JPH06263405A - Hydrogen producing device - Google Patents

Hydrogen producing device

Info

Publication number
JPH06263405A
JPH06263405A JP5055865A JP5586593A JPH06263405A JP H06263405 A JPH06263405 A JP H06263405A JP 5055865 A JP5055865 A JP 5055865A JP 5586593 A JP5586593 A JP 5586593A JP H06263405 A JPH06263405 A JP H06263405A
Authority
JP
Japan
Prior art keywords
hydrogen
cylinder
inner cylinder
annular space
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5055865A
Other languages
Japanese (ja)
Other versions
JP3197098B2 (en
Inventor
Yoshinori Shirasaki
義則 白▲崎▼
Hirokuni Oota
洋州 太田
Hiroshi Uchida
洋 内田
Kennosuke Kuroda
健之助 黒田
Toshiyuki Uchida
敏之 内田
Kazuto Kobayashi
一登 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05586593A priority Critical patent/JP3197098B2/en
Priority to DK94103912T priority patent/DK0615949T3/en
Priority to DE69420604T priority patent/DE69420604T2/en
Priority to EP94103912A priority patent/EP0615949B1/en
Priority to CA002118956A priority patent/CA2118956C/en
Priority to US08/213,802 priority patent/US5639431A/en
Publication of JPH06263405A publication Critical patent/JPH06263405A/en
Application granted granted Critical
Publication of JP3197098B2 publication Critical patent/JP3197098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide an industrial-scale hydrogen producing device capable of obtaining high-purity hydrogen at a low reaction temp. CONSTITUTION:This hydrogen producing device 10 consists of a vertical furnace formed by an inner cylinder 20 and a multiple cylinder, in which the upright intermediate cylinder 18, outer cylinder 16 and outermost cylinder 14 are successively arranged outside the furnace, a suspended combustion burner 44 is furnished to the ceiling wall 42 of the inner cylinder 20, first and second catalyst beds packed with a reforming catalyst A are respectively formed in a second annular space 28 demarcated by the outermost cylinder 14 and the intermediate cylinder 19 and in a third annular space 30 demarcated by the intermediate cylinder 18 and inner cylinder, and a hydrogen-permeable tube 32 is set in the first catalyst bed to form a reaction-separation region. A raw gas introduced from a raw gas inlet 48 is converted to hydrogen in the second and first catalyst beds, and the hydrogen is passed through the tube 32, selectively separated and collected and discharged together with a sweep gas from a hydrogen outlet 52 through a sweep gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素又はメタノール
と水蒸気との混合ガスから水蒸気改質反応により水素を
製造する装置に関し、更に詳細には固体高分子燃料電池
(ポリマー燃料電池)に使用できるような高純度の水素
を低い反応温度で得ることのできる工業的規模の水素製
造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen from a mixed gas of hydrocarbon or methanol and steam by a steam reforming reaction, and more particularly to a solid polymer fuel cell (polymer fuel cell). The present invention relates to an industrial-scale hydrogen production apparatus capable of obtaining such high-purity hydrogen at a low reaction temperature.

【0002】[0002]

【従来の技術】燃料電池、特に固体高分子燃料電池に使
用する水素はCOの含有率が10ppm以下であること
が好ましい。従って、水蒸気改質反応を利用してナフ
サ、天然ガス、都市ガスなどにより得た水素はそのまま
では水素純度が低くて燃料電池には不適当であるから、
従来は水蒸気改質反応で得た水素を更に一酸化炭素変成
器及び水素精製器に通して精製して水素純度を所望の値
にしていた。しかし、高純度水素を製造するための上記
プロセスは製造工程が複雑で、その工程には高温高圧の
装置を必要とし、しかも多量の高温熱エネルギーを消費
するので高純度水素の製造コストが高く、燃料電池用水
素として実用化するには経済的でなかった。
2. Description of the Related Art Hydrogen used in fuel cells, particularly polymer electrolyte fuel cells, preferably has a CO content of 10 ppm or less. Therefore, hydrogen obtained from naphtha, natural gas, city gas, etc. using the steam reforming reaction is low in hydrogen purity as it is and is unsuitable for fuel cells.
In the past, hydrogen obtained by the steam reforming reaction was further purified by passing it through a carbon monoxide shift converter and a hydrogen purifier to bring the hydrogen purity to a desired value. However, the above-mentioned process for producing high-purity hydrogen has complicated production steps, requires high-temperature and high-pressure equipment for the step, and consumes a large amount of high-temperature heat energy, resulting in high production cost of high-purity hydrogen, It was not economical to put it into practical use as hydrogen for fuel cells.

【0003】そこで、特開昭61−17401号公報を
初めとする文献に開示されているように、選択的に水素
を透過する透過膜を使用して高純度の水素を得ようとす
る提案がなされてきた。例えば、前掲の公開公報はCH
4 /H2 Oリホーミング反応において、又は水性ガスの
発生反応において、500〜1,000℃の温度の反応
空間から選択的な水素透過性の仕切り壁を通して生成水
素を連続的に分離する方法及び装置を開示し、高純度の
水素を分離できると説明している。また、前掲公報を含
めて公知文献は例えば図8に原理図を示すような実験室
規模の水素製造装置を開示している。図8の従来の水素
製造装置において、90は反応管、92は改質触媒層、
94は水素透過管であり、炭化水素と水蒸気の混合ガス
は下方の矢印Xから導入され、改質触媒層92で改質さ
れ水素ガスを生成し、水素ガスは水素透過管94を透過
して上方の矢印Yから流出し、水素除去後の改質ガスは
矢印Zから流出する。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 61-17401, a proposal has been made to obtain high-purity hydrogen by using a permeable membrane that selectively permeates hydrogen. It has been done. For example, the above publication is CH
In a 4 / H 2 O reforming reaction or in a water gas generation reaction, a method for continuously separating produced hydrogen from a reaction space at a temperature of 500 to 1,000 ° C. through a selective hydrogen permeable partition wall, and The device is disclosed and described as capable of separating high purity hydrogen. Further, publicly known documents including the above-mentioned publications disclose a laboratory-scale hydrogen production apparatus whose principle is shown in FIG. 8, for example. In the conventional hydrogen generator of FIG. 8, 90 is a reaction tube, 92 is a reforming catalyst layer,
Reference numeral 94 denotes a hydrogen permeation tube. A mixed gas of hydrocarbon and water vapor is introduced from the lower arrow X, reformed by the reforming catalyst layer 92 to generate hydrogen gas, and the hydrogen gas permeates the hydrogen permeation tube 94. The reformed gas from which hydrogen has been removed flows out from an arrow Z, and flows out from an arrow Z.

【0004】[0004]

【発明が解決しようとする課題】しかし、公知文献はか
かる実験室規模の装置を工業的規模の装置にスケールア
ップする手法、手段については殆ど開示していない。換
言すれば、水素透過性の仕切り壁を通して生成水素を連
続的に分離する方法を工業的規模の技術として実際面で
如何に利用するか、あるいはかかる実験室規模の装置を
工業的規模の大型水素製造装置に如何に拡大するかにつ
いては未だ確立されていない技術である。
However, the known document hardly discloses a method or means for scaling up such a laboratory scale device to an industrial scale device. In other words, how to practically use the method of continuously separating the produced hydrogen through the hydrogen-permeable partition wall as an industrial-scale technique, or to use such a laboratory-scale apparatus for industrial-scale large-scale hydrogen It is a technology that has not yet been established as to how to expand to manufacturing equipment.

【0005】ところで、実験室規模の技術を工業的規模
の大型水素製造装置にスケールアップするには種々の技
術的問題を克服し、水素製造装置としての経済性を確立
する必要がある。例えば、図8に示すような改質触媒層
中に水素透過管を備えた反応管を多数並列に並べ、それ
ぞれの入口、出口をヘッダで連結して多管式の反応装置
を構成することも大型化の一つの手法である。しかし、
かかる装置は大型で複雑な構成となるため、装置の操作
性、制御性が悪く熱効率も低い装置となり、かつ建設す
るには多量の材料を必要とし製作性も不良であるため、
コスト高の競争力のない装置となる。同じように、水素
透過性膜を有す分離手段の構成、あるいは反応領域を加
熱する加熱手段の構成をどのようにするかなどのエンジ
ニアリングの問題は装置のスケールアップ上で極めて重
要な問題であるが、具体的な例は示されていない。
By the way, in order to scale up the technology on a laboratory scale to a large-scale hydrogen production apparatus on an industrial scale, it is necessary to overcome various technical problems and establish economical efficiency as a hydrogen production apparatus. For example, as shown in FIG. 8, it is also possible to arrange a plurality of reaction tubes equipped with hydrogen permeation tubes in parallel in a reforming catalyst layer and connect the respective inlets and outlets with a header to form a multitubular reactor. This is one of the methods for increasing the size. But,
Since such a device is large and has a complicated structure, the device has poor operability and controllability, and has low thermal efficiency, and a large amount of material is required for construction, and manufacturability is also poor.
It is a costly and non-competitive device. Similarly, engineering problems such as the structure of the separation means having a hydrogen permeable membrane or the structure of the heating means for heating the reaction region are extremely important problems in scaling up the equipment. However, no specific example is shown.

【0006】一方、燃料電池を実用化するには高純度水
素を低いコストで提供できることが極めて重要であり、
かかる要請に応えて高純度水素を低いコストで製造でき
る工業的規模の水素製造装置を実現することが懸案とな
っていた。上述の問題に鑑み、本発明の目的は選択的な
水素透過性の仕切り壁を透過させて水蒸気改質反応によ
り生成した水素を分離、収集するようにされた実験室規
模の水素製造装置を発展させて、新規な構成の工業的水
素製造装置を提供することである。
On the other hand, in order to put the fuel cell into practical use, it is extremely important that high-purity hydrogen can be provided at a low cost.
In response to such a demand, it has been a pending issue to realize an industrial-scale hydrogen production apparatus capable of producing high-purity hydrogen at a low cost. In view of the above-mentioned problems, an object of the present invention is to develop a laboratory-scale hydrogen production apparatus adapted to permeate a selective hydrogen-permeable partition wall to separate and collect hydrogen produced by a steam reforming reaction. Accordingly, it is an object of the present invention to provide an industrial hydrogen production device having a novel structure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る水素製造装置は (1)選択的な水素透過性の仕切り壁を透過させて水蒸
気改質反応により生成した水素を分離、収集するように
した水素製造装置において、 底部を閉じた直立最外筒と、その内側に直立して順
次多重配設された外筒、中筒及び内筒と、並びに内筒の
天井壁に配設された垂下式燃焼バーナとを備えてなり、 内筒と外筒とは下部端縁同士が連結して閉じた環状
底部を形成し、最外筒と外筒とが画成する第1環状空間
部と内筒内側の内筒中空部とはそれぞれの底部で連通
し、更に外筒と中筒とが画成する第2環状空間部と中筒
と内筒とが画成する第3環状空間部とはそれぞれの底部
で連通するようにしてなり、 第2環状空間部及び第3環状空間部には改質触媒を
充填した第1及び第2触媒層がそれぞれ形成され、更に
第1触媒層には水素透過性の金属膜を無機多孔層上に有
する多数の水素透過管が第3環状空間部の周方向に沿っ
てほぼ垂直に配置され、更に下端が開放されたスイープ
ガス管が水素透過管内に配設されてなり、 第3環状空間部の上部から原料ガスを導入して第2
触媒層を流下させつつ高温下で水素に転化し、続いて底
部から第1触媒層に流入させて更に未反応の原料ガスを
水素に転化し、生成した水素を水素透過管を透過させて
選択的に分離、収集し、水素透過管とスイープガス管と
の間に形成された環状部上部から導入したスイープガス
に透過水素を同伴させてスイープガス管を経由してその
上部からスイープガスと共に流出させるようにしてなる
ことを特徴とする水素製造装置。 (2)前記水素透過性の金属膜は、Pdを含む合金、N
iを含む合金又はVを含む合金のいずれかの無孔質薄膜
であることを特徴とする上記(1)記載の水素製造装
置。 (3)前記内筒中空部には前記燃焼バーナの火炎を包囲
するように筒状の輻射体が配設されてなることを特徴と
する上記(1)又は(2)記載の水素製造装置。 (4)前記輻射体はその壁が多孔質であることを特徴と
する上記(3)記載の水素製造装置。 (5)前記輻射体は内筒輻射体と外筒輻射体とからなる
2重の筒状体であって、燃焼ガスは内筒輻射体内を流下
し、次いで内筒輻射体と外筒輻射体とが画成する環状空
間部を上昇し、更に外筒輻射体と前記内筒とが画成する
環状空間部を流下するようにしてなることを特徴とする
上記(3)記載の水素製造装置。 (6)前記輻射体は筒状体であって、その上部が前記内
筒の天井壁から離隔し、下部が開口部を備え、燃焼ガス
は輻射体内側を流下し、次いでその一部が開口部を経て
前記内筒と輻射体とが画成する環状空間部を上昇し、前
記天井壁と該輻射体上部との隙間を経て再び輻射体内側
を流下して、輻射体内側と外側を循環するようにしてな
ることを特徴とする上記(3)記載の水素製造装置。 (7)上記(1)又は(2)に記載した水素製造装置に
おいて、前記燃焼バーナに代えて柱状の触媒燃焼器を前
記内筒中空部に配設してなることを特徴とする水素製造
装置。 (8)上記(1)又は(2)に記載の水素製造装置にお
いて、前記スイープガス同伴方式の透過水素収集方法に
代えて、水素透過側をポンプにて吸引掃気することによ
って透過水素を収集するようにしてなることを特徴とす
る水素製造装置。である。
In order to achieve the above-mentioned object, the hydrogen producing apparatus according to the present invention comprises: (1) hydrogen produced by a steam reforming reaction by passing through a selective hydrogen-permeable partition wall. In a hydrogen production device configured to separate and collect, an upright outermost cylinder with a bottom closed, an outer cylinder, an inner cylinder, and an inner cylinder, which are vertically arranged inside the outermost outer cylinder in sequence, and a ceiling wall of the inner cylinder. The inner cylinder and the outer cylinder form a closed annular bottom by connecting the lower ends of the inner cylinder and the outer cylinder, and the outermost cylinder and the outer cylinder are defined by the first cylinder and the outer cylinder. The first annular space portion and the inner cylinder hollow portion inside the inner cylinder communicate with each other at their bottom portions, and the second annular space portion that defines the outer cylinder and the middle cylinder and the second cylinder space that defines the middle cylinder and the inner cylinder. The three annular spaces are communicated with each other at their bottoms, and the second annular space and the third annular space are modified touchers. First and second catalyst layers filled with a medium are respectively formed. Further, in the first catalyst layer, a large number of hydrogen permeable tubes having a hydrogen permeable metal film on an inorganic porous layer are provided in the circumferential direction of the third annular space. A substantially vertical sweep gas pipe having an open lower end is disposed inside the hydrogen permeation pipe, and the raw material gas is introduced from the upper part of the third annular space portion to
While flowing down the catalyst layer, it is converted to hydrogen at high temperature, then it is flown into the first catalyst layer from the bottom to further convert unreacted raw material gas to hydrogen, and the generated hydrogen is permeated through the hydrogen permeation tube to be selected. Gas is separated and collected, and the permeated hydrogen is entrained in the sweep gas introduced from the upper part of the annular part formed between the hydrogen permeation pipe and the sweep gas pipe, and flows out together with the sweep gas from the upper part through the sweep gas pipe. A hydrogen production device characterized in that (2) The hydrogen-permeable metal film is an alloy containing Pd, N
The hydrogen production apparatus according to (1) above, which is a non-porous thin film of either an alloy containing i or an alloy containing V. (3) The hydrogen generator according to the above (1) or (2), wherein a cylindrical radiator is arranged in the hollow portion of the inner cylinder so as to surround the flame of the combustion burner. (4) The hydrogen generating device according to (3), wherein the radiator has a porous wall. (5) The radiant body is a double cylindrical body composed of an inner cylinder radiating body and an outer cylinder radiating body, and combustion gas flows down in the inner cylinder radiating body, and then the inner cylinder radiating body and the outer cylinder radiating body. The hydrogen producing device according to (3) above, wherein the annular space defined by and rises, and the annular space defined by the outer cylinder radiator and the inner cylinder flows down. . (6) The radiator is a tubular body, the upper portion of which is separated from the ceiling wall of the inner cylinder, the lower portion of which is provided with an opening, the combustion gas flows down inside the radiator, and then a portion of which is opened. Through the inner cylinder and the radiator, and rises up in the annular space, and again flows down inside the radiator through the gap between the ceiling wall and the upper part of the radiator, and circulates inside and outside the radiator. The hydrogen production apparatus as described in (3) above. (7) In the hydrogen generator described in (1) or (2) above, a columnar catalytic combustor is provided in the inner cylinder hollow portion instead of the combustion burner. . (8) In the hydrogen production device according to (1) or (2) above, instead of the permeated hydrogen collection method of the sweep gas entrainment method, permeated hydrogen is collected by sucking and scavenging the hydrogen permeation side with a pump. A hydrogen production device characterized by the above-mentioned features. Is.

【0008】[0008]

【作用】本発明に係る水素製造装置に導入する原料ガス
は天然ガス、ナフサ、都市ガスなどの軽質炭化水素及び
メタノールなどのアルコールに水蒸気を混合したもので
ある。また、本発明で使用する改質触媒は上述の原料ガ
スから水素を水蒸気改質方法により製造する場合に従来
から使用してきたいずれの触媒でも使用することができ
る。本発明の水素製造装置は内筒で竪型の火炉を形成
し、その外側に順次直立の中筒、外筒及び最外筒の筒状
体を配設した多重筒体で構成されている。更に、第2環
状空間部及び第3環状空間部に改質触媒を充填してそれ
ぞれ第1及び第2触媒層を形成し、第1触媒層に水素透
過管を配設して反応/分離領域を形成している。好適に
は、それぞれの筒状体は円筒体であるのがよい。このよ
うにすると火炉を中央部に配置した同心多重円筒体の構
成により、半径方向の熱流束分布を均一にしやすく、か
つ水素透過管の耐熱温度を超過するようなホットスポッ
トの発生が防止できる。
The raw material gas introduced into the hydrogen production apparatus according to the present invention is a mixture of light hydrocarbons such as natural gas, naphtha and city gas and alcohol such as methanol with water vapor. Further, as the reforming catalyst used in the present invention, any catalyst which has been conventionally used when hydrogen is produced from the above-mentioned raw material gas by the steam reforming method can be used. The hydrogen production device of the present invention is composed of a multi-cylinder body in which a vertical furnace is formed by an inner cylinder, and on the outer side thereof, a cylindrical body of an upright middle cylinder, an outer cylinder and an outermost cylinder is sequentially arranged. Furthermore, the second annular space and the third annular space are filled with a reforming catalyst to form first and second catalyst layers, respectively, and a hydrogen permeation pipe is arranged in the first catalyst layer to provide a reaction / separation region. Is formed. Suitably, each tubular body is a cylindrical body. In this way, the structure of the concentric multi-cylinder body in which the furnace is arranged in the central portion makes it easy to make the heat flux distribution in the radial direction uniform and prevent the occurrence of hot spots that exceed the heat resistant temperature of the hydrogen permeation tube.

【0009】第2触媒層では原料ガスが加熱されるに伴
って炭化水素の改質反応が進行し、該触媒層の出口近傍
で温度、水素分圧とも最高値を示した後、第1触媒に流
入し、水素透過管で水素が抽出されながら更に改質反応
が進行するため、原料ガス中の水素分圧は第1触媒層の
出口に向って大きく低下する。従って、水素分圧は第1
触媒層の方が全体に低く、また内筒が中央部の火炉壁と
なっていることから、温度については第2触媒層の内筒
近傍は局部的に第1触媒層よりも高温になる。このよう
に、両触媒層では温度、水素分圧のほかガス組成が異な
るため、両触媒層個別の使用条件下で活性、耐久性とも
実用に耐える触媒を選定することが好ましいが、現実に
は両触媒層に使用可能な触媒が開発されており、第1触
媒と第2触媒は同じものとしてもよい。
In the second catalyst layer, the reforming reaction of hydrocarbon proceeds as the raw material gas is heated, and the temperature and the hydrogen partial pressure show the highest values in the vicinity of the outlet of the catalyst layer. And the reforming reaction proceeds further while hydrogen is extracted by the hydrogen permeation pipe, and the hydrogen partial pressure in the raw material gas greatly decreases toward the outlet of the first catalyst layer. Therefore, the hydrogen partial pressure is the first
Since the catalyst layer is lower overall, and the inner cylinder is the furnace wall in the central portion, the temperature is locally higher in the vicinity of the inner cylinder of the second catalyst layer than in the first catalyst layer. As described above, since the temperature and the hydrogen partial pressure are different in both catalyst layers, it is preferable to select a catalyst that is practical and durable in terms of both activity and durability under the usage conditions of both catalyst layers. A catalyst that can be used for both catalyst layers has been developed, and the first catalyst and the second catalyst may be the same.

【0010】原料ガス(プロセスフィードガス)を第3
環状空間部の上部から導入して第2触媒層を流下させつ
つ高温下で水素に転化し、続いて底部から第1触媒層に
流入させて更に未反応の原料ガスを水素に転化し、生成
した水素を水素透過管を透過させて選択的に分離、収集
し、水素透過管とスイープガス管との間に形成された環
状部上部から導入したスイープガスに透過水素を同伴さ
せてスイープガス管を経由してその上部の水素出口から
スイープガスと共に流出させる。プロセスフィードガス
は火炉を構成する内筒の直ぐ内側に設けられた第3環状
空間部の高温に加熱された第2触媒層を通過するので、
高い転化率で水素に改質され、改質された水素は第2環
状空間部で選択的に水素透過管を介して分離、収集さ
れ、かつ未反応のプロセスフィードガスは更に第1触媒
層で改質されるので、装置全体での転化率が大幅に上昇
する。
Third source gas (process feed gas)
It is introduced from the upper part of the annular space and converted into hydrogen at a high temperature while flowing down the second catalyst layer, and then it is introduced into the first catalyst layer from the bottom part to further convert unreacted raw material gas into hydrogen and generated. The separated hydrogen is permeated through the hydrogen permeation pipe to be selectively separated and collected, and the permeated hydrogen is entrained in the sweep gas introduced from the upper part of the annular portion formed between the hydrogen permeation pipe and the sweep gas pipe to sweep gas pipe. And the hydrogen gas at the upper part of the gas flow out together with the sweep gas. Since the process feed gas passes through the second catalyst layer heated to a high temperature in the third annular space portion provided immediately inside the inner cylinder forming the furnace,
The hydrogen is reformed into hydrogen at a high conversion rate, the reformed hydrogen is selectively separated and collected through the hydrogen permeation pipe in the second annular space, and the unreacted process feed gas is further accumulated in the first catalyst layer. Since it is reformed, the conversion rate of the entire device is significantly increased.

【0011】吸熱反応である水蒸気改質反応を維持する
ために必要な熱は内筒の天井壁に取り付けられた垂下式
燃焼バーナによって供給される。垂下式燃焼バーナは火
炎が下向きになるような形式のバーナであって、従来か
ら使用されてきたものを使用できる。燃焼バーナを垂下
式にして火炉の頂部に取り付けることにより、火炎が上
向きになる直立型燃焼バーナを火炉下部に取り付けた場
合に比べて燃焼バーナの汚れが少なく、従って燃焼バー
ナの清掃に要する入手が軽減され、しかも燃焼バーナの
点検保守自体も容易になる。また、直立型燃焼バーナの
場合には必要となる燃焼バーナの保守点検用空間を火炉
の床下に設ける必要がないので、火炉の高さをその分低
くすることが可能になり、これによって水素製造装置の
コストをそれだけ軽減できる。燃焼ガスは内筒中空部を
流下してその底部から第1環状空間部に入り、上昇しつ
つ第1触媒層を加熱して第1環状空間部の上部から排出
される。
The heat required to maintain the steam reforming reaction, which is an endothermic reaction, is supplied by a hanging combustion burner attached to the ceiling wall of the inner cylinder. The drooping combustion burner is a type of burner in which the flame is directed downward, and the conventionally used burner can be used. By attaching the combustion burner to the top of the furnace in a hanging manner, the combustion burner is less dirty than in the case of installing the upright combustion burner with the flame facing upward at the bottom of the furnace, and therefore the cleaning burner needs to be obtained for cleaning. In addition, the combustion burner can be checked and maintained easily. Also, in the case of an upright combustion burner, it is not necessary to provide a space for maintenance and inspection of the combustion burner, which is required under the floor of the furnace, so it is possible to lower the height of the furnace by that amount. The cost of the device can be reduced accordingly. The combustion gas flows down through the hollow portion of the inner cylinder, enters the first annular space portion from the bottom thereof, and ascends, heats the first catalyst layer and is discharged from the upper portion of the first annular space portion.

【0012】水素透過性の金属膜を無機多孔層上に備え
た水素透過管は水素のみを選択的に透過させる機能を有
し、当該水素透過管を反応部に内臓する反応装置は所謂
メンブレンリアクターと称されるものであって、概念は
既知の技術である。炭化水素の例として、メタンを取り
上げて水素透過管の作用を説明する。メタンの改質反応
は500℃から1,000℃の範囲の反応温度で次の式
に従って進行し化学平衡に達する。
A hydrogen permeation tube provided with a hydrogen-permeable metal membrane on an inorganic porous layer has a function of selectively permeating only hydrogen, and a reactor incorporating the hydrogen permeation tube in a reaction section is a so-called membrane reactor. The concept is a known technique. As an example of hydrocarbon, methane will be taken to explain the action of the hydrogen permeation tube. The methane reforming reaction proceeds at a reaction temperature in the range of 500 ° C. to 1,000 ° C. according to the following equation to reach chemical equilibrium.

【0013】[0013]

【化1】 [Chemical 1]

【0014】ここで、生成物から生成水素を水素透過管
により分離して生成物中の水素分圧を低下させると、上
記式において、更に反応は右側に進み、結果的に同じ反
応温度での転化率が大きくなる。換言すれば、従来のメ
タン改質法では反応域の温度を約800℃にすることが
必要であったが、水素透過管を使用することにより本発
明に係る水素製造装置では同じ値の転化率を500〜6
00℃の温度で達成することができる。なお、水素透過
管の水素透過性の金属膜の単位面積あたりの水素透過量
H は非透過側の水素分圧の平方根(Ph)1/2 と透過
側の水素分圧の平方根(Pl) 1/2 との差に比例する。
すなわち、QH =k{(Ph)1/2 −(Pl)1/2 }で
ある。
Here, hydrogen produced from the product is passed through a hydrogen permeation tube.
To lower the hydrogen partial pressure in the product,
In the notation, the reaction goes further to the right, resulting in the same reaction.
The conversion rate at temperature increases. In other words, conventional
In the tan reforming method, the temperature in the reaction zone can be set to about 800 ° C.
Although it was necessary, the
In the hydrogen production device according to Ming, the conversion rate of the same value is 500 to 6
It can be achieved at a temperature of 00 ° C. In addition, hydrogen permeation
Hydrogen permeation amount per unit area of hydrogen permeable metal membrane of tube
QHIs the square root of the partial pressure of hydrogen on the non-permeate side (Ph)1/2And transparent
Square root of partial hydrogen pressure (Pl) 1/2Proportional to the difference between and.
That is, QH= K {(Ph)1/2-(Pl)1/2}so
is there.

【0015】以上のように、水素透過管で水素を収集し
て化学反応を上記式において右側に移行させることがで
きるので、改質温度が150〜200℃低下する。それ
により、原料ガスを加熱する熱量が節減され、熱効率が
大幅に改善できる。また、反応温度が低いので、装置に
は耐熱性の高くない廉価な材料を使用できる。従って装
置のコストを軽減できる。また、本発明に係る水素製造
装置では第2触媒層では水素を生成するだけで水素透過
管により分離、収集しないので、第2触媒層出口、すな
わち、第1触媒層入口で生成ガス中の水素分圧が高くな
る。従って、第1触媒層での水素透過管による水素の分
離、収集のための物質移動推進力が大きくなり、分離効
率が向上し透過面積を減少することが可能となる。
As described above, since hydrogen can be collected by the hydrogen permeation tube and the chemical reaction can be shifted to the right side in the above equation, the reforming temperature is lowered by 150 to 200 ° C. As a result, the amount of heat for heating the raw material gas is reduced, and the thermal efficiency can be greatly improved. Further, since the reaction temperature is low, inexpensive materials having low heat resistance can be used for the apparatus. Therefore, the cost of the device can be reduced. Further, in the hydrogen production apparatus according to the present invention, only hydrogen is generated in the second catalyst layer and is not separated and collected by the hydrogen permeation pipe, so that hydrogen in the generated gas is discharged at the second catalyst layer outlet, that is, the first catalyst layer inlet. High partial pressure. Therefore, the mass transfer driving force for separating and collecting hydrogen by the hydrogen permeation tube in the first catalyst layer is increased, the separation efficiency is improved, and the permeation area can be reduced.

【0016】スイープガスは水素透過管とスイープガス
管との間に形成された空間部の上部から導入されて、触
媒層を流れる改質ガスと向流に流れる。従って、触媒層
出口端近傍では生成した水素を同伴して大幅に水素分圧
を低下させるので、スイープガスの導入は、改質触媒層
全体での転化率を上げる効果がある。また、水素透過管
内のスイープガスと触媒層内改質ガスの向流物質移動で
生成水素の回収率を高めることができる。本発明の水素
製造装置において、使用するスイープガスとしては例え
ば水蒸気のほか、窒素、ヘリウムなどのイナートガスを
あげることができる。
The sweep gas is introduced from the upper part of the space formed between the hydrogen permeation pipe and the sweep gas pipe, and flows countercurrently with the reformed gas flowing through the catalyst layer. Therefore, in the vicinity of the catalyst layer outlet end, the generated hydrogen is entrained and the hydrogen partial pressure is greatly reduced, so that the introduction of the sweep gas has the effect of increasing the conversion rate in the entire reforming catalyst layer. In addition, the recovery rate of generated hydrogen can be increased by countercurrent mass transfer of the sweep gas in the hydrogen permeation tube and the reformed gas in the catalyst layer. In the hydrogen production apparatus of the present invention, examples of the sweep gas used include steam, and inert gases such as nitrogen and helium.

【0017】前述したように、水素透過管を透過する水
素の量を増大させるには非透過側の水素分圧と透過側の
水素分圧の差を大きくする必要があり、このため透過側
の水素分圧を小さくするためにスイープガスを透過側に
流通させることが有効であるが、このほかに透過側の水
素分圧を下げる手段として透過側をポンプによって吸引
する手段を採用することも有効である。
As described above, in order to increase the amount of hydrogen that permeates the hydrogen permeation tube, it is necessary to increase the difference between the hydrogen partial pressure on the non-permeation side and the hydrogen partial pressure on the permeation side. It is effective to let the sweep gas flow to the permeate side in order to reduce the hydrogen partial pressure, but it is also effective to use a pump to suck the permeate side as a means to reduce the hydrogen partial pressure on the permeate side. Is.

【0018】水素透過管の水素透過性の金属膜は水素の
みを選択的に透過させるので、水素透過管により分離さ
れた水素の純度は極めて高く、前述の固体高分子燃料電
池用の水素として最適である。
Since the hydrogen permeable metal membrane of the hydrogen permeation tube selectively permeates only hydrogen, the purity of hydrogen separated by the hydrogen permeation tube is extremely high, and it is most suitable as hydrogen for the polymer electrolyte fuel cell described above. Is.

【0019】水素透過性の金属膜はその厚さが5〜50
μmであって、無機多孔層上に形成されて選択的に水素
を透過させることができるものである。その下の無機多
孔層は水素透過性の金属膜を保持するための担体であっ
て、厚さが0.1mmから1mmの範囲で多孔性のステ
ンレス鋼不織布、セラミックス、ガラスなどから形成さ
れる。更に、その内側には構造強度部材として単層もし
くは複数層からなる金網が配置されている。水素透過管
の寸法は特に制約はないが、経済的見地から径が20m
m程度の管状のものが好適である。
The hydrogen-permeable metal film has a thickness of 5 to 50.
It is μm, and it is formed on the inorganic porous layer and can selectively permeate hydrogen. The inorganic porous layer thereunder is a carrier for holding the hydrogen-permeable metal film, and is formed of a porous stainless steel nonwoven fabric, ceramics, glass or the like having a thickness of 0.1 mm to 1 mm. Further, a wire net composed of a single layer or a plurality of layers is arranged inside the structure as a structural strength member. There is no particular restriction on the size of the hydrogen permeation tube, but the diameter is 20 m from an economic point of view.
A tubular shape of about m is suitable.

【0020】本発明の望ましい実施態様では、水素透過
性の金属膜はPdを含む合金又はVやNiを含む合金の
いずれかの無孔質層であることが好ましい。Pdを含む
合金にはPd・Ag合金、Pd・Y合金、Pd・Ag・
Au合金などをあげることができ、Vを含む合金にはV
・Ni、V・Ni・Coなどをあげることができ、又N
iを含む合金ではLaNi5 などをあげることができ
る。また、無孔質Pd含有層の製作方法は例えば米国特
許第3155467号、同第2773561号各明細書
に開示されている。
In a preferred embodiment of the present invention, the hydrogen-permeable metal film is preferably a non-porous layer made of an alloy containing Pd or an alloy containing V or Ni. Alloys containing Pd include Pd / Ag alloy, Pd / Y alloy, Pd / Ag /
Au alloys and the like can be mentioned. For alloys containing V, V
・ Ni, V ・ Ni ・ Co, etc. can be mentioned, and N
Examples of alloys containing i include LaNi 5 . A method for producing a non-porous Pd-containing layer is disclosed in, for example, US Pat. Nos. 3,155,467 and 2,773,561.

【0021】本発明の望ましい実施態様としては、内筒
中空部に前記燃焼バーナの火炎を包囲するように筒状の
輻射体が配設することがあげられる。輻射体を設けて、
その放射熱により第3環状空間部に形成された改質触媒
層を加熱昇温することにより、所要のヒートフラックス
( Heat Flux )を与えて、水素透過管にとって好ましく
ない局部加熱を防止しつつ、改質触媒層の温度を均一に
維持することが可能となる。なお、水素透過管の温度を
800℃以上に加熱することは水素透過管の耐熱性から
見て好ましくない。
As a preferred embodiment of the present invention, a cylindrical radiator is provided in the hollow portion of the inner cylinder so as to surround the flame of the combustion burner. By providing a radiator,
By heating and raising the temperature of the reforming catalyst layer formed in the third annular space portion by the radiant heat, a required heat flux (Heat Flux) is given to prevent local heating unfavorable for the hydrogen permeation tube, It becomes possible to maintain the temperature of the reforming catalyst layer uniformly. It should be noted that heating the temperature of the hydrogen permeation tube to 800 ° C. or higher is not preferable from the viewpoint of heat resistance of the hydrogen permeation tube.

【0022】本発明の望ましい実施態様では、輻射体の
例として輻射体の壁を多孔質とすることである。このよ
うにすると輻射体の多孔性壁を燃焼ガスが通過しながら
輻射体を効率よく加熱するからである。
In a preferred embodiment of the present invention, an example of the radiator is that the wall of the radiator is porous. This is because the combustion gas efficiently heats the radiator while the combustion gas passes through the porous wall of the radiator.

【0023】本発明の望ましい実施態様では、輻射体の
別の例として輻射体を内筒輻射体と外筒輻射体とからな
る2重の筒状体にして、燃焼ガスが内筒輻射体内を流下
し、次いで内筒輻射体と外筒輻射体とが画成する環状空
間部を上昇し、更に外筒輻射体と前記内筒とが画成する
環状空間部を流下するようにして輻射体を効率よく加熱
するようにすることである。
In a preferred embodiment of the present invention, as another example of the radiator, the radiator is a double cylindrical body composed of an inner-cylinder radiator and an outer-cylinder radiator, and combustion gas is introduced into the inner-cylinder radiator. The radiator is made to flow down, then rise in an annular space defined by the inner cylinder radiator and the outer cylinder radiator, and further flow down in the annular space defined by the outer cylinder radiator and the inner cylinder. Is to heat efficiently.

【0024】本発明の望ましい実施態様では、輻射体の
更に別の例として輻射体を筒状体として、その上部が前
記内筒の天井壁から離隔し、下部に開口部を備え、燃焼
ガスが輻射体内側を流下し、次いでその一部が開口部を
経て前記内筒と輻射体とが画成する環状空間部を上昇
し、前記天井壁と該輻射体上部との間隙を経て再び輻射
体内側を流下して、輻射体内側と外側を循環するように
して輻射体を効率よく加熱するようにすることである。
In a preferred embodiment of the present invention, as another example of the radiator, the radiator is a cylindrical body, the upper part of which is separated from the ceiling wall of the inner cylinder, and the lower part is provided with an opening portion. It flows down inside the radiant body, and then a part of it rises up through the annular space defined by the inner cylinder and the radiant body through the opening, and again through the gap between the ceiling wall and the upper part of the radiant body. The inside of the radiator is made to flow down to circulate inside and outside, so that the radiator is efficiently heated.

【0025】本発明の改変例として、上述の水素製造装
置において、燃焼バーナに代えて柱状の触媒燃焼器を内
筒内側に配設するようにした装置があげられる。触媒燃
焼器が燃焼バーナと輻射体とを兼ねたものになり、改質
触媒層を均一に加熱することができる。
As a modified example of the present invention, in the above-mentioned hydrogen production apparatus, there is an apparatus in which a columnar catalytic combustor is arranged inside the inner cylinder instead of the combustion burner. The catalytic combustor serves as both the combustion burner and the radiator, so that the reforming catalyst layer can be heated uniformly.

【0026】[0026]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。図1は本発明に係る水素
製造装置の一実施例の図解的断面図、図2は図1の水素
製造装置の矢視I−Iでの概略横断面図である。水素製
造装置10は底部12を閉じた最外筒14と、その内側
に順次同心状に配設された外筒16、中筒18及び内筒
20とを備えている。最外筒14、外筒16、中筒18
及び内筒20とも直立円筒形をなしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail based on embodiments with reference to the accompanying drawings. FIG. 1 is a schematic sectional view of an embodiment of the hydrogen producing apparatus according to the present invention, and FIG. 2 is a schematic transverse sectional view taken along the line I-I of the hydrogen producing apparatus of FIG. The hydrogen production apparatus 10 includes an outermost cylinder 14 with a bottom 12 closed, and an outer cylinder 16, a middle cylinder 18, and an inner cylinder 20 that are sequentially arranged concentrically inside the outermost cylinder 14. Outermost cylinder 14, outer cylinder 16, middle cylinder 18
Also, the inner cylinder 20 has an upright cylindrical shape.

【0027】内筒20と外筒16とは下部端縁同士が連
結して閉じた環状底部22を形成する。最外筒14と外
筒16とはその筒壁間に第1環状空間部24を画成し、
第1環状空間部24と内筒20内側の内筒中空部26と
は、それぞれの底部で連通している。内筒中空部26、
最外筒14の底部12と環状底部22との間の空間、更
に第1環状空間部24からなる連続空間部は燃焼ガスの
流路を形成している。更に、外筒16と中筒18とは、
その筒壁間に第2環状空間部28を画成し、中筒18と
内筒20とはその間に第3環状空間部30を画成してい
る。また、第2環状空間部28と第3環状空間部30と
はそれぞれの底部で連通している。最外筒14壁及び最
外筒14の底部壁12はそれぞれ耐火煉瓦で構築されて
いる。
The inner cylinder 20 and the outer cylinder 16 form a closed annular bottom portion 22 with their lower edges connected to each other. The outermost cylinder 14 and the outer cylinder 16 define a first annular space portion 24 between the cylinder walls,
The first annular space portion 24 and the inner cylinder hollow portion 26 inside the inner cylinder 20 communicate with each other at their bottom portions. Inner cylinder hollow portion 26,
A space between the bottom portion 12 of the outermost cylinder 14 and the annular bottom portion 22, and a continuous space portion including the first annular space portion 24 form a flow path for combustion gas. Furthermore, the outer cylinder 16 and the middle cylinder 18 are
A second annular space portion 28 is defined between the cylinder walls, and a third annular space portion 30 is defined between the middle cylinder 18 and the inner cylinder 20. Further, the second annular space portion 28 and the third annular space portion 30 communicate with each other at their bottoms. The outermost cylinder 14 wall and the bottom wall 12 of the outermost cylinder 14 are each constructed of refractory bricks.

【0028】第2環状空間部28及び第3環状空間部3
0にはそれぞれ改質触媒Aを充填した第1及び第2触媒
層28、30(便宜上、それぞれ第2及び第3環状空間
部と同じ符号を付す)がそれぞれ形成されている。更
に、第1触媒層28には図2に示すように、水素透過性
の金属膜を無機多孔層上に備えた円筒形の水素透過管3
2が第2環状空間部28の周方向に多数垂直に配置され
ている。水素透過管32の中には更にステンレス鋼製の
円筒形スイープガス管34が同心状に配設されている。
The second annular space portion 28 and the third annular space portion 3
At 0, first and second catalyst layers 28, 30 (for convenience, respectively, the same reference numerals as the second and third annular spaces, respectively) filled with the reforming catalyst A are formed. Further, as shown in FIG. 2, the first catalyst layer 28 has a cylindrical hydrogen permeable tube 3 having a hydrogen permeable metal membrane on an inorganic porous layer.
Many 2 are arranged vertically in the circumferential direction of the second annular space portion 28. A cylindrical sweep gas pipe 34 made of stainless steel is concentrically arranged in the hydrogen permeation pipe 32.

【0029】図3に示すように、水素透過管32は底部
が閉塞された外径約20mmの管状体であって、内側に
支持部材としてステンレス鋼製のメッシュ36を、その
上に水素透過性の金属膜の担体としてのステンレス鋼不
織布からなる無機多孔層38を備え、更にその上に水素
透過性の金属膜として無孔質Pd含有膜40が被覆され
ている。図1において、内筒中空部26の頂部を閉塞す
る天井壁42には垂下式燃焼バーナ44が下向きに取り
付けられている。該燃焼バーナ44には燃料ガス管45
と空気取り入れ管47とが接続されている。
As shown in FIG. 3, the hydrogen permeation tube 32 is a tubular body having an outer diameter of about 20 mm with the bottom closed, and a mesh 36 made of stainless steel as a supporting member is provided on the inside thereof, and hydrogen permeation is provided thereon. The inorganic porous layer 38 made of stainless steel non-woven fabric as a carrier for the metal film is provided, and a non-porous Pd-containing film 40 is further coated thereon as a hydrogen permeable metal film. In FIG. 1, a hanging combustion burner 44 is attached downward to a ceiling wall 42 that closes the top of the inner cylinder hollow portion 26. The combustion burner 44 has a fuel gas pipe 45.
And the air intake pipe 47 are connected to each other.

【0030】次に、水素製造装置10のプロセス説明を
図1及び図2を参照して行う。燃焼バーナ44は燃料ガ
ス管45を介して導入された燃料ガスを空気取り入れ管
47を介して取り入れた空気によって燃焼して、水蒸気
改質反応に必要な熱エネルギを第1及び第2触媒層28
及び30に供給して所定の温度に維持する。燃焼ガスは
内筒中空部26、最外筒14の底部12と環状連結部2
2とが画成する空間、次いで第1環状空間部24を経て
燃焼ガス出口46から外部に出る。
Next, the process of the hydrogen producing apparatus 10 will be described with reference to FIGS. 1 and 2. The combustion burner 44 combusts the fuel gas introduced through the fuel gas pipe 45 with the air taken in through the air intake pipe 47 to generate heat energy necessary for the steam reforming reaction in the first and second catalyst layers 28.
And 30 to maintain a predetermined temperature. Combustion gas flows through the hollow portion 26 of the inner cylinder, the bottom portion 12 of the outermost cylinder 14, and the annular connecting portion 2.
2 and the space defined by 2 and the first annular space 24, and then exits from the combustion gas outlet 46.

【0031】軽質炭化水素又はメタノールガスと水蒸気
との混合ガスからなるプロセスフィードガスは、第3環
状空間部30の上部に設けられた原料ガス入口48から
導入されて第3環状空間部30の第2触媒層30を流入
しつつ高温の下で改質されて水素に転化し、更に底部か
ら第2環状空間部28の第1触媒層28に流入して、未
反応のプロセスフィードガスが更に水素に転化する。生
成水素は第1触媒層28に設けられた水素透過管32に
より選択的に収集されてその上部に設けられた水素出口
52からスイープガスと共に流出する。
The process feed gas consisting of light hydrocarbons or a mixed gas of methanol gas and water vapor is introduced from the raw material gas inlet 48 provided at the upper part of the third annular space portion 30 and is supplied to the first annular space portion 30. While flowing into the second catalyst layer 30, it is reformed at a high temperature and converted into hydrogen, and further flows into the first catalyst layer 28 of the second annular space portion 28 from the bottom, and the unreacted process feed gas is further converted to hydrogen. Convert to. The produced hydrogen is selectively collected by the hydrogen permeation pipe 32 provided in the first catalyst layer 28 and flows out together with the sweep gas from the hydrogen outlet 52 provided at the upper part thereof.

【0032】スイープガスは装置上部のスイープガス入
口50から送入され、スイープガス管34と水素透過管
32との間の環状空間部33を流下して水素をスイープ
しながら下端開口からスイープガス管34内に流入し、
生成水素を同伴して上昇し水素出口52から流出する。
スイープガスをして水素を押し流すようにして同伴流出
させることにより、水素透過管32の透過側の水素分圧
が低く維持される。スイープガスとしては例えば水蒸
気、イナートガスが使用される。一方、第1触媒層28
を通過した未反応の原料ガス、生成したCO、CO2
スは、オフガス出口54より系外に流出する。
The sweep gas is fed from the sweep gas inlet 50 at the upper part of the apparatus and flows down through the annular space 33 between the sweep gas pipe 34 and the hydrogen permeation pipe 32 to sweep hydrogen and sweep from the lower end opening. Flows into 34,
The produced hydrogen is accompanied and rises and flows out from the hydrogen outlet 52.
By causing the sweep gas to flow along with the hydrogen by pushing it away, the hydrogen partial pressure on the permeate side of the hydrogen permeation tube 32 is kept low. As the sweep gas, for example, steam or inert gas is used. On the other hand, the first catalyst layer 28
The unreacted raw material gas that has passed through and the generated CO and CO 2 gas flow out of the system through the offgas outlet 54.

【0033】この実施例では、プロセスフィードガスは
火炉を構成する内筒20の直ぐ内側に設けられた高温の
加熱触媒層30を通過するので、高い転化率で水素に改
質される。改質された水素は第2環状空間部28で選択
的に水素透過管を介して収集され、かつ未反応のプロセ
スフィードガスは更に第2環状空間部28の改質触媒層
28で改質されるので、装置全体での転化率が大幅に上
昇する。
In this embodiment, the process feed gas passes through the high-temperature heated catalyst layer 30 provided immediately inside the inner cylinder 20 of the furnace, so that it is reformed into hydrogen at a high conversion rate. The reformed hydrogen is selectively collected in the second annular space portion 28 through the hydrogen permeation pipe, and the unreacted process feed gas is further reformed in the reforming catalyst layer 28 of the second annular space portion 28. As a result, the conversion rate of the entire device is significantly increased.

【0034】次に、図4〜図6を参照して別の実施例を
説明する。図4に示す水素製造装置60の内筒中空部2
6には筒状の輻射体62が垂下式燃焼バーナ44の火炎
を包囲するように配設されている。輻射体62は多孔質
の壁で形成された円筒体であって、燃焼ガスは燃焼バー
ナ44から多孔質の壁を貫通して内筒中空部26に流入
し、その過程において輻射体62を加熱して全体がほぼ
均一な温度になるようにする。加熱された輻射体62は
ほぼ均一なヒートフラックスで以て改質触媒層30を均
一に加熱する。
Next, another embodiment will be described with reference to FIGS. The inner cylinder hollow portion 2 of the hydrogen production device 60 shown in FIG.
A tubular radiator 62 is arranged at 6 so as to surround the flame of the hanging combustion burner 44. The radiant body 62 is a cylindrical body formed of a porous wall, and the combustion gas penetrates the porous wall from the combustion burner 44 and flows into the inner cylinder hollow portion 26, where the radiant body 62 is heated. The temperature of the whole is almost uniform. The heated radiator 62 uniformly heats the reforming catalyst layer 30 with a substantially uniform heat flux.

【0035】図5に示す水素製造装置60は図4に示す
輻射体62の改変例を示すもので、図5に示す輻射体6
2は二重円筒状になっていて内筒輻射体64と外筒輻射
体66とから構成されている。内筒輻射体64は、内筒
20の天井壁42に当接し、下部で最外筒14の底部1
2に対して間隙を有するように配置されている。外筒輻
射体66は、下部で底部12に当接し、上部で天井壁4
2から離隔している。燃焼ガスは、燃焼バーナ44から
内筒輻射体64内を流下し、次いで内筒輻射体64と外
筒輻射体66との間の環状空間部67を上昇して外筒輻
射体66の上部から内筒中空部26に流入する。その過
程において、燃焼ガスは内筒輻射体64及び外筒輻射体
66を加熱して全体がほぼ均一な温度になるようにす
る。加熱された内筒輻射体64及び外筒輻射体66はほ
ぼ均一なヒートフラックスで以て改質触媒層30を均一
に加熱する。
The hydrogen producing apparatus 60 shown in FIG. 5 shows a modification of the radiator 62 shown in FIG. 4, and the radiator 6 shown in FIG.
The reference numeral 2 is a double cylinder and is composed of an inner tube radiator 64 and an outer tube radiator 66. The inner cylinder radiator 64 is in contact with the ceiling wall 42 of the inner cylinder 20, and the bottom portion 1 of the outermost cylinder 14 is in the lower part.
2 is arranged so as to have a gap. The outer tube radiator 66 abuts the bottom portion 12 at the lower portion and the ceiling wall 4 at the upper portion.
Separated from 2. The combustion gas flows down from the combustion burner 44 into the inner cylinder radiator 64, then rises in the annular space 67 between the inner cylinder radiator 64 and the outer cylinder radiator 66, and rises from the upper part of the outer cylinder radiator 66. It flows into the inner cylinder hollow portion 26. In the process, the combustion gas heats the inner-cylinder radiator 64 and the outer-cylinder radiator 66 so that the temperature of the whole becomes almost uniform. The heated inner tube radiator 64 and outer tube radiator 66 heat the reforming catalyst layer 30 uniformly with a substantially uniform heat flux.

【0036】図6に示す水素製造装置60も図4に示す
輻射体62の別の改変例を示すもので、図6に示す輻射
体62は耐火煉瓦からなる円筒状の輻射体であって、輻
射体62の上部は水素製造装置60の天井壁42との間
に間隙68を有し、かつ輻射体62の下部には開口部7
0が設けてある。以上の構成により、燃焼ガスは垂下式
燃焼バーナ44から輻射体62内を流下して下部の開口
部70から流出し、一部が内筒20と輻射体62との間
の環状空間部72を上昇して間隙68を介して再び輻射
体62内側に入り循環する。この過程において、輻射体
62をまんべんに加熱して全体がほぼ均一な温度になる
ようにする。加熱された輻射体62はほぼ均一なヒート
フラックスで以て改質触媒層30を均一に加熱する。
The hydrogen production apparatus 60 shown in FIG. 6 also shows another modification of the radiator 62 shown in FIG. 4, and the radiator 62 shown in FIG. 6 is a cylindrical radiator made of refractory brick. An upper portion of the radiant body 62 has a gap 68 between the radiant body 62 and the ceiling wall 42 of the hydrogen production device 60, and an opening portion 7 is provided at a lower portion of the radiant body 62.
0 is provided. With the above configuration, the combustion gas flows from the hanging-down combustion burner 44 through the inside of the radiator 62 and out through the lower opening 70, and a part of the combustion gas flows through the annular space 72 between the inner cylinder 20 and the radiator 62. It rises and enters the radiator 62 again through the gap 68 and circulates. In this process, the radiator 62 is uniformly heated so that the entire body has a substantially uniform temperature. The heated radiator 62 uniformly heats the reforming catalyst layer 30 with a substantially uniform heat flux.

【0037】図7に示す水素製造装置80は図1に示す
水素製造装置10の改変例を示すものである。水素製造
装置80では燃焼バーナに代えて柱状の触媒燃焼器82
が内筒中空部26に配設されている。触媒燃焼器82は
燃料ガスと空気が導入される内管84とそれを囲むメッ
シュ状の外管86と、その間に充填された燃焼触媒層8
8とから形成されている。以上の構成により、燃料ガス
は燃焼触媒層88中で燃焼し、触媒燃焼器82全体を均
一な温度に加熱する。加熱された触媒燃焼器82はほぼ
均一なヒートフラックスで以て改質触媒層30を均一に
加熱する。
A hydrogen producing apparatus 80 shown in FIG. 7 shows a modification of the hydrogen producing apparatus 10 shown in FIG. In the hydrogen production device 80, a columnar catalytic combustor 82 is used instead of the combustion burner.
Are disposed in the inner cylinder hollow portion 26. The catalytic combustor 82 includes an inner pipe 84 into which fuel gas and air are introduced, a mesh-shaped outer pipe 86 surrounding the inner pipe 84, and a combustion catalyst layer 8 filled between them.
And 8 are formed. With the above configuration, the fuel gas burns in the combustion catalyst layer 88 and heats the entire catalytic combustor 82 to a uniform temperature. The heated catalytic combustor 82 uniformly heats the reforming catalyst layer 30 with a substantially uniform heat flux.

【0038】以下、本発明の実施の具体例を説明する。 (1)装置構成 図1に示した水素製造装置10として、内筒(内径10
0mm)20、中筒(内径118mm)18、外筒(内
径175mm)16、最外筒(内径190mm)14、
水素透過管(外径20mm)32、スイープガス管(外
径6mm)34よりなる有効長600mmの反応器を図
1に示すように構成し、第2環状空間部28の第1触媒
層に前記の水素透過管32を周方向に等間隔で15本直
立配置した。改質触媒Aとしてはニッケル系触媒(平均
粒径2mmφ)を使用した。なお、火炉の構成は図1に
示したような垂下式バーナ44のみを配置する方式と
し、また外気への放熱を小さくするため、最外筒14の
外側は厚さ200mmのロックウールで保温した。
Specific examples of the implementation of the present invention will be described below. (1) Apparatus Configuration As the hydrogen production apparatus 10 shown in FIG.
0 mm) 20, middle cylinder (inner diameter 118 mm) 18, outer cylinder (inner diameter 175 mm) 16, outermost cylinder (inner diameter 190 mm) 14,
A reactor having an effective length of 600 mm consisting of a hydrogen permeation tube (outer diameter 20 mm) 32 and a sweep gas tube (outer diameter 6 mm) 34 is constructed as shown in FIG. 1, and the first catalyst layer of the second annular space portion 28 has the above-mentioned structure. Fifteen hydrogen permeation tubes 32 of No. 1 were arranged upright at equal intervals in the circumferential direction. As the reforming catalyst A, a nickel-based catalyst (average particle diameter 2 mmφ) was used. In addition, the structure of the furnace is a system in which only the hanging burner 44 as shown in FIG. 1 is arranged, and in order to reduce the heat radiation to the outside air, the outside of the outermost cylinder 14 is kept warm with rock wool having a thickness of 200 mm. .

【0039】(2)操作条件 〇改質側原料ガス(都市ガス13A)供給量:32.1
モル/h 〇改質側原料ガス中のスチーム供給量:1.35kg/
h 〇改質用スチーム/改質側原料ガス(モル比):2.0 〇改質反応温度:550℃ 〇改質反応圧力:6.03kgf/cm2 −abs. 〇スイープガス(スチーム)供給量:1.41kg/h 〇スイープガス圧力:1.22kgf/cm2 −ab
s.
(2) Operating conditions: A reforming side source gas (city gas 13A) supply amount: 32.1
Mol / h ○ Steam supply amount in reforming side source gas: 1.35 kg /
h Reforming steam / reforming side source gas (molar ratio): 2.0 Reforming reaction temperature: 550 ° C. Reforming reaction pressure: 6.03 kgf / cm 2 -abs. ○ Sweep gas (steam) supply rate: 1.41 kg / h ○ Sweep gas pressure: 1.22 kgf / cm 2 -ab
s.

【0040】(3)水素生成試験結果 上述の条件下で反応させた結果、スイープガスに同伴さ
れて得られた水素量は123.0モル/hであり、水素
中の不純物としてのCOは1ppm以下であった。ま
た、原料ガス中の炭化水素の転化率は約90%が達成で
きた。これに対して、水素透過量を採用しない従来型の
リフォーマでは操作温度と圧力の関係から化学平衡の壁
があるため、上述の反応温度、圧力では転化率は約24
%にすぎなかった。
(3) Results of hydrogen production test As a result of reaction under the above conditions, the amount of hydrogen obtained by being entrained in the sweep gas was 123.0 mol / h, and CO as an impurity in hydrogen was 1 ppm. It was below. In addition, the conversion rate of hydrocarbons in the raw material gas could reach about 90%. On the other hand, in the conventional reformer that does not adopt the hydrogen permeation amount, there is a chemical equilibrium wall due to the relationship between the operating temperature and the pressure, so the conversion rate is about 24 at the above reaction temperature and pressure.
It was only%.

【0041】[0041]

【発明の効果】本発明によれば、以下の利点を備え、高
純度の水素を経済的に製造する工業的規模の水素製造装
置を提供することができる。 (a)装置が多重筒体から構成されているので、構造が
簡明かつコンパクトである。従って、本発明水素製造装
置は少ない材料で経済的に建設できる。 (b)反応管を多数並列配置した多管式の装置に比べて
遙かに軽量であるから熱容量が小さい。従って、装置を
迅速に起動停止することが可能で、かつ装置負荷変更時
の応答性が良好である。 (c)接触層をその両側から加熱するので触媒層がより
均一に加熱できる。また、火炉を中央部に配置した多重
円筒体の構成により半径方向の熱流束分布が均一にな
る。従って、水素透過管の耐熱温度を超過するようなホ
ットスポットの発生を防止できる。 (d)第2触媒層では水素を生成するだけで水素透過管
により分離、収集しないので第2触媒層出口、すなわち
第1触媒層入口で生成ガス中の水素分圧が高くなる。従
って、第1触媒層での水素透過管による水素の分離、収
集のための物質移動推進力が大きくなり、分離効率が向
上し透過面積を減少することが可能となる。 (e)水素透過管内のスイープガスと触媒層内改質ガス
との向流物質移動により生成水素の回収率を高めること
ができる。 (f)水素透過管で水素を分離、収集して化学反応を生
成物の生成に有利に移行させることができるので、改質
温度を従来より150〜200℃程度低下させることが
できる。これにより、改質触媒層内の炭素析出が緩和さ
れ、水蒸気/炭化水素比(モル比)を従来の3以上から
2〜2.2の範囲に低下できるので水蒸気を加熱する熱
量を節減し、熱効率を大幅に向上させることができる。 (g)また、反応温度が低いので、装置には耐熱性の高
くない廉価な材料を使用できる。従って、装置のコスト
を軽減できる。 (h)更に、輻射体を設けることにより、局部加熱の恐
れなく触媒層を均一に所定の温度に加熱することができ
る。
Industrial Applicability According to the present invention, it is possible to provide an industrial-scale hydrogen producing apparatus which has the following advantages and economically produces high-purity hydrogen. (A) Since the device is composed of multiple cylinders, the structure is simple and compact. Therefore, the hydrogen production device of the present invention can be economically constructed with a small number of materials. (B) The heat capacity is small because it is much lighter than the multi-tube type device in which a large number of reaction tubes are arranged in parallel. Therefore, the device can be quickly started and stopped, and the responsiveness when changing the device load is good. (C) Since the contact layer is heated from both sides, the catalyst layer can be heated more uniformly. Further, the heat flux distribution in the radial direction becomes uniform due to the structure of the multi-cylinder body in which the furnace is arranged in the central portion. Therefore, it is possible to prevent the occurrence of hot spots that exceed the heat resistant temperature of the hydrogen permeation tube. (D) Since hydrogen is only generated in the second catalyst layer but is not separated and collected by the hydrogen permeation pipe, the hydrogen partial pressure in the generated gas becomes high at the second catalyst layer outlet, that is, the first catalyst layer inlet. Therefore, the mass transfer driving force for separating and collecting hydrogen by the hydrogen permeation tube in the first catalyst layer is increased, the separation efficiency is improved, and the permeation area can be reduced. (E) The rate of recovery of the produced hydrogen can be increased by countercurrent mass transfer between the sweep gas in the hydrogen permeation tube and the reformed gas in the catalyst layer. (F) Since the hydrogen can be separated and collected by the hydrogen permeation tube and the chemical reaction can be advantageously transferred to the production of the product, the reforming temperature can be lowered by about 150 to 200 ° C. as compared with the conventional case. As a result, the carbon deposition in the reforming catalyst layer is relaxed, and the steam / hydrocarbon ratio (molar ratio) can be reduced from the conventional value of 3 or more to the range of 2 to 2.2. Therefore, the amount of heat for heating the steam can be saved. The thermal efficiency can be greatly improved. (G) Further, since the reaction temperature is low, an inexpensive material that does not have high heat resistance can be used for the device. Therefore, the cost of the device can be reduced. (H) Further, by providing the radiator, the catalyst layer can be uniformly heated to a predetermined temperature without fear of local heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水素製造装置の第1の実施例の図
解的断面図。
FIG. 1 is a schematic sectional view of a first embodiment of a hydrogen production device according to the present invention.

【図2】図1の水素製造装置の矢視I−Iでの模式的横
断面図。
FIG. 2 is a schematic cross-sectional view taken along the line I-I of the hydrogen generator of FIG.

【図3】本発明装置で使用する水素透過管の部分断面
図。
FIG. 3 is a partial cross-sectional view of a hydrogen permeation tube used in the device of the present invention.

【図4】本発明に係る水素製造装置の第2の実施例の図
解的断面図。
FIG. 4 is a schematic sectional view of a second embodiment of a hydrogen production device according to the present invention.

【図5】本発明に係る水素製造装置の第2の実施例の改
変例の図解的断面図。
FIG. 5 is a schematic sectional view of a modified example of the second embodiment of the hydrogen production device according to the present invention.

【図6】本発明に係る水素製造装置の第2の実施例の別
の改変例の図解的断面図。
FIG. 6 is a schematic cross-sectional view of another modification of the second embodiment of the hydrogen production device according to the present invention.

【図7】本発明に係る水素製造装置の第3の実施例の図
解的断面図。
FIG. 7 is a schematic sectional view of a third embodiment of a hydrogen production device according to the present invention.

【図8】従来の水素製造装置の実験室規模の装置の模式
的構造図。
FIG. 8 is a schematic structural diagram of a laboratory-scale apparatus for a conventional hydrogen production apparatus.

フロントページの続き (72)発明者 内田 洋 神奈川県横浜市緑区あざみ野3−2−15− 106 (72)発明者 黒田 健之助 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 内田 敏之 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 小林 一登 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Front page continued (72) Inventor Hiroshi Uchida 3-2-15-106 Azamino, Midori-ku, Yokohama-shi, Kanagawa Prefecture (72) Kennosuke Kuroda 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Toshiyuki Uchida 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd.Hiroshima Works (72) Inventor Kazuto Kobayashi 4-22 Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture Mitsubishi Heavy Industries Hiroshima Laboratory Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 選択的な水素透過性の仕切り壁を透過さ
せて水蒸気改質反応により生成した水素を分離、収集す
るようにした水素製造装置において、 底部を閉じた直立最外筒と、その内側に直立して順
次多重配設された外筒、中筒及び内筒と、並びに内筒の
天井壁に配設された垂下式燃焼バーナとを備えてなり、 内筒と外筒とは下部端縁同士が連結して閉じた環状
底部を形成し、最外筒と外筒とが画成する第1環状空間
部と内筒内側の内筒中空部とはそれぞれの底部で連通
し、更に外筒と中筒とが画成する第2環状空間部と中筒
と内筒とが画成する第3環状空間部とはそれぞれの底部
で連通するようにしてなり、 第2環状空間部及び第3環状空間部には改質触媒を
充填した第1及び第2触媒層がそれぞれ形成され、更に
第1触媒層には水素透過性の金属膜を無機多孔層上に有
する多数の水素透過管が第3環状空間部の周方向に沿っ
てほぼ垂直に配置され、更に下端が開放されたスイープ
ガス管が水素透過管内に配設されてなり、 第3環状空間部の上部から原料ガスを導入して第2
触媒層を流下させつつ高温下で水素に転化し、続いて底
部から第1触媒層に流入させて更に未反応の原料ガスを
水素に転化し、生成した水素を水素透過管を透過させて
選択的に分離、収集し、水素透過管とスイープガス管と
の間に形成された環状部上部から導入したスイープガス
に透過水素を同伴させてスイープガス管を経由してその
上部からスイープガスと共に流出させるようにしてなる
ことを特徴とする水素製造装置。
1. A hydrogen production apparatus configured to separate and collect hydrogen produced by a steam reforming reaction by permeating a partition wall selectively permeable to hydrogen, and an upright outermost cylinder having a bottom closed, It is provided with an outer cylinder, an inner cylinder, and an inner cylinder, which are vertically arranged in an upright manner and sequentially arranged in multiple layers, and a hanging-down combustion burner arranged on the ceiling wall of the inner cylinder. The inner cylinder and the outer cylinder are lower parts. The closed annular bottom portion is formed by connecting the end edges to each other, and the first annular space portion defined by the outermost cylinder and the outer cylinder communicates with the inner cylinder hollow portion inside the inner cylinder, and The second annular space portion defined by the outer cylinder and the middle cylinder and the third annular space portion defined by the middle cylinder and the inner cylinder communicate with each other at their bottoms. First and second catalyst layers filled with a reforming catalyst are formed in the third annular space, and hydrogen permeation is further formed in the first catalyst layer. A large number of hydrogen permeation pipes having a temporary metal membrane on the inorganic porous layer are arranged substantially vertically along the circumferential direction of the third annular space, and a sweep gas pipe having an open lower end is arranged in the hydrogen permeation pipe. Is installed, and the raw material gas is introduced from the upper part of the third annular space portion to the second
While flowing down the catalyst layer, it is converted to hydrogen at high temperature, then it is flown into the first catalyst layer from the bottom to further convert unreacted raw material gas to hydrogen, and the generated hydrogen is permeated through the hydrogen permeation tube to be selected. Gas is separated and collected, and permeated hydrogen is entrained in the sweep gas introduced from the upper part of the annular part formed between the hydrogen permeation pipe and the sweep gas pipe, and flows out together with the sweep gas from the upper part through the sweep gas pipe. A hydrogen production device characterized in that
【請求項2】 前記水素透過性の金属膜は、Pdを含む
合金、Niを含む合金又はVを含む合金のいずれかの無
孔質薄膜であることを特徴とする請求項1記載の水素製
造装置。
2. The hydrogen production according to claim 1, wherein the hydrogen permeable metal film is a non-porous thin film of any one of an alloy containing Pd, an alloy containing Ni, and an alloy containing V. apparatus.
【請求項3】 前記内筒中空部には前記燃焼バーナの火
炎を包囲するように筒状の輻射体が配設されてなること
を特徴とする請求項1又は2記載の水素製造装置。
3. The hydrogen generating apparatus according to claim 1, wherein a cylindrical radiator is arranged in the hollow portion of the inner cylinder so as to surround the flame of the combustion burner.
【請求項4】 前記輻射体はその壁が多孔質であること
を特徴とする請求項3記載の水素製造装置。
4. The hydrogen generating apparatus according to claim 3, wherein the radiator has a porous wall.
【請求項5】 前記輻射体は内筒輻射体と外筒輻射体と
からなる2重の筒状体であって、燃焼ガスは内筒輻射体
内を流下し、次いで内筒輻射体と外筒輻射体とが画成す
る環状空間部を上昇し、更に外筒輻射体と前記内筒とが
画成する環状空間部を流下するようにしてなることを特
徴とする請求項3記載の水素製造装置。
5. The radiating body is a double cylindrical body composed of an inner cylinder radiating body and an outer cylinder radiating body, the combustion gas flowing down in the inner cylinder radiating body, and then the inner cylinder radiating body and the outer cylinder. 4. The hydrogen production according to claim 3, wherein the annular space portion defined by the radiator is raised, and further the annular space portion defined by the outer cylinder radiator and the inner cylinder is made to flow down. apparatus.
【請求項6】 前記輻射体は筒状体であって、その上部
が前記内筒の天井壁から離隔し、下部が開口部を備え、
燃焼ガスは輻射体内側を流下し、次いでその一部が開口
部を経て前記内筒と輻射体とが画成する環状空間部を上
昇し、前記天井壁と該輻射体上部との隙間を経て再び輻
射体内側を流下して、輻射体内側と外側を循環するよう
にしてなることを特徴とする請求項3記載の水素製造装
置。
6. The radiator is a tubular body, an upper portion of which is separated from a ceiling wall of the inner cylinder, and a lower portion of which has an opening.
The combustion gas flows down inside the radiant body, and then a part of it rises up through the opening in the annular space defined by the inner cylinder and the radiant body, and passes through the gap between the ceiling wall and the upper part of the radiant body. The hydrogen production device according to claim 3, wherein the hydrogen generator flows down inside the radiator again and circulates inside and outside the radiator.
【請求項7】 請求項1又は2に記載した水素製造装置
において、前記燃焼バーナに代えて柱状の触媒燃焼器を
前記内筒中空部に配設してなることを特徴とする水素製
造装置。
7. The hydrogen production apparatus according to claim 1 or 2, wherein a columnar catalytic combustor is provided in the inner cylinder hollow portion instead of the combustion burner.
【請求項8】 請求項1又は2に記載の水素製造装置に
おいて、前記スイープガス同伴方式の透過水素収集方法
に代えて、水素透過側をポンプにて吸引掃気することに
よって透過水素を収集するようにしてなることを特徴と
する水素製造装置。
8. The hydrogen production apparatus according to claim 1, wherein the permeated hydrogen is collected by sucking and scavenging the hydrogen permeation side with a pump instead of the permeated hydrogen collection method of the sweep gas entrainment method. A hydrogen production device, characterized by being
JP05586593A 1993-03-16 1993-03-16 Hydrogen production equipment Expired - Lifetime JP3197098B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP05586593A JP3197098B2 (en) 1993-03-16 1993-03-16 Hydrogen production equipment
DK94103912T DK0615949T3 (en) 1993-03-16 1994-03-14 Hydrogen producing apparatus
DE69420604T DE69420604T2 (en) 1993-03-16 1994-03-14 Device for producing hydrogen
EP94103912A EP0615949B1 (en) 1993-03-16 1994-03-14 Hydrogen producing apparatus
CA002118956A CA2118956C (en) 1993-03-16 1994-03-14 Hydrogen producing apparatus
US08/213,802 US5639431A (en) 1993-03-16 1994-03-16 Hydrogen producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05586593A JP3197098B2 (en) 1993-03-16 1993-03-16 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JPH06263405A true JPH06263405A (en) 1994-09-20
JP3197098B2 JP3197098B2 (en) 2001-08-13

Family

ID=13010971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05586593A Expired - Lifetime JP3197098B2 (en) 1993-03-16 1993-03-16 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP3197098B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302899A (en) * 2005-04-22 2006-11-02 Samsung Sdi Co Ltd Reformer for fuel cell system
JP2014189430A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Furnace
CN108325476A (en) * 2018-02-08 2018-07-27 湖南安淳高新技术有限公司 A kind of suspension type U-shaped vapour pipe isothermal reactor and reaction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302899A (en) * 2005-04-22 2006-11-02 Samsung Sdi Co Ltd Reformer for fuel cell system
US7842109B2 (en) 2005-04-22 2010-11-30 Samsung Sdi Co., Ltd. Reformer for fuel cell system having increased heat transfer efficiency
JP2014189430A (en) * 2013-03-26 2014-10-06 Osaka Gas Co Ltd Furnace
CN108325476A (en) * 2018-02-08 2018-07-27 湖南安淳高新技术有限公司 A kind of suspension type U-shaped vapour pipe isothermal reactor and reaction method

Also Published As

Publication number Publication date
JP3197098B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
EP0615949B1 (en) Hydrogen producing apparatus
NL2006245C2 (en) MEMBRANE REACTOR AND PROCESS FOR THE PRODUCTION OF A GASEOUS PRODUCT WITH SUCH REACTOR.
CA2497441C (en) Apparatus and process for production of high purity hydrogen
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
US20040175326A1 (en) Pressure swing reforming for fuel cell systems
US6923944B2 (en) Membrane reactor for gas extraction
JP3197095B2 (en) Hydrogen production equipment
US20030066240A1 (en) Steam reformer for methane with internal hydrogen separation and combustion
US8728417B2 (en) Steam reforming furnace using porous burners
JP3197097B2 (en) Hydrogen production equipment
JP3202442B2 (en) Hydrogen production equipment
JP3197098B2 (en) Hydrogen production equipment
JP3202441B2 (en) Hydrogen production equipment
JPH06345405A (en) Hydrogen production device
JP3197108B2 (en) Hydrogen production equipment
JP3197096B2 (en) Hydrogen production equipment
JP3202440B2 (en) Hydrogen production equipment
JP3839598B2 (en) Hydrogen production equipment
RU2615768C1 (en) Reactor for catalytic steam and steam-carbon-dioxide hydrocarbon conversion
JPH06345406A (en) Hydrogen production device
JP2000143203A (en) Hydrogen producing device
JPH092801A (en) Hydrogen manufacturing apparatus
JP2000128504A (en) Hydrogen producing device
JPH092804A (en) Hydrogen manufacturing apparatus
JPH092802A (en) Hydrogen manufacturing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12