JPH06263791A - Production of alpha-ribazole - Google Patents

Production of alpha-ribazole

Info

Publication number
JPH06263791A
JPH06263791A JP7913593A JP7913593A JPH06263791A JP H06263791 A JPH06263791 A JP H06263791A JP 7913593 A JP7913593 A JP 7913593A JP 7913593 A JP7913593 A JP 7913593A JP H06263791 A JPH06263791 A JP H06263791A
Authority
JP
Japan
Prior art keywords
derivative
group
dimethyl
benzyl
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7913593A
Other languages
Japanese (ja)
Inventor
Hideyuki Sugimura
秀幸 杉村
Kenji Osumi
賢二 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP7913593A priority Critical patent/JPH06263791A/en
Publication of JPH06263791A publication Critical patent/JPH06263791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the subject compound, a structural component of vitamin B12, useful for treating pernicious anemia by coupling a specific thioglycoside derivative and a 5,6-dimethylbenzomidazole derivative in the presence of an activating agent. CONSTITUTION:A thioglycoside derivative expressed by the formula I (R is ethyl or phenyl; P<1> is benzyl, tbutyldimethysilyl or triphenylmethyl; P<2> is benzyl or isopropylidene), (e.g. thiofuranoside derivative, etc.) and a 5,6- dimethybenzoimidazole derivative (e.g. 5,6-dimethyl-1- trimethylsilyllbenzoimidazole, etc.) are subjected to coupling in the presence of an activating agent (e.g. N-bromosuccinimide, etc.) at room temperature for 18 hours under agitation. Then, a solution of sodium thiosulfate is added to the reaction mixture, which is extracted with dichloromethane to obtain the objective alpha-ribazole expressed by formula II (Me is methyl) as a structural component of vitamin B12 useful for treating pernicious anemia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体内において核酸や
タンパク質の生合成に関与し、血液の生産に重要な役割
を果たす、悪性貧血の治療に有効なビタミンB12の構
成成分であるα−リバゾールの製造方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to α- which is a constituent of vitamin B12, which is effective in the treatment of pernicious anemia, which is involved in the biosynthesis of nucleic acids and proteins in vivo and plays an important role in blood production. The present invention relates to a method for producing ribazole.

【0002】[0002]

【従来の方法】α-リバゾールの製造方法の代表的なも
のとしては、次に挙げる3つの方法が知られている。第
1の方法は水酸基をベンジル基で保護した1−β−D−
リボフラノシルクロリドと5,6−ジメチルベンゾイミ
ダゾールをカップリングさせる方法[J.D.Stevensら,J.
Org.Chem.,33巻,1806ヘ゜ーシ゛,1968年]、第2の方法は1
位に遊離の水酸基を有するリボフラノース誘導体より活
性なイソ尿素誘導体を合成し、これを5,6−ジメチル
ベンゾイミダゾールとカップリングさせる方法[H.Tsut
sumiら,Nippon Kagaku Kaishi,1682ヘ゜ーシ゛,1982年]、第
3の方法は1位に遊離の水酸基を有するリボフラノース
誘導体より活性なグリコシルオキシピリジニウム中間体
を合成し、これを5,6−ジメチル−1−トリメチルシ
リルベンゾイミダゾールとカップリングさせる方法[T.
Mukaiyamaら,Chem.Lett.,557ヘ゜ーシ゛,1984年]である。
2. Description of the Related Art The following three methods are known as typical methods for producing α-rivazole. The first method is 1-β-D- in which the hydroxyl group is protected with a benzyl group.
Method for coupling ribofuranosyl chloride with 5,6-dimethylbenzimidazole [JD Stevens et al., J.
Org. Chem., 33, 1806, 1968], the second method is 1
A method for synthesizing an active isourea derivative from a ribofuranose derivative having a free hydroxyl group at the position and coupling it with 5,6-dimethylbenzimidazole [H.Tsut
Sumi et al., Nippon Kagaku Kaishi, 1682 page, 1982], the third method is the synthesis of an active glycosyloxypyridinium intermediate from a ribofuranose derivative having a free hydroxyl group at the 1-position, which is 5,6-dimethyl- Method for coupling with 1-trimethylsilylbenzimidazole [T.
Mukaiyama et al., Chem. Lett., 557 pages, 1984].

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記第
1の方法では糖供与体として用いる1−β−D−リボフ
ラノシルクリドを選択的に合成することが困難であるこ
とや、その取り扱いが難しいこと、また第2、第3の方
法ではカップリング反応の際のα−アノマー選択性が低
いことなどの問題があり、必ずしも工業的に有利な方法
とはいい難い。
However, according to the first method, it is difficult to selectively synthesize 1-β-D-ribofuranosyl chloride used as a sugar donor and its handling is difficult. In addition, the second and third methods have problems such as low α-anomer selectivity in the coupling reaction, and are not necessarily industrially advantageous methods.

【0004】[0004]

【課題を解決するための手段】本発明者らは、安価で取
り扱いの容易なチオフラノシド誘導体を原料として、α
−リバゾールの高選択的な合成法の開発を目的として種
々研究を行った結果、下記化3(化3中、Rはアルキル
基、アリール基、P1、P2は保護基を示す。)の反応工
程中の一般式[1]で表されるチオフラノシド誘導体を
原料として、5,6−ジメチルベンゾイミダゾール誘導
体とN−ブロモコハク酸イミド(NBS)の存在下にカ
ップリングさせることによって一般式[2]で表される
α−リバゾール誘導体が製造できることを見いだした。
一般式[2]で表されるα−リバゾール誘導体の保護基
は、常法により容易に脱保護され、一般式[3]で表さ
れるα−リバゾールへの変換が可能である。
[Means for Solving the Problems] The inventors of the present invention prepared a thiofuranoside derivative, which is inexpensive and easy to handle, as a raw material.
As a result of various studies aimed at developing a highly selective synthetic method of ribazole, the following chemical formula 3 (in the chemical formula 3, R represents an alkyl group, an aryl group, P 1 and P 2 represent a protecting group): By using the thiofuranoside derivative represented by the general formula [1] in the reaction step as a starting material and coupling it in the presence of a 5,6-dimethylbenzimidazole derivative and N-bromosuccinimide (NBS), the general formula [2] It was found that an α-rivazole derivative represented by
The protecting group of the α-rivazole derivative represented by the general formula [2] can be easily deprotected by a conventional method and can be converted to the α-rivazole represented by the general formula [3].

【化3】 [Chemical 3]

【0005】すなわち、本発明は一般式[1]で表され
るチオフラノシド誘導体と、5,6−ジメチルベンゾイ
ミダゾール誘導体をNBSの存在下にカップリングさせ
ることを特徴とする一般式[3]で表されるα−リバゾ
ールの製造方法に関するものである。
That is, the present invention is represented by the general formula [3] which is characterized in that the thiofuranoside derivative represented by the general formula [1] and the 5,6-dimethylbenzimidazole derivative are coupled in the presence of NBS. The present invention relates to a method for producing α-rivazole.

【0006】以下、本発明について詳述する。本発明の
方法における原料化合物であるチオフラノシド誘導体
は、一般式[1]で表されるものであるが、Rはメチル
基、エチル基、n−プロピル基などのアルキル基やフェ
ニル基、p−メトキシフェニル基、p−クロロフェニル
基などアリール基など特に制限は無い。P1、P2は通常
の水酸基の保護基であれば良く、例えばtert−ブチ
ルジメチルシリル基などのシリル基、ベンジル基、トリ
フェニルメチル基などのアリールアルキル基、イソプロ
ピリデン基などのケタールやベンジリデン基などのアセ
タールなどを挙げることができる。
The present invention will be described in detail below. The thiofuranoside derivative which is a raw material compound in the method of the present invention is represented by the general formula [1], wherein R is an alkyl group such as a methyl group, an ethyl group or an n-propyl group, a phenyl group or p-methoxy group. There is no particular limitation such as an aryl group such as a phenyl group or a p-chlorophenyl group. P 1 and P 2 may be ordinary protective groups for hydroxyl groups, and examples thereof include silyl groups such as tert-butyldimethylsilyl group, arylalkyl groups such as benzyl group and triphenylmethyl group, ketals and benzylidene groups such as isopropylidene group. Examples thereof include acetals such as groups.

【0007】5,6−ジメチルベンゾイミダゾール誘導
体の保護基としては特に制限はないが、トリアルキルシ
リル基などが有用である。使用量は、一般式[1]化合
物に対して2〜10当量、好ましくは6当量である。
The protecting group for the 5,6-dimethylbenzimidazole derivative is not particularly limited, but trialkylsilyl group and the like are useful. The amount used is 2-10 equivalents, preferably 6 equivalents, relative to the compound of the general formula [1].

【0008】カップリング反応における活性化剤として
はN−ブロモイミド類が好ましく、たとえば、N−ブロ
モコハク酸イミドのようなブロモニウムイオンを発生す
る試剤が用いられる。活性化剤の使用量は、一般式
[1]化合物に対して1〜2当量、好ましくは1.1当
量である。
As the activator in the coupling reaction, N-bromoimides are preferable, and for example, a reagent that generates a bromonium ion such as N-bromosuccinimide is used. The amount of the activator used is 1 to 2 equivalents, preferably 1.1 equivalents, relative to the compound of the general formula [1].

【0009】反応は非プロトン性有機溶媒(例えば、エ
ーテル、ベンゼン、トルエン、ジクロロメタン、クロロ
ホルム、アセトニトリルなど)中、窒素あるいはアルゴ
ンなどの不活性ガス雰囲気下で、モレキュラーシーブス
4Aを添加して実施し、反応温度は−78〜+50℃、
好ましくは室温前後である。
The reaction is carried out in an aprotic organic solvent (for example, ether, benzene, toluene, dichloromethane, chloroform, acetonitrile, etc.) under an atmosphere of an inert gas such as nitrogen or argon by adding Molecular Sieves 4A, The reaction temperature is -78 to + 50 ° C,
It is preferably around room temperature.

【0010】[0010]

【実施例】以下に、実施例を挙げて本発明を説明する。
NMRスペクトルは、JEOL社製EX−400を用い
て測定した。
EXAMPLES The present invention will be described below with reference to examples.
The NMR spectrum was measured using EX-400 manufactured by JEOL.

【0011】[0011]

【実施例1】 5,6−ジメチル−1−(2,3,5−トリ−O−ベン
ジル−α−D−リボフラノシル)ベンゾイミダゾール
[5]
Example 1 5,6-Dimethyl-1- (2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzimidazole [5]

【化4】 [Chemical 4]

【0012】5,6−ジメチルベンゾイミダゾール17
5.4mg(1.20mmol)にアルゴン雰囲気下、
1,1,1,3,3,3−ヘキサメチルジシラザン0.
72mlとN,N−ジメチルホルムアミド(以下DMF
と略す)0.06mlを加え4時間140゜Cで加熱す
る。加熱した状態で減圧下、過剰の1,1,1,3,
3,3−ヘキサメチルジシラザンとDMFを除去し乾燥
する。得られた5,6−ジメチル−1−トリメチルシリ
ルベンゾイミダゾールを3.0mlのジクロロメタンに
溶解し、これをチオフラノシド誘導体[4]152.2
mg(0.30mmol)の中へ加える。この溶液にモ
レキュラーシーブス4Aを加え15分間攪はんした後、
NBS106.8mg(0.60mmol)を加え、室
温にて18時間攪はんする。チオ硫酸ナトリウム水溶液
を加え、ジクロロメタンにより抽出し、抽出液を飽和炭
酸水素ナトリウム水溶液で洗浄する。有機層を無水硫酸
マグネシウムで乾燥後濃縮し、シリカゲルカラムクロマ
トグラフィーにより単離精製して5,6−ジメチル−1
−(2,3,5−トリ−O−ベンジル−α−D−リボフ
ラノシル)ベンゾイミダゾール[5]を111.9mg
(67モル%,α:β=4:1)得る。1HNMRによ
りその構造を確認した。得られたスペクトルデータを下
に示す。
5,6-dimethylbenzimidazole 17
5.4 mg (1.20 mmol) under argon atmosphere,
1,1,1,3,3,3-hexamethyldisilazane 0.
72 ml and N, N-dimethylformamide (hereinafter DMF
Abbreviated) and add 0.06 ml and heat at 140 ° C for 4 hours. Excessive 1,1,1,3 under reduced pressure while heating
Remove 3,3-hexamethyldisilazane and DMF and dry. The obtained 5,6-dimethyl-1-trimethylsilylbenzimidazole was dissolved in 3.0 ml of dichloromethane, and this was dissolved in thiofuranoside derivative [4] 152.2.
Add into mg (0.30 mmol). After adding molecular sieves 4A to this solution and stirring for 15 minutes,
Add 106.8 mg (0.60 mmol) of NBS and stir at room temperature for 18 hours. Aqueous sodium thiosulfate solution is added, extraction is performed with dichloromethane, and the extract is washed with saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and isolated and purified by silica gel column chromatography to obtain 5,6-dimethyl-1.
111.9 mg of-(2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzimidazole [5]
(67 mol%, α: β = 4: 1). The structure was confirmed by 1 H NMR. The spectrum data obtained is shown below.

【0013】1HNMR(CDCl3):δ=2.36(s, 3
H), 2.37(s, 3H), 3.53(dd, J=2.93,10.75Hz, 1H), 3.6
3(dd, J=2.93, 10.74Hz, 0.79H), 3.71-3.77(m, 0.21
H), 4.13-4.39(m, 5H), 4.42-4.74(m, 4H), 6.04(d, J=
6.35Hz, 0.21H), 6.13(d, J=5.37Hz, 0.79H), 7.02-7.4
0(m, 16H), 7.54(s, 0.21H), 7.56(s, 0.79H), 7.97(s,
0.21H), 8.51(s, 0.79H).
1 HNMR (CDCl 3 ): δ = 2.36 (s, 3
H), 2.37 (s, 3H), 3.53 (dd, J = 2.93, 10.75Hz, 1H), 3.6
3 (dd, J = 2.93, 10.74Hz, 0.79H), 3.71-3.77 (m, 0.21
H), 4.13-4.39 (m, 5H), 4.42-4.74 (m, 4H), 6.04 (d, J =
6.35Hz, 0.21H), 6.13 (d, J = 5.37Hz, 0.79H), 7.02-7.4
0 (m, 16H), 7.54 (s, 0.21H), 7.56 (s, 0.79H), 7.97 (s,
0.21H), 8.51 (s, 0.79H).

【0014】[0014]

【実施例2】 5,6−ジメチル−1−(2,3,5−トリ−O−ベン
ジル−α−D−リボフラノシル)ベンゾイミダゾール
[5]
Example 2 5,6-Dimethyl-1- (2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzimidazole [5]

【化5】 [Chemical 5]

【0015】5,6−ジメチルベンゾイミダゾール28
0.7mg(1.92mmol)にアルゴン雰囲気下、
1,1,1,3,3,3−ヘキサメチルジシラザン1.
15mlとDMF0.10mlを加え4時間140゜C
で加熱する。加熱した状態で減圧下、過剰の1,1,
1,3,3,3−ヘキサメチルジシラザンとDMFを除
去し乾燥する。得られた5,6−ジメチル−1−トリメ
チルシリルベンゾイミダゾールを3.2mlのクロロホ
ルムに溶解し、これをチオフラノシド誘導体[6]14
9.4mg(0.321mmol)の中へ加える。この
溶液にモレキュラーシーブス4Aを加え15分間攪はん
した後、NBS62.7mg(0.352mmol)を
加え、室温にて2時間攪はんする。チオ硫酸ナトリウム
水溶液を加え、クロロホルムにより抽出し、抽出液を飽
和炭酸水素ナトリウム水溶液で洗浄する。有機層を無水
硫酸マグネシウムで乾燥後濃縮し、シリカゲルカラムク
ロマトグラフィーにより単離精製して5,6−ジメチル
−1−(2,3,5−トリ−O−ベンジル−α−D−リ
ボフラノシル)ベンゾイミダゾール[5]を147.9
mg(84モル%,α:β=54:1)得る。1HNM
Rによりその構造を確認した。得られたスペクトルデー
タを下に示す。
5,6-dimethylbenzimidazole 28
0.7 mg (1.92 mmol) under argon atmosphere,
1,1,1,3,3,3-hexamethyldisilazane 1.
Add 15 ml and DMF 0.10 ml for 4 hours at 140 ° C
Heat with. Excessive 1,1, under reduced pressure while heating
1,3,3,3-hexamethyldisilazane and DMF are removed and dried. The obtained 5,6-dimethyl-1-trimethylsilylbenzimidazole was dissolved in 3.2 ml of chloroform, and this was dissolved in thiofuranoside derivative [6] 14.
Add into 9.4 mg (0.321 mmol). After adding molecular sieves 4A to this solution and stirring for 15 minutes, 62.7 mg (0.352 mmol) of NBS was added and the mixture was stirred at room temperature for 2 hours. Aqueous sodium thiosulfate solution is added, extraction is performed with chloroform, and the extract is washed with saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and isolated and purified by silica gel column chromatography to give 5,6-dimethyl-1- (2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzo. Imidazole [5] 147.9
mg (84 mol%, α: β = 54: 1) is obtained. 1 HNM
The structure was confirmed by R. The spectrum data obtained is shown below.

【0016】1HNMR(CDCl3):δ=2.36(s, 3
H), 2.37(s, 3H), 3.52(dd, J=2.93,10.74Hz, 1H), 3.6
2(dd, J=2.93, 10.75Hz, 1H), 4.20-4.39(m, 6H), 4.44
-4.61(s×5, 2H), 4.66-4.73(s×2, 1H), 6.13(d, J=5.
37Hz, 1H), 7.02-7.08(m, 2H), 7.14-7.38(m, 14H), 7.
56(s, 1H), 8.51(s, 1H).
1 HNMR (CDCl 3 ): δ = 2.36 (s, 3
H), 2.37 (s, 3H), 3.52 (dd, J = 2.93, 10.74Hz, 1H), 3.6
2 (dd, J = 2.93, 10.75Hz, 1H), 4.20-4.39 (m, 6H), 4.44
-4.61 (s × 5, 2H), 4.66-4.73 (s × 2, 1H), 6.13 (d, J = 5.
37Hz, 1H), 7.02-7.08 (m, 2H), 7.14-7.38 (m, 14H), 7.
56 (s, 1H), 8.51 (s, 1H).

【0017】[0017]

【実施例3】 5,6−ジメチル−1−(5−O−tert−ブチルジ
メチルシリル−2,3−O−イソプロピリデン−α−D
−リボフラノシル)ベンゾイミダゾール[8]
Example 3 5,6-Dimethyl-1- (5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-α-D
-Ribofuranosyl) benzimidazole [8]

【化6】 [Chemical 6]

【0018】5,6−ジメチルベンゾイミダゾール50
3.1mg(3.44mmol)にアルゴン雰囲気下、
1,1,1,3,3,3−ヘキサメチルジシラザン2.
1mlとDMF0.17mlを加え4時間140゜Cで
加熱する。加熱した状態で減圧下、過剰の1,1,1,
3,3,3−ヘキサメチルジシラザンとDMFを除去し
乾燥する。得られた5,6−ジメチル−1−トリメチル
シリルベンゾイミダゾールを5.8mlのクロロホルム
に溶解し、これをチオフラノシド誘導体[7]200.
4mg(0.575mmol)の中へ加える。この溶液
にモレキュラーシーブス4Aを加え15分間攪はんした
後、NBS112.8mg(0.634mmol)を加
え、室温にて1時間攪はんする。チオ硫酸ナトリウム水
溶液を加え、クロロホルムにより抽出し、抽出液を飽和
炭酸水素ナトリウム水溶液で洗浄する。有機層を無水硫
酸マグネシウムで乾燥後濃縮し、シリカゲルカラムクロ
マトグラフィーにより単離精製して5,6−ジメチル−
1−(5−O−tert−ブチルジメチルシリル−2,
3−O−イソプロピリデン−α−D−リボフラノシル)
ベンゾイミダゾール[8]を202.3mg(81モル
%,α:β=23:1)得る。1HNMRによりその構
造を確認した。得られたスペクトルデータを下に示す。
5,6-dimethylbenzimidazole 50
3.1 mg (3.44 mmol) under an argon atmosphere,
1,1,1,3,3,3-hexamethyldisilazane 2.
Add 1 ml and 0.17 ml of DMF and heat at 140 ° C for 4 hours. Excessive 1,1,1,
The 3,3,3-hexamethyldisilazane and DMF are removed and dried. The obtained 5,6-dimethyl-1-trimethylsilylbenzimidazole was dissolved in 5.8 ml of chloroform, and this was dissolved in thiofuranoside derivative [7] 200.
Add into 4 mg (0.575 mmol). After adding molecular sieves 4A to this solution and stirring it for 15 minutes, 112.8 mg (0.634 mmol) of NBS was added, and the mixture was stirred at room temperature for 1 hour. Aqueous sodium thiosulfate solution is added, extraction is performed with chloroform, and the extract is washed with saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and isolated and purified by silica gel column chromatography to obtain 5,6-dimethyl-
1- (5-O-tert-butyldimethylsilyl-2,
3-O-isopropylidene-α-D-ribofuranosyl)
202.3 mg (81 mol%, α: β = 23: 1) of benzimidazole [8] is obtained. The structure was confirmed by 1 H NMR. The spectrum data obtained is shown below.

【0019】1HNMR(CDCl3):δ=0.13(s, 3
H), 0.15(s, 3H), 0.99(s, 9H), 1.27(s, 3H), 1.44(s,
3H), 2.35(s, 6H), 3.81(dd, J=1.95, 10.74Hz, 1H),
3.94(dd, J=1.96, 10.75Hz, 1H), 4.39(s, 1H), 4.81-
4.88(m, 1H), 4.93-4.96(s×2,1H), 6.39(d, J=3.90Hz,
1H), 7.07(s, 1H), 7.54(s, 1H), 8.14(s, 1H).
1 HNMR (CDCl 3 ): δ = 0.13 (s, 3
H), 0.15 (s, 3H), 0.99 (s, 9H), 1.27 (s, 3H), 1.44 (s,
3H), 2.35 (s, 6H), 3.81 (dd, J = 1.95, 10.74Hz, 1H),
3.94 (dd, J = 1.96, 10.75Hz, 1H), 4.39 (s, 1H), 4.81-
4.88 (m, 1H), 4.93-4.96 (s × 2, 1H), 6.39 (d, J = 3.90Hz,
1H), 7.07 (s, 1H), 7.54 (s, 1H), 8.14 (s, 1H).

【0020】[0020]

【実施例4】 5,6−ジメチル−1−(2,3−O−イソプロピリデ
ン−5−O−トリフェニルメチル−α−D−リボフラノ
シル)ベンゾイミダゾール[10]
Example 4 5,6-Dimethyl-1- (2,3-O-isopropylidene-5-O-triphenylmethyl-α-D-ribofuranosyl) benzimidazole [10]

【化7】 [Chemical 7]

【0021】5,6−ジメチルベンゾイミダゾール27
6.2mg(1.89mmol)にアルゴン雰囲気下、
1,1,1,3,3,3−ヘキサメチルジシラザン1.
14mlとDMF0.09mlを加え4時間140゜C
で加熱する。加熱した状態で減圧下、過剰の1,1,
1,3,3,3−ヘキサメチルジシラザンとDMFを除
去し乾燥する。得られた5,6−ジメチル−1−トリメ
チルシリルベンゾイミダゾールを3.1mlのジクロロ
メタンに溶解し、これをチオフラノシド誘導体[9]1
49.0mg(0.313mmol)の中へ加える。こ
の溶液にモレキュラーシーブス4Aを加え15分間攪は
んした後、NBS61.1mg(0.343mmol)
を加え、室温にて3.5時間攪はんする。チオ硫酸ナト
リウム水溶液を加え、ジクロロメタンにより抽出し、抽
出液を飽和炭酸水素ナトリウム水溶液で洗浄する。有機
層を無水硫酸マグネシウムで乾燥後濃縮し、シリカゲル
カラムクロマトグラフィーにより単離精製して5,6−
ジメチル−1−(2,3−O−イソプロピリデン−5−
O−トリフェニルメチル−α−D−リボフラノシル)ベ
ンゾイミダゾール[10]を148.1mg(84モル
%,α:β=4:1)得る。1HNMRによりその構造
を確認した。得られたスペクトルデータを下に示す。
5,6-Dimethylbenzimidazole 27
To an amount of 6.2 mg (1.89 mmol) under an argon atmosphere,
1,1,1,3,3,3-hexamethyldisilazane 1.
Add 14 ml and DMF 0.09 ml for 4 hours at 140 ° C
Heat with. Excessive 1,1, under reduced pressure while heating
1,3,3,3-hexamethyldisilazane and DMF are removed and dried. The obtained 5,6-dimethyl-1-trimethylsilylbenzimidazole was dissolved in 3.1 ml of dichloromethane, and this was dissolved in a thiofuranoside derivative [9] 1.
Add into 49.0 mg (0.313 mmol). After adding molecular sieves 4A to this solution and stirring for 15 minutes, NBS 61.1 mg (0.343 mmol)
And stir at room temperature for 3.5 hours. Aqueous sodium thiosulfate solution is added, extraction is performed with dichloromethane, and the extract is washed with saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and isolated and purified by silica gel column chromatography to give 5,6-
Dimethyl-1- (2,3-O-isopropylidene-5-
148.1 mg (84 mol%, α: β = 4: 1) of O-triphenylmethyl-α-D-ribofuranosyl) benzimidazole [10] is obtained. The structure was confirmed by 1 H NMR. The spectrum data obtained is shown below.

【0022】1HNMR(CDCl3):δ=1.28(s, 2.4
3H), 1.36(s, 0.57H), 1.46(s, 2.43H), 1.63(s, 0.57
H), 2.24(s, 0.57H), 2.32(s, 2.43H), 2.36(s, 3H),
3.29(dd, J=1.95, 10.74Hz, 0.81H), 3.33-3.46(m, 0.3
8H), 3.65(dd, J=1.96, 10.75Hz, 0.81H), 4.42(s, 1
H), 4.77-4.81(s×2, 0.81H), 4.95-5.07(m, 1H), 5.95
(d, J=3.42Hz, 0.19H), 6.66(d, J=3.42Hz, 0.81H), 7.
04(s, 0.81H), 7.13-7.54(m, 15.38H), 7.57(s, 0.81
H), 7.92(s, 0.19H), 8.19(s, 0.81H).
1 HNMR (CDCl 3 ): δ = 1.28 (s, 2.4
3H), 1.36 (s, 0.57H), 1.46 (s, 2.43H), 1.63 (s, 0.57
H), 2.24 (s, 0.57H), 2.32 (s, 2.43H), 2.36 (s, 3H),
3.29 (dd, J = 1.95, 10.74Hz, 0.81H), 3.33-3.46 (m, 0.3
8H), 3.65 (dd, J = 1.96, 10.75Hz, 0.81H), 4.42 (s, 1
H), 4.77-4.81 (s × 2, 0.81H), 4.95-5.07 (m, 1H), 5.95
(d, J = 3.42Hz, 0.19H), 6.66 (d, J = 3.42Hz, 0.81H), 7.
04 (s, 0.81H), 7.13-7.54 (m, 15.38H), 7.57 (s, 0.81
H), 7.92 (s, 0.19H), 8.19 (s, 0.81H).

【0023】[0023]

【実施例5】 α−リバゾール[3]Example 5 α-rivazole [3]

【化8】 [Chemical 8]

【0024】5,6−ジメチル−1−(2,3,5−ト
リ−O−ベンジル−α−D−リボフラノシル)ベンゾイ
ミダゾール[5]780mg(1.41mmol)をエ
ーテル5mlに溶解し、−78°Cに冷却する。これに
アンモニアを42ml加え攪拌し、ナトリウム120.
7mg(5.25mmol)を少しづつ加える。20分
後、塩化アンモニウムを加え、室温に戻してアンモニア
を除去する。注意深くエタノール、水を加えてから溶媒
を除去し、残渣をシリカゲルカラムクロマトグラフィー
によって精製し、α−リバゾール[3]283.2mg
(72モル%)を得る。1HNMRによりその構造を確
認した。得られたスペクトルデータを下に示す。
780 mg (1.41 mmol) of 5,6-dimethyl-1- (2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzimidazole [5] was dissolved in 5 ml of ether to obtain -78. Cool to ° C. To this, 42 ml of ammonia was added and stirred, and sodium 120.
7 mg (5.25 mmol) are added in small portions. After 20 minutes, ammonium chloride is added and the temperature is returned to room temperature to remove ammonia. Ethanol and water were added carefully, the solvent was removed, and the residue was purified by silica gel column chromatography to obtain α-rivazole [3] 283.2 mg.
(72 mol%) is obtained. The structure was confirmed by 1 H NMR. The spectrum data obtained is shown below.

【0025】1HNMR((CD32CO):δ=2.30
(s, 3H), 2.33(s, 3H), 3.69(dd, J=3.66, 11.96Hz, 1
H), 3.82(dd, J=3.18, 11.97Hz, 1H), 4.24-4.29(m, 1
H), 4.47(t, J=5.38Hz, 1H), 4.56(t, J=4.89Hz, 1H),
6.28(d, J=4.39Hz, 1H), 7.31(s,1H), 7.34(s, 1H), 8.
23(s, 1H). 13CNMR((CD32CO):δ=20.2
(q), 20.5(q), 62.7(t), 72.0(d), 72.8(d), 85.6(d),
86.8(d), 111.4(d), 120.4(d), 130.9(s), 131.9(s), 1
43.0(s), 143.5(s).
1 HNMR ((CD 3 ) 2 CO): δ = 2.30
(s, 3H), 2.33 (s, 3H), 3.69 (dd, J = 3.66, 11.96Hz, 1
H), 3.82 (dd, J = 3.18, 11.97Hz, 1H), 4.24-4.29 (m, 1
H), 4.47 (t, J = 5.38Hz, 1H), 4.56 (t, J = 4.89Hz, 1H),
6.28 (d, J = 4.39Hz, 1H), 7.31 (s, 1H), 7.34 (s, 1H), 8.
23 (s, 1H). 13 CNMR ((CD 3 ) 2 CO): δ = 20.2
(q), 20.5 (q), 62.7 (t), 72.0 (d), 72.8 (d), 85.6 (d),
86.8 (d), 111.4 (d), 120.4 (d), 130.9 (s), 131.9 (s), 1
43.0 (s), 143.5 (s).

【0026】[0026]

【実施例6】 α−リバゾール[3]Example 6 α-rivazole [3]

【化9】 [Chemical 9]

【0027】5,6−ジメチル−1−(2,3,5−ト
リ−O−ベンジル−α−D−リボフラノシル)ベンゾイ
ミダゾール[5]942.3mg(1.72mmol)
をメタノール14mlに溶解し、10%パラジウム−活
性炭949mg、および塩化パラジウム(II)945
mg(5.33mmol)を加える。反応系を水素で置
換し、2時間後に過剰の試薬をろ別する。溶媒を除去
し、残渣をシリカゲルカラムクロマトグラフィーによっ
て精製し、α−リバゾール[3]346.9mg(72
モル%)を得る。1HNMRによりその構造を確認し
た。得られたスペクトルデータを下に示す。
5,6-Dimethyl-1- (2,3,5-tri-O-benzyl-α-D-ribofuranosyl) benzimidazole [5] 942.3 mg (1.72 mmol)
Was dissolved in 14 ml of methanol, 10% palladium-activated carbon 949 mg, and palladium (II) chloride 945
mg (5.33 mmol) is added. The reaction system is replaced with hydrogen, and after 2 hours, excess reagent is filtered off. The solvent was removed, the residue was purified by silica gel column chromatography, α-rivazole [3] 346.9 mg (72
Mol%). The structure was confirmed by 1 H NMR. The spectrum data obtained is shown below.

【0028】1HNMR((CD32CO):δ=2.30
(s, 3H), 2.33(s, 3H), 3.69(dd, J=3.66, 11.96Hz, 1
H), 3.82(dd, J=3.18, 11.97Hz, 1H), 4.24-4.29(m, 1
H), 4.47(t, J=5.38Hz, 1H), 4.56(t, J=4.89Hz, 1H),
6.28(d, J=4.39Hz, 1H), 7.31(s,1H), 7.34(s, 1H), 8.
23(s, 1H). 13CNMR((CD32CO):δ=20.2
(q), 20.5(q), 62.7(t), 72.0(d), 72.8(d), 85.6(d),
86.8(d), 111.4(d), 120.4(d), 130.9(s), 131.9(s), 1
43.0(s), 143.5(s).
1 HNMR ((CD 3 ) 2 CO): δ = 2.30
(s, 3H), 2.33 (s, 3H), 3.69 (dd, J = 3.66, 11.96Hz, 1
H), 3.82 (dd, J = 3.18, 11.97Hz, 1H), 4.24-4.29 (m, 1
H), 4.47 (t, J = 5.38Hz, 1H), 4.56 (t, J = 4.89Hz, 1H),
6.28 (d, J = 4.39Hz, 1H), 7.31 (s, 1H), 7.34 (s, 1H), 8.
23 (s, 1H). 13 CNMR ((CD 3 ) 2 CO): δ = 20.2
(q), 20.5 (q), 62.7 (t), 72.0 (d), 72.8 (d), 85.6 (d),
86.8 (d), 111.4 (d), 120.4 (d), 130.9 (s), 131.9 (s), 1
43.0 (s), 143.5 (s).

【0029】[0029]

【発明の効果】本発明によって、原料として安価で取り
扱いの容易なチオフラノシド誘導体を糖供与体として用
い、5,6−ジメチルベンゾイミダゾール誘導体とのカ
ップリング反応をNBSの存在下に行うことによって、
α−リバゾール誘導体を簡便に良好な収率で合成するこ
とができた。このα−リバゾール誘導体は、水酸基の保
護基を常法により除去することによって、容易にα−リ
バゾールへ変換することができた。
INDUSTRIAL APPLICABILITY According to the present invention, an inexpensive and easy-to-handle thiofuranoside derivative is used as a sugar donor as a raw material, and a coupling reaction with a 5,6-dimethylbenzimidazole derivative is carried out in the presence of NBS.
The α-rivazole derivative could be easily synthesized in good yield. This α-rivazole derivative could be easily converted to α-rivazole by removing the hydroxyl-protecting group by a conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 【化1】 化1で表されるチオグリコシド誘導体(化1中、Rはエ
チル基、フェニル基、P1はベンジル基、tert−ブ
チルジメチルシリル基、トリフェニルメチル基、P2
ベンジル基、イソプロピリデン基を示す。)と5,6−
ジメチルベンゾイミダゾール誘導体を活性化剤の存在下
にカップリングさせることを特徴とする、化2で表され
るα−リバゾールの製造方法。 【化2】
Claims: The thioglycoside derivative represented by Chemical Formula 1 (wherein R is an ethyl group, a phenyl group, P 1 is a benzyl group, a tert-butyldimethylsilyl group, a triphenylmethyl group, P 2 is a benzyl group, an isopropylidene group Shown) and 5,6-
A method for producing α-rivazole represented by Chemical formula 2, which comprises coupling a dimethylbenzimidazole derivative in the presence of an activator. [Chemical 2]
【請求項2】5,6−ジメチルベンゾイミダゾール誘導
体として、5,6−ジメチル−1−トリメチルシリルベ
ンゾイミダゾールを用いることを特徴とする請求項1の
製造方法。
2. The method according to claim 1, wherein 5,6-dimethyl-1-trimethylsilylbenzimidazole is used as the 5,6-dimethylbenzimidazole derivative.
【請求項3】活性化剤として、N−ブロモコハク酸イミ
ドを用いることを特徴とする請求項1の製造方法。
3. The method according to claim 1, wherein N-bromosuccinimide is used as the activator.
JP7913593A 1993-03-12 1993-03-12 Production of alpha-ribazole Pending JPH06263791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7913593A JPH06263791A (en) 1993-03-12 1993-03-12 Production of alpha-ribazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7913593A JPH06263791A (en) 1993-03-12 1993-03-12 Production of alpha-ribazole

Publications (1)

Publication Number Publication Date
JPH06263791A true JPH06263791A (en) 1994-09-20

Family

ID=13681517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7913593A Pending JPH06263791A (en) 1993-03-12 1993-03-12 Production of alpha-ribazole

Country Status (1)

Country Link
JP (1) JPH06263791A (en)

Similar Documents

Publication Publication Date Title
JP4202274B2 (en) Novel process for producing N4-acyl-5&#39;-deoxy-5-fluorocytidine derivatives
JP2005139197A (en) METHOD FOR PRODUCING 2&#39;,3&#39;-DIDEHYDRO-3&#39;-DEOXYTHYMIDINE (d4T) BY USING 5-METHYLURIDINE
US5633366A (en) Pyrimidine nucleoside derivatives and methods for producing them
JPH051092A (en) Nucleoside derivative and its production
JP2004538317A (en) Method for preparing L-ribavirin
KR910008112B1 (en) Process for the production of o2,2&#39;-anhydor-1-(beta-d-arabino furanosyl)-thymine
WO1993018051A1 (en) Process for producing nucleoside derivative
JPH06263791A (en) Production of alpha-ribazole
KR101259648B1 (en) A manufacturing process of 2′,2′-difluoronucloside and intermediate
JP3046359B2 (en) D-pentofuranose derivative and method for producing the same
JP3259191B2 (en) Synthesis of 2,2&#39;-anhydroarabinosyl thymine derivatives
JP2666160B2 (en) 5-O-pyrimidyl-2,3-dideoxy-1-thiofuranoside derivative, method for producing the same and use
JPH07116211B2 (en) Uracil derivative
JP2547125B2 (en) 2 &#39;, 3&#39;-dideoxy-2&#39;, 3&#39;-disubstituted-nucleosides and process for their production
JP2770357B2 (en) Method for producing nucleoside derivative
JPH0925289A (en) Production of 4&#39;-thioarabinopyrimidine nucleoside
JPH06135962A (en) Production of 2&#39;,3&#39;-dideoxynucleoside derivative
JPH0873488A (en) Production of 1-(2-deoxyribofuranoyl)pyridazinone derivative
JPH0665281A (en) Improved preparation of 2-amino(2,3,5-tri-o-benzyl-beta- arabinofuranosyl)adenine
JP3070863B2 (en) Method for producing 2 &#39;, 3&#39;-dideoxypyrimidine nucleosides
JPH0272191A (en) Production of 2&#39;, 3&#39;-dideoxynucleoside
KR101259637B1 (en) A process of 1-(2´-Deoxy-2´,2´-difluoro-D-ribofuranosyl)-4-aminopyrimidin-2-on or thereof HCl salt
JP2000154197A (en) D-pentofuranose derivative and its production
JPH02124897A (en) Production of erythrofuranosil nucleoside derivative and novel derivative
JPH05339264A (en) Production of 1-@(3754/24)2,3-dideoxy-d-glycero-pentofuranosyl) thymine derivative