JPH06262385A - Improving method for fatigue strength of end part of weld by local quenching - Google Patents

Improving method for fatigue strength of end part of weld by local quenching

Info

Publication number
JPH06262385A
JPH06262385A JP5080288A JP8028893A JPH06262385A JP H06262385 A JPH06262385 A JP H06262385A JP 5080288 A JP5080288 A JP 5080288A JP 8028893 A JP8028893 A JP 8028893A JP H06262385 A JPH06262385 A JP H06262385A
Authority
JP
Japan
Prior art keywords
weld
stress
fatigue strength
welding
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5080288A
Other languages
Japanese (ja)
Inventor
Shinichi Omiya
慎一 大宮
Isao Soya
勇夫 征矢
Koji Seto
厚司 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5080288A priority Critical patent/JPH06262385A/en
Publication of JPH06262385A publication Critical patent/JPH06262385A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively improve the fatigue strength of an end part of weld only by adding a simple process at the time of welding. CONSTITUTION:At the time of welding a steel material, when the temperature of the surface of the end part of weld is >=200 deg.C and <=600 deg.C after welding, the surface of the end part of weld is cooled to <200 deg.C at >10 deg.C/sec. an average cooling speed by injecting refrigerant on the surface of the end part of weld. Consequently, a residual compressive stress generates on the end part of weld, and the fatigue strength of a welding member is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼構造物を製造する
際の溶接方法であって、局所急冷による溶接止端部疲労
強度向上方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding method for manufacturing a steel structure, and more particularly to a method for improving fatigue strength at a weld toe by local quenching.

【0002】[0002]

【従来の技術】溶接構造物の疲労破壊は、溶接継手部、
その中でも構造的な応力集中や引張残留応力の存在する
溶接止端部に疲労き裂を生じ、そのき裂が伝ぱすること
により起こるものが多くを占める。そのため、溶接構造
物の疲労強度を向上させるためには溶接継手部の疲労強
度を改善する必要があり、疲労強度の向上を目的とした
溶接止端部の処理方法がいくつか提案されている。溶接
止端部の処理の考え方は、上記の溶接止端部の疲労強度
低下の原因である応力集中の緩和を目的としたものと、
残留応力のコントロールを目的としたものの2つに大別
できる。
2. Description of the Related Art Fatigue failure of welded structures is caused by welding joints,
Of these, fatigue cracks occur at the weld toe where structural stress concentration and tensile residual stress exist, and most of these are caused by propagation of the cracks. Therefore, it is necessary to improve the fatigue strength of the welded joint in order to improve the fatigue strength of the welded structure, and several methods for treating the weld toe have been proposed for the purpose of improving the fatigue strength. The concept of the treatment of the weld toes is to alleviate the stress concentration that is the cause of the fatigue strength reduction of the above weld toes,
It can be roughly divided into two types for the purpose of controlling residual stress.

【0003】一方の応力集中の緩和を目的とした止端部
処理には、溶接止端部をグラインダー等で滑らかにする
切削や研削処理、溶接止端部をTIGで再溶融すること
により滑らかにする処理、プラズマで再溶融することに
より滑らかにする処理(特公昭54−30386号公
報)、化粧溶接棒を用いて滑らかな止端部を得る処理な
どが有る。
On the other hand, the toe treatment for the purpose of alleviating stress concentration is performed by cutting or grinding the weld toe with a grinder or the like, and by remelting the weld toe with TIG. Processing, a treatment for smoothing by remelting with plasma (Japanese Patent Publication No. 54-30386), a treatment for obtaining a smooth toe portion using a decorative welding rod, and the like.

【0004】他方、残留応力のコントロールを目的とし
た止端部処理としては、あらかじめ過大荷重を与えるこ
とにより溶接止端部に降伏応力を越える引張応力を発生
させ、除荷後に圧縮の残留応力を与える予荷重処理、継
手全体を加熱した後急冷することにより圧縮残留応力を
与える加熱急冷処理、溶接止端部をワイヤー、ボール等
を用いて打撃することにより機械的に圧縮残留応力を付
与するピーニング処理等の方法が知られている。
On the other hand, as the toe treatment for the purpose of controlling the residual stress, an excessive load is applied in advance to generate a tensile stress exceeding the yield stress at the weld toe, and the residual stress of compression is removed after unloading. Preloading treatment to give, compressive residual stress by heating the entire joint and then quenching, rapid cooling treatment, peening to mechanically give compressive residual stress by hitting the weld toe with a wire, ball, etc. Methods such as processing are known.

【0005】圧縮残留応力を付与する方法のうち、急冷
を利用した溶接継手の疲労強度向上法としては、継手の
亜鉛メッキの際、継手を溶融亜鉛浴した直後に水中で急
冷する方法が知られている。これは、溶融亜鉛浴によっ
て高温になった継手を、水中に入れて急冷することによ
り生ずる表面と内部の温度差により表面に圧縮残留応力
を生じさせるものである。
Among the methods for imparting compressive residual stress, as a method for improving the fatigue strength of a welded joint using rapid cooling, a method of rapidly cooling the joint in water immediately after the molten zinc bath during galvanization of the joint is known. ing. This is to generate a compressive residual stress on the surface due to the temperature difference between the surface and the inside which is generated by putting the joint, which has been heated to a high temperature by the molten zinc bath, into water and rapidly cooling it.

【0006】また、鋼構造物以外の分野ではレールの溶
接継手に関して特開平3−277720号公報等に、配
管に関して特開昭56−130432号公報等に、溶接
部の水冷等による急速冷却を行うことによって圧縮残留
応力を付与し疲労強度を改善させる方法が示されてい
る。
Further, in fields other than steel structures, the welded joints of rails are disclosed in JP-A-3-277720, and the piping is disclosed in JP-A-56-130432. By this, a method for imparting compressive residual stress and improving fatigue strength is disclosed.

【0007】[0007]

【発明が解決しようとする課題】前述の疲労強度向上を
目的とした溶接止端部の処理方法はいずれも、溶接終了
後に別の工程を付加したものであり、コストが高くなる
欠点がある。また、予荷重による圧縮残留応力付与につ
いては、継手部に降伏応力以上の応力を発生させる荷重
を与えなければならないため、適用できる溶接継手の規
模に制限がある。
All of the above-mentioned methods for treating the weld toe for the purpose of improving the fatigue strength have the additional process after the welding is completed, and have the drawback of increasing the cost. Further, regarding the application of the compressive residual stress by the preload, since the load for generating the stress equal to or higher than the yield stress must be applied to the joint part, there is a limit to the applicable scale of the welded joint.

【0008】メッキ後の急冷処理については、継手にメ
ッキを行なう必要があるものに適用が限られ、すべての
継手に適用できるわけではない。
Regarding the quenching treatment after plating, the application is limited to those requiring plating on joints, and not applicable to all joints.

【0009】特開平3−277720号公報については
レールの突合せ溶接に限定したものであり、鋼構造物の
溶接継手部の疲労強度向上を目的としたものではない。
また、本発明の方法に比較して冷却温度が遅いため、十
分な圧縮残留応力を付与するための冷却開始時の温度を
500℃以上としており、これに満たない場合には、外
部から再加熱する必要がある。
Japanese Unexamined Patent Publication (Kokai) No. 3-277720 is limited to butt welding of rails and is not intended to improve the fatigue strength of welded joints of steel structures.
Further, since the cooling temperature is slower than that of the method of the present invention, the temperature at the start of cooling for imparting sufficient compressive residual stress is set to 500 ° C. or higher. There is a need to.

【0010】特開昭56−130432号公報について
は配管の溶接部に関するものであり、鋼構造物の疲労強
度向上を目的としたものではない。また、局部的な再加
熱を必要としており、方法が煩雑である。
Japanese Unexamined Patent Publication No. 56-130432 relates to a welded portion of a pipe, and is not intended to improve the fatigue strength of a steel structure. Further, it requires local reheating, and the method is complicated.

【0011】本発明は、溶接時に簡便な工程を付加する
だけで安価に溶接止端部の疲労強度向上を図ろうとする
ものである。
The present invention is intended to inexpensively improve the fatigue strength of the weld toe portion only by adding a simple process at the time of welding.

【0012】[0012]

【課題を解決するための手段】本発明はかかる課題を解
決するため溶接止端部を急冷することにより、表面と内
部に熱応力の分布を生じさせ、自然冷却後表面に圧縮の
残留応力を発生させることにより、継手疲労強度を向上
させることを特徴とする。即ち、本発明の要旨とすると
ころは、鉄鋼材料を溶接する際、溶接後に溶接止端部表
面の温度が200℃以上かつ600℃以下の時、溶接止
端部表面に冷媒を噴射することにより溶接止端部表面を
200℃以下の温度まで10℃/sec.の平均冷却速
度で冷却することを特徴とする局所冷却による溶接止端
部疲労強度向上方法に有る。ここで、平均冷却速度と
は、冷媒による冷却開始時と冷却終了時の溶接止端部表
面の温度差を冷却時間で除した値であると定義する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention rapidly cools a weld toe to generate a distribution of thermal stress on the surface and the inside, and after the natural cooling, compressive residual stress is generated on the surface. It is characterized in that the joint fatigue strength is improved by the generation. That is, the gist of the present invention is that, when welding a steel material, when the temperature of the weld toe surface after welding is 200 ° C. or more and 600 ° C. or less, by injecting a refrigerant onto the weld toe surface. Weld toe surface 10 ° C / sec up to a temperature of 200 ° C or less. There is a method for improving the fatigue strength of a weld toe by local cooling, which is characterized by cooling at an average cooling rate of. Here, the average cooling rate is defined as a value obtained by dividing the temperature difference of the weld toe surface at the start of cooling by the coolant and at the end of cooling by the cooling time.

【0013】[0013]

【作用】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0014】溶接後、止端部温度が200℃以上600
℃以下の状態で、溶接止端部表面を急冷することによ
り、疲労強度向上を図る方法は、上述の溶接止端部処理
方法のうち残留圧縮応力を付与する方法に分類される。
After welding, the toe temperature is 200 ° C. or higher 600
The method of improving the fatigue strength by rapidly cooling the surface of the weld toe portion at a temperature of not higher than 0 ° C. is classified into the methods of imparting residual compressive stress among the methods of treating the weld toe portion described above.

【0015】実際に部材に作用する応力は、残留応力な
どの内部応力と、外力により発生する外部応力の和であ
るから、外力が周期的に変化する繰り返し荷重下では、
残留応力などの内部応力は平均応力として作用する。こ
のため、圧縮の残留応力は、実際に部材に作用する応力
での応力比を下げることになり、これにより疲労強度を
向上させる。例えば、繰り返し中の最小応力が0、すな
わち応力比が0の荷重が作用する場合、残留圧縮応力が
繰り返し応力の最大値の1/2程度存在すると、部材に
実際に作用する応力の応力比は−1となり、2×106
疲労強度では残留応力が存在しない場合に比較して約
1.5倍に上昇する。
Since the stress actually acting on the member is the sum of the internal stress such as residual stress and the external stress generated by the external force, under the repeated load in which the external force changes periodically,
Internal stress such as residual stress acts as an average stress. For this reason, the residual stress of compression lowers the stress ratio of the stress actually acting on the member, thereby improving the fatigue strength. For example, when the minimum stress during repetition is 0, that is, when the load with a stress ratio of 0 is applied, and the residual compressive stress is about 1/2 of the maximum value of the repeated stress, the stress ratio of the stress actually acting on the member is -1, which is 2 × 10 6.
Fatigue strength increases about 1.5 times as compared with the case where no residual stress exists.

【0016】このように疲労強度改善に効果がある残留
圧縮応力が、本発明の方法により溶接止端部に付与され
る機構を以下に説明する。
The mechanism by which the residual compressive stress having the effect of improving fatigue strength is imparted to the weld toe by the method of the present invention will be described below.

【0017】溶接により高温になった溶接止端部の表面
を冷媒の噴射により急冷すると、表面が低温、内部が高
温という温度差を生じる。この温度差により表面に引
張、内部に圧縮という熱応力の分布が生じる。この熱応
力により溶接止端部表面に生じた引張応力は、表面と内
部の温度差が十分に大きければ引張降伏応力を超え、引
張の塑性歪みを生じる。その後、自然に冷却されて全体
が均一に常温の状態になると、引張塑性歪域を周囲が拘
束することにより、溶接止端部表面に圧縮の残留応力が
発生する。
When the surface of the weld toe, which has been heated to a high temperature by welding, is rapidly cooled by the injection of a refrigerant, a temperature difference occurs in which the surface has a low temperature and the inside has a high temperature. Due to this temperature difference, a distribution of thermal stress is generated, in which the surface is pulled and the inside is compressed. The tensile stress generated on the surface of the weld toe portion due to this thermal stress exceeds the tensile yield stress if the temperature difference between the surface and the inside is sufficiently large, and causes tensile plastic strain. After that, when it is naturally cooled and the whole is brought to a normal temperature state, the tensile plastic strain region is constrained by the surroundings, and a compressive residual stress is generated on the surface of the weld toe portion.

【0018】上述の作用により止端部表面に降伏応力以
上の引張応力を生じさせるためには、溶接止端部の表面
と内部に一定以上の温度差を生じさせる必要があるた
め、冷媒噴射開始時の止端部表面温度が200℃以上あ
ることが必要になる。また、冷却速度が遅いと継手全体
が冷却され効果が小さくなるため、表面と内部に一定以
上の温度差を効果的に生じさせるためには平均冷却速度
が10℃/sec.以上であることが必要になる。
In order to generate a tensile stress equal to or higher than the yield stress on the toe surface due to the above-described action, it is necessary to cause a temperature difference of a certain amount or more between the surface and the inside of the weld toe portion. At this time, the surface temperature of the toe portion needs to be 200 ° C. or higher. Further, if the cooling rate is slow, the entire joint is cooled and the effect becomes small. Therefore, in order to effectively cause a temperature difference above a certain level between the surface and the inside, the average cooling rate is 10 ° C / sec. It is necessary to be above.

【0019】また、冷媒噴射開始時の止端部温度が60
0℃以上であると急冷後に溶接部内部の熱により表面温
度が上昇し、本発明の効果が発揮されないため、冷媒噴
射開始時の止端部温度は600℃以下であることが必要
である。
Further, the toe temperature at the start of refrigerant injection is 60
If the temperature is 0 ° C. or higher, the surface temperature rises due to the heat inside the welded portion after quenching, and the effect of the present invention is not exerted. Therefore, the toe temperature at the start of refrigerant injection needs to be 600 ° C. or lower.

【0020】冷媒に関しては、10℃/sec.以上の
平均冷却速度が確保できれば液体窒素、液体アルゴン、
水等何を用いてもよいが、当然のことながら引火性や爆
発性のないものでなければならない。また、鋼材に対し
て悪影響を与えるものは避けることが望ましい。
Regarding the refrigerant, 10 ° C./sec. If the above average cooling rate can be secured, liquid nitrogen, liquid argon,
Anything such as water may be used, but it must be nonflammable or explosive as a matter of course. Also, it is desirable to avoid those that adversely affect the steel material.

【0021】[0021]

【実施例】十字隅肉継手(図1)、回し溶接継手(図
2)については荷重制御片振り疲労試験(応力比R=
0)、T字隅肉継手(図3)については3点曲げ疲労試
験を、溶接止端部を本発明の方法により処理したもの
と、溶接ままのものについて実施した。本発明による処
理は、溶接止端部温度が400℃から150℃まで平均
冷速20℃/sec.で液体窒素による冷却を行った。
供試鋼には表1に示すものを用い、また、試験片形状に
ついてはそれぞれ表2、表3、表4に示すものについて
実施した。試験は室温、大気中で実施した。疲労強度の
比較は、S−N曲線からもとめた2×106 回強度を用
いた。
[Examples] For a cross fillet joint (Fig. 1) and a turn welded joint (Fig. 2), a load control swing fatigue test (stress ratio R =
0) and T-shaped fillet joints (FIG. 3), a three-point bending fatigue test was performed on the weld toe treated by the method of the present invention and the as-welded one. The treatment according to the present invention is performed at an average cold speed of 20 ° C./sec. Was cooled with liquid nitrogen.
The test steels shown in Table 1 were used, and the shapes of the test pieces were shown in Tables 2, 3, and 4, respectively. The test was conducted at room temperature in the atmosphere. For comparison of fatigue strength, 2 × 10 6 times strength obtained from SN curve was used.

【0022】試験結果は表5に示す。表5における処理
無し(自然冷却)とは溶接後に大気中で放冷したものを
指す。自然冷却に比較して本発明の方法による溶接止端
部処理を実施した継手は、溶接継手の形状や、板厚、鋼
種による違いはあるものの20%〜60%溶接強度が向
上しており、本発明の方法による止端処理が疲労強度の
向上に効果的であることがわかる。
The test results are shown in Table 5. In Table 5, "no treatment (natural cooling)" means that the material was left to cool in the atmosphere after welding. The joint subjected to the welding toe treatment by the method of the present invention has 20% to 60% higher weld strength than the natural cooling, although there are differences depending on the shape of the weld joint, the plate thickness, and the steel type. It can be seen that the toe treatment by the method of the present invention is effective in improving fatigue strength.

【0023】[0023]

【表1】 供試鋼の特性 ──────────────────────────────────── 鋼種番号 降伏応力(MPa) 引張強度(MPa) 伸び(%) ──────────────────────────────────── I 305 450 32.1 II 412 550 28.0 III 476 631 26.8 ────────────────────────────────────[Table 1] Properties of sample steel ──────────────────────────────────── Steel grade number Yield stress ( MPa) Tensile strength (MPa) Elongation (%) ──────────────────────────────────── I 305 450 32.1 II 412 550 28.0 III 476 631 26.8 ──────────────────────────────────── ─

【0024】[0024]

【表2】 十字継手試験体寸法 ──────────────────────────────────── 継手No. L W t1 H t2 ──────────────────────────────────── 1 800 80 25 60 12 2 800 80 25 60 12 3 800 80 10 60 6 4 800 80 20 60 10 5 800 80 40 60 20 6 800 80 10 60 6 7 800 80 20 60 10 8 800 80 40 60 20 9 800 80 14 60 6 10 800 80 14 60 6 ────────────────────────────────────[Table 2] Dimensions of cruciform joint specimen ──────────────────────────────────── Joint No. L W t1 H t2 ──────────────────────────────────── 1 800 80 25 25 60 12 2 2 800 80 25 60 12 3 800 80 10 10 60 6 4 800 80 20 20 60 10 5 800 80 80 40 60 20 20 6 800 80 10 60 60 6 7 800 80 20 20 60 10 8 8 800 80 40 60 60 20 9 800 800 80 14 60 6 14 60 80 80 6 ────────────────────────────────────

【0025】[0025]

【表3】 回し溶接継手試験体寸法 ──────────────────────────────────── 継手No. L W1 t1 H W2 t2 ──────────────────────────────────── 11 800 80 25 60 100 12 12 800 80 12 60 100 12 13 800 80 25 60 100 12 14 800 80 12 60 100 12 ────────────────────────────────────[Table 3] Dimensions of test specimens for turning welded joint ──────────────────────────────────── Joint No. L W1 t1 H W2 t2 ──────────────────────────────────── 11 800 80 80 25 60 60 100 12 12 12 800 80 12 60 100 100 12 13 800 80 80 25 60 100 12 14 14 800 80 12 60 60 100 12 ─────────────────────────────── ──────

【0026】[0026]

【表4】 T字継手試験体寸法 ──────────────────────────────────── 継手No. L W t1 H t2 ──────────────────────────────────── 15 500 100 20 60 10 16 500 100 40 60 20 17 500 100 80 60 40 18 500 100 20 60 10 19 500 100 40 60 20 20 500 100 80 60 40 ────────────────────────────────────[Table 4] Dimensions of T-shaped joint specimen ──────────────────────────────────── Joint No. L W t1 H t2 ──────────────────────────────────── 15 500 100 100 20 60 10 10 16 500 500 100 40 60 20 17 500 500 80 80 60 40 18 500 500 100 20 60 10 19 500 500 100 40 60 20 20 20 500 100 100 80 60 40 ─────────────────────── ─────────────

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】本発明の方法は、溶接直後に溶接止端部
のみを急冷するだけの非常に簡便かつ安価な処理法であ
ると共に、大規模構造物に対しても適用が容易であり、
しかも溶接止端部に効率よく残留圧縮応力を付与するこ
とができる。その結果、溶接部材の疲労強度を向上させ
ることができる。
INDUSTRIAL APPLICABILITY The method of the present invention is a very simple and inexpensive treatment method in which only the weld toe portion is rapidly cooled immediately after welding, and it can be easily applied to large-scale structures.
Moreover, the residual compressive stress can be efficiently applied to the weld toe. As a result, the fatigue strength of the welded member can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】十字隅肉溶接継手形状を示す図である。(a)
は正面図であり、(b)は平面図である。
FIG. 1 is a view showing a cross fillet welded joint shape. (A)
Is a front view and (b) is a plan view.

【図2】回し溶接溶接継手形状を示す図である。(a)
は正面図であり、(b)は平面図である。
FIG. 2 is a view showing a shape of a turn-welded welded joint. (A)
Is a front view and (b) is a plan view.

【図3】T字隅肉溶接継手形状を示す図である。(a)
は正面図であり、(b)は平面図である。
FIG. 3 is a diagram showing a T-shaped fillet welded joint shape. (A)
Is a front view and (b) is a plan view.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄鋼材料を溶接する際、溶接後に溶接止
端部表面の温度が200℃以上かつ600℃以下の時、
溶接止端部表面に冷媒を噴射することにより溶接止端部
表面を200℃以下の温度まで10℃/sec.以上の
平均冷却速度で冷却することを特徴とする、局所冷却に
よる溶接止端部疲労強度向上方法。
1. When welding a steel material, when the temperature of the weld toe surface is 200 ° C. or more and 600 ° C. or less after welding,
By injecting a refrigerant onto the surface of the weld toe, the surface of the weld toe is heated to a temperature of 200 ° C. or lower at 10 ° C./sec. A method for improving the fatigue strength of a weld toe portion by local cooling, which comprises cooling at the above average cooling rate.
JP5080288A 1993-03-16 1993-03-16 Improving method for fatigue strength of end part of weld by local quenching Withdrawn JPH06262385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5080288A JPH06262385A (en) 1993-03-16 1993-03-16 Improving method for fatigue strength of end part of weld by local quenching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5080288A JPH06262385A (en) 1993-03-16 1993-03-16 Improving method for fatigue strength of end part of weld by local quenching

Publications (1)

Publication Number Publication Date
JPH06262385A true JPH06262385A (en) 1994-09-20

Family

ID=13714093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5080288A Withdrawn JPH06262385A (en) 1993-03-16 1993-03-16 Improving method for fatigue strength of end part of weld by local quenching

Country Status (1)

Country Link
JP (1) JPH06262385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033144A1 (en) 2002-10-08 2004-04-22 Nippon Steel Corporation Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033144A1 (en) 2002-10-08 2004-04-22 Nippon Steel Corporation Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
EP1579945A1 (en) * 2002-10-08 2005-09-28 Nippon Steel Corporation Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
EP1579945A4 (en) * 2002-10-08 2010-05-05 Nippon Steel Corp Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure

Similar Documents

Publication Publication Date Title
JP3940270B2 (en) Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
Sun et al. Fatigue behavior and fractography of laser-processed hot work tool steel
JP2010229441A (en) Method for manufacturing high toughness high tensile thick steel plate
Sherman et al. Influence of martensite carbon content on the cyclic properties of dual-phase steel
JPH03249127A (en) Shot peening treatment for rail-welded joint
JPH06262385A (en) Improving method for fatigue strength of end part of weld by local quenching
KR0180748B1 (en) Method for producing by continuous heat treatment oil-tempered steel or spring having high strength and high toughness
JPH02166229A (en) Manufacture of steel wire rod for non-heat treated bolt
JP2713346B2 (en) Stainless steel wire excellent in high strength properties and its manufacturing method
JPH09314276A (en) Manufacture of high strength stainless bolt
JP2000337332A (en) High strength bolt excellent in delayed fracture resistance
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JPH0421747A (en) Heat treatment for hot formed parts of al-li alloy
JPS601931B2 (en) High tensile strength wire manufacturing method
JPS6225065B2 (en)
JP2005510627A (en) Surface treatment of austenitic alloys mainly composed of nickel, iron and chromium
JPS6032706B2 (en) Steel with partial shape memory effect
JPS6339644B2 (en)
JPS61133326A (en) Production of middle-and high-carbon steel material for directly heat treated wire
JPS6147885B2 (en)
JPS6133898B2 (en)
JP3289506B2 (en) Method for producing low alloy steel with excellent wire drawing workability
JPH02236218A (en) Method for diffusing and removing hydrogen in steel in on-line
KR100225258B1 (en) Connecting method of the reinforcement bar
SU817078A1 (en) Method of strengthening ferromanganese alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530