170067B2 (en) Lean combustion control device for internal combustion engine and fuel injection amount control device having the same
US5819530A (en) Internal combustion engine controller with exhaust gas purification catalyst and its deterioration monitoring system
KR20010085559A (en) Knocking detection method of internal combustion engine by ion current
US6094974A (en) Self-diagnosing apparatus and method of variable valve timing structure
KR20060134078A (en) Method for adapting detection of a measuring signal of a waste gas probe
US5390489A (en) Air-fuel ratio control system for internal combustion engine
KR20070010035A (en) Engine optimisation method and apparatus
JPH04321740A (en) Engine air fuel ratio control device
US5604303A (en) Combustion condition detecting system of internal combustion engine
US5090383A (en) Ignition timing control apparatus for an internal combustion engine
JPS61237884A (en) Knocking controller for internal-combustion engine
JPH0626387A (en) Air/fuel ratio control device for spark-ignition type internal combustion engine
JPH08121237A (en) Misfire detecting device for internal combustion engine
US9429089B2 (en) Control device of engine
JPH09112333A (en) Knocking control device for engine
JPH06173751A (en) Electronic control device for internal combustion engine
JP2001289111A (en) Misfire detector for engine
JPH08177697A (en) Knocking control device for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine