JPH06262377A - Method for controlling welding state of laser beam welding and welding condition - Google Patents

Method for controlling welding state of laser beam welding and welding condition

Info

Publication number
JPH06262377A
JPH06262377A JP5056240A JP5624093A JPH06262377A JP H06262377 A JPH06262377 A JP H06262377A JP 5056240 A JP5056240 A JP 5056240A JP 5624093 A JP5624093 A JP 5624093A JP H06262377 A JPH06262377 A JP H06262377A
Authority
JP
Japan
Prior art keywords
welding
laser
optical sensor
output
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5056240A
Other languages
Japanese (ja)
Other versions
JP2876930B2 (en
Inventor
Kiyokazu Mori
清和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5056240A priority Critical patent/JP2876930B2/en
Publication of JPH06262377A publication Critical patent/JPH06262377A/en
Application granted granted Critical
Publication of JP2876930B2 publication Critical patent/JP2876930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately determine the welding state and welding condition by irradiating materials to be welded with a laser beam to monitor plasma generated from a weld zone and further, calculating the whole plasma intensity. CONSTITUTION:A computer 10 takes in output of photosensors 4 and 5 monitoring laser beam induced plasma P on the front and rear surfaces of the weld zone B in a specified period and determines whether or not generation of the laser beam induced plasma P is recognized on the rear side of the materials W to be welded based on output of the rear side photosensor 5. When penetration is not penetrated up to the rear side of the materials W to be welded, a next step is proceeded. When penetration is pierced up to the rear side of the materials W to be welded, output of the rear side photosensor 5 is corrected and the whole plasma intensity is calculated. A value of this whole plasma intensity is compared with a reference value and when it is deviated from the proper range, it is considered that excess and deficiency are caused on penetration of base matals, welding error processing is executed and welding is stopped at the point of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ溶接の溶接状態
および溶接条件を管理する方法に関し、特にレーザ光に
誘起されて発生するプラズマを光センサで監視すること
によって溶接状態および溶接条件を管理する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for managing the welding state and welding conditions of laser welding, and more particularly to managing the welding state and welding conditions by monitoring the plasma generated by laser light generation with an optical sensor. On how to do.

【0002】[0002]

【従来の技術】鋼板等のレーザ溶接において、溶接部の
溶け込み深さ等の溶接状態(溶接品質)を管理するため
に、レーザ光に誘起されて溶接部で発生するプラズマを
光センサで監視する方法がある。
2. Description of the Related Art In laser welding of steel sheets and the like, in order to manage the welding state (welding quality) such as the penetration depth of the welded portion, the plasma induced by the laser light is monitored by an optical sensor. There is a way.

【0003】図11はその従来の管理方法の一例を示す
図で、互いに重ね合わせた被溶接物Wに対しCO2やY
AG等のレーザ発振機1から出力されたレーザ光Lをレ
ンズ等の集光光学系2で集光した上で照射し、被溶接物
Wとレーザ光Lとを所定速度で相対移動させながら溶接
を行う一方、被溶接物Wの上方にはその溶接部Bを指向
するフォトトランジスタ等の光センサ51を配置し、レ
ーザ光Lに誘起されて溶接部Bで発生するプラズマPの
強度を光センサ51で監視するものである。なお、前記
光センサ51の検出出力は信号処理装置52で処理され
て、予め設定された基準値と比較されることにより溶接
部Bの溶け込み深さについて適否判定がなされる。
FIG. 11 is a diagram showing an example of the conventional control method, in which CO 2 and Y are applied to the objects W to be welded which are superposed on each other.
Laser light L output from a laser oscillator 1 such as AG is condensed by a condensing optical system 2 such as a lens and then irradiated, and welding is performed while the workpiece W and the laser light L are relatively moved at a predetermined speed. On the other hand, an optical sensor 51 such as a phototransistor or the like which directs the welding portion B is arranged above the workpiece W, and the intensity of the plasma P generated in the welding portion B induced by the laser light L is detected by the optical sensor. It is what is monitored by 51. The detection output of the optical sensor 51 is processed by the signal processing device 52 and compared with a preset reference value to determine whether or not the penetration depth of the welded portion B is appropriate.

【0004】また、前記レーザ誘起プラズマPは母材が
蒸発・電離することにより発生するもので、レーザ光L
をよく吸収する性質を有している。そして、図10に示
すように、溶接部BのキーホールH内の比較的密度の高
いプラズマP1は上記のようにレーザ光Lを吸収するこ
とで溶け込み深さの増大化に貢献するものの、溶接部B
の上方に比較的密度の低いプラズマP2が多量に浮遊し
ているとこれが先にレーザ光Lを吸収して溶接部Bでの
実効溶接エネルギー密度が低下することになるため、通
常は図10に示すようにノズル3から溶接部Bに向けて
ヘリウムやアルゴン等の不活性ガスGを斜めに吹き付け
て、前述した比較的低密度のプラズマP2を排除するよ
うにしている。
The laser-induced plasma P is generated by vaporization and ionization of the base material.
Has the property of absorbing well. Then, as shown in FIG. 10, although the plasma P 1 having a relatively high density in the keyhole H of the welded portion B absorbs the laser light L as described above, it contributes to an increase in the penetration depth. Welded part B
If a large amount of plasma P 2 having a relatively low density floats above, the laser beam L will be absorbed first and the effective welding energy density at the welded portion B will be lowered, and therefore, FIG. As shown in FIG. 3, an inert gas G such as helium or argon is obliquely blown from the nozzle 3 toward the welded portion B to eliminate the above-mentioned relatively low-density plasma P 2 .

【0005】[0005]

【発明が解決しようとする課題】上記のような従来の管
理方法においては、被溶接物Wの総板厚が比較的大きく
(例えば2mm以上)、溶け込み深さの設定が被溶接物
Wの裏面まで貫通するかしないかのぎりぎりの条件下に
ある場合に、万一その溶け込みが被溶接物Wの裏面側ま
で貫通した時には、図12に示すようにレーザ誘起プラ
ズマPの一部がその被溶接物Wの裏面側からも噴出する
ことになる。その結果、被溶接物Wの表面側のレーザ誘
起プラズマPを監視している光センサ51の受光量が低
下し、レーザ誘起プラズマPを媒体とした溶接状態(溶
け込み深さ)の判定を正確に行うことができなくなる。
In the conventional management method as described above, the total plate thickness of the workpiece W is relatively large (for example, 2 mm or more), and the penetration depth is set on the back surface of the workpiece W. If the penetration penetrates to the back surface side of the workpiece W under the condition of the limit of whether or not the laser-induced plasma P is partially penetrated, as shown in FIG. It will also be ejected from the back side of the object W. As a result, the amount of light received by the optical sensor 51 that monitors the laser-induced plasma P on the surface side of the workpiece W decreases, and the welding state (penetration depth) using the laser-induced plasma P as a medium can be accurately determined. You can't do it.

【0006】また、上記のようにレーザ誘起プラズマP
を監視することによって同時にレーザ出力や不活性ガス
流量等の溶接条件を管理しようとする場合に、そのレー
ザ誘起プラズマPの発光強度は上記の各溶接条件の複合
的な影響を受けることから、図11に示すように単一の
光センサ51を用いただけでは各々の溶接条件が適正範
囲にあるかどうか正確に判定することができない。
Further, as described above, the laser-induced plasma P
When the welding conditions such as the laser output and the flow rate of the inert gas are simultaneously controlled by monitoring the above, the emission intensity of the laser-induced plasma P is affected by the composite of the above welding conditions. As shown in FIG. 11, it is not possible to accurately determine whether each welding condition is within the proper range by only using the single optical sensor 51.

【0007】すなわち、図11の光センサ51が受ける
受光量特性は上記の各溶接条件のみならず光センサ51
の俯角(光センサ51の指向方向と被溶接物Wとのなす
角度)θの影響を受け、しかも各溶接条件ごとに最適と
される俯角θの大きさが異なることから、単一の光セン
サ51だけでは各溶接条件の適否を的確に判定すること
ができない。
That is, the received light amount characteristic received by the optical sensor 51 of FIG.
Is affected by the depression angle θ (the angle between the pointing direction of the optical sensor 51 and the workpiece W) θ, and the optimum depression angle θ is different for each welding condition. The suitability of each welding condition cannot be accurately determined only by 51.

【0008】これは、図10に示すように、溶接部Bの
キーホールH内の高密度で発光強度の大きいプラズマP
1と、キーホールH上部の比較的低密度で発光強度の小
さいプラズマP2の見える度合が図11の光センサ51
の俯角θの大きさに応じて異なるためで、キーホールH
上部の比較低的密度で発光強度の小さいプラズマP2
不活性ガス流量に大きく影響されるのに対して、キーホ
ールH内の高密度で発光強度の大きいプラズマP1は不
活性ガス流量にはそれほど影響されないという性質があ
る。
As shown in FIG. 10, this is a plasma P having a high density and a high emission intensity in the keyhole H of the welded portion B.
1 and the degree of visibility of the plasma P 2 having a relatively low density and a small emission intensity above the keyhole H is the optical sensor 51 of FIG.
It depends on the depression angle θ of the
The plasma P 2 having a relatively low density and a small emission intensity in the upper portion is greatly affected by the flow rate of the inert gas, while the plasma P 1 having a high density and a large emission intensity in the keyhole H is changed by the flow rate of the inert gas. Has the property that it is not so affected.

【0009】本発明は、以上のような従来の課題に着目
してなされたもので、被溶接物の裏面からのレーザ誘起
プラズマの噴出や、光センサの俯角の違いによる受光量
特性への影響を考慮して、溶接状態や溶接条件を的確に
判定できるようにした方法を提供することを目的とす
る。
The present invention has been made by paying attention to the above-mentioned conventional problems, and has an effect on jetting characteristics of laser-induced plasma from the back surface of the object to be welded and on the received light amount characteristic due to the difference in the depression angle of the optical sensor. In view of the above, it is an object of the present invention to provide a method capable of accurately determining a welding state and welding conditions.

【0010】[0010]

【課題を解決するための手段】本願の請求項1の発明
は、被溶接物にレーザ光を照射して溶接を行うにあた
り、前記レーザ光に誘起されて溶接部位から発生するプ
ラズマを光センサにより監視し、そのレーザ誘起プラズ
マの強度に基づいて溶接状態を管理する方法において、
前記被溶接物の表裏両面側に配置した光センサにより溶
接部位の表裏両面でのレーザ誘起プラズマの発生を個別
に監視し、前記裏面側の光センサの出力値が所定値未満
の場合には、表面側の光センサの出力値を総プラズマ強
度として予め設定した基準値と比較して溶接状態の適否
を判定する一方、前記裏面側の光センサの出力値が所定
値以上の場合には、その裏面側の光センサの出力値に所
定の補正係数を乗じた上で前記表面側の光センサの出力
値に加算して総プラズマ強度を算出し、この総プラズマ
強度と前記基準値とを比較して溶接状態の適否を判定す
ることを特徴としている。
According to the invention of claim 1 of the present application, when an object to be welded is irradiated with a laser beam for welding, plasma generated by the laser beam from a welding site is induced by an optical sensor. In the method of monitoring and managing the welding state based on the intensity of the laser-induced plasma,
Individually monitor the generation of laser-induced plasma on the front and back both sides of the welded portion by the optical sensor disposed on the front and back both sides of the object to be welded, if the output value of the optical sensor on the back side is less than a predetermined value, While comparing the output value of the optical sensor on the front side with a reference value preset as the total plasma intensity to determine the adequacy of the welding state, when the output value of the optical sensor on the back side is a predetermined value or more, The total plasma intensity is calculated by multiplying the output value of the optical sensor on the back side by a predetermined correction coefficient, and then added to the output value of the optical sensor on the front side, and the total plasma intensity is compared with the reference value. It is characterized in that the suitability of the welding state is determined by using.

【0011】また、請求項2の発明は、被溶接物にレー
ザ光を照射するとともに溶接部位に不活性ガスを吹き付
けながらレーザ溶接を行うにあたり、前記レーザ光に誘
起されて溶接部位から発生するプラズマを光センサによ
り監視し、そのレーザ誘起プラズマの強度に基づいてレ
ーザ出力や不活性ガス流量等の複数の溶接条件を監理す
る方法において、前記被溶接物の上方から溶接部位を指
向する俯角の異なる複数の光センサによりその溶接部位
でのレーザ誘起プラズマの発生を個別に監視し、前記各
光センサが管理すべき溶接条件の項目を各光センサごと
に予め定めておく一方、前記各溶接条件のデータの変動
とそれに伴う該当する光センサ出力との関係を相関デー
タとして予め規定しておき、溶接中の前記各光センサの
出力を該当する相関データと照合してその各光センサ出
力に対応する溶接条件データを個別に算出し、この算出
された各溶接条件データと予め設定された基準値とを比
較して溶接条件ごとにその適否を判定することを特徴と
している。
According to the second aspect of the present invention, when laser welding is performed while irradiating an object to be welded with laser light and spraying an inert gas onto the welding site, plasma generated from the welding site is induced by the laser beam. In a method of controlling a plurality of welding conditions such as laser output and inert gas flow rate based on the intensity of the laser-induced plasma by monitoring an optical sensor, and a different depression angle that directs the welding site from above the workpiece. The generation of laser-induced plasma at the welding site is individually monitored by a plurality of optical sensors, and the items of the welding conditions to be managed by each of the optical sensors are set in advance for each of the optical sensors. The relationship between the variation of the data and the output of the corresponding optical sensor is defined as correlation data in advance, and the output of each of the optical sensors during welding is applied to the corresponding phase. Welding condition data corresponding to each optical sensor output is individually calculated by collating with the data, and the calculated welding condition data is compared with a preset reference value to determine the suitability for each welding condition. It is characterized by doing.

【0012】[0012]

【作用】請求項1の発明によると、レーザ溶接による溶
け込みが被溶接物の裏面側まで及んでその裏面側にもレ
ーザ誘起プラズマが噴出した時には、裏面側の光センサ
の出力値に所定の補正係数を乗じた上で表面側の光セン
サの出力値に加算して総プラズマ強度を算出することに
より、裏面側のプラズマ噴出量を考慮した溶接状態の適
否判定を行えるようになる。
According to the first aspect of the present invention, when the penetration due to the laser welding reaches the back side of the object to be welded and the laser-induced plasma is ejected to the back side as well, the output value of the optical sensor on the back side is corrected to a predetermined value. By multiplying by the coefficient and adding it to the output value of the optical sensor on the front surface side to calculate the total plasma intensity, it becomes possible to determine the adequacy of the welding state in consideration of the plasma ejection amount on the back surface side.

【0013】また、請求項2の発明によると、管理すべ
き溶接条件ごとに最適とされる俯角をもつ光センサを設
けてレーザ誘起プラズマを監視することにより、各溶接
条件ごとに独立してその適否を判定することができる。
According to the second aspect of the invention, an optical sensor having an optimum depression angle for each welding condition to be controlled is provided to monitor the laser-induced plasma. The suitability can be determined.

【0014】[0014]

【実施例】図2は本発明の第1の実施例を示す図で、図
11と同様にレーザ誘起プラズマPの監視により溶接状
態(溶け込み深さ)を管理する場合の例を示している。
なお、図11と共通する部分には同一符号を付してあ
る。
FIG. 2 is a diagram showing a first embodiment of the present invention, and shows an example in which the welding state (penetration depth) is controlled by monitoring the laser-induced plasma P as in FIG.
The same parts as those in FIG. 11 are designated by the same reference numerals.

【0015】図2に示すように、被溶接物Wの表面側
(上部)に設けられて溶接部Bを指向する光センサ4と
は別に、被溶接物Wの裏面側にも溶接部Bを指向する光
センサ5を設けた点で従来のものと異なっている。
As shown in FIG. 2, apart from the optical sensor 4 which is provided on the front surface side (upper part) of the workpiece W and points the weld portion B, the weld portion B is also formed on the rear surface side of the workpiece W. It is different from the conventional one in that an optical sensor 5 for directing is provided.

【0016】前記各光センサ4,5の出力は、信号処理
装置6のアンプ7A,7Bでそれぞれ増幅されたのちフ
ィルタ8A,8Bで高周波成分のノイズが除去され、さ
らにA/D変換器9A,9BでA/D変換されたのちに
コンピュータ10に取り込まれる。そして、前記各光セ
ンサ4,5の出力と、コンピュータ10のメモリに予め
記憶設定された基準値とを比較することにより、溶接状
態の適否の判定がなされることになる。
The outputs of the optical sensors 4 and 5 are amplified by amplifiers 7A and 7B of the signal processing device 6, respectively, and then high-frequency component noises are removed by filters 8A and 8B, and A / D converter 9A and After being A / D converted by 9B, it is taken into the computer 10. Then, by comparing the output of each of the optical sensors 4 and 5 with a reference value stored in advance in the memory of the computer 10, it is possible to determine whether the welding state is appropriate or not.

【0017】図3は溶接条件の一つである焦点の位置を
変化させた時の、その焦点位置の変化と各光センサ4,
5の受光量の変化との関係を示したものである。なお、
溶接条件は、レーザ出力2.5kW、不活性ガスである
アルゴン(Ar)ガス供給量20リットル/分、溶接速
度2.5m/分である。
FIG. 3 shows the change of the focal position when the position of the focal point, which is one of the welding conditions, is changed and the respective optical sensors 4, 4.
5 shows the relationship with the change in the amount of received light of No. 5. In addition,
The welding conditions are a laser output of 2.5 kW, an argon (Ar) gas supply rate of 20 liters / min, which is an inert gas, and a welding speed of 2.5 m / min.

【0018】図3に示すように、焦点位置が合焦点位置
付近の−1mmから+2mm程度までの範囲では、溶接
部Bでの母材の溶け込みが被溶接物Wの裏面まで及んで
実質的に貫通していることから、その裏面側へのレーザ
誘起プラズマPの噴出により裏面側の光センサ5の出力
2が大きく、その間は表面側の光センサ4の出力Q1
相対的に小さくなっていることがわかる。つまり、被溶
接物Wの裏面側でレーザ誘起プラズマPが観察されるよ
うになると、逆に表面側で観察できるレーザ誘起プラズ
マPの発光強度が低下することを意味している。
As shown in FIG. 3, when the focal position is in the range of about -1 mm to +2 mm near the in-focus position, the penetration of the base metal at the welded portion B extends to the back surface of the workpiece W and is substantially the same. Since it penetrates, the output Q 2 of the photosensor 5 on the back side is large due to the jetting of the laser-induced plasma P to the back side, and the output Q 1 of the photosensor 4 on the front side becomes relatively small during that time. You can see that In other words, when the laser-induced plasma P is observed on the back surface side of the workpiece W, it means that the emission intensity of the laser-induced plasma P, which can be observed on the front surface side, decreases.

【0019】しかしながら、各光センサ4,5はレーザ
誘起プラズマPからの距離や観察角度がそれぞれに異な
り、総プラズマ強度Qを得るにあたって各光センサ4,
5の出力Q1,Q2を単純に加算しただけでは意味をなさ
ない。そこで、図3の場合と全く同じ条件下で、溶け込
みが裏面側まで貫通しない程度に厚い被溶接物を用い
て、溶け込みが裏面側まで貫通しない場合の表面側の光
センサ4の出力の変化すなわち総プラズマ強度Qの変化
を図4のように求めた。そして、図3の各光センサ4,
5の出力特性Q1,Q2の総和が図4の総プラズマ強度特
性Qとなるような補正係数Zを次式により求めた。
However, the optical sensors 4 and 5 differ in the distance from the laser-induced plasma P and the observation angle, and when obtaining the total plasma intensity Q, the optical sensors 4 and 5 are obtained.
It does not make sense to simply add the outputs Q 1 and Q 2 of 5. Therefore, under exactly the same conditions as in the case of FIG. 3, using a workpiece to be welded that is thick enough that the penetration does not penetrate to the back surface side, the change in the output of the optical sensor 4 on the front surface side when the penetration does not penetrate to the back surface side, that is, The change in the total plasma intensity Q was obtained as shown in FIG. Then, each of the optical sensors 4 in FIG.
The correction coefficient Z such that the sum of the output characteristics Q 1 and Q 2 of No. 5 becomes the total plasma intensity characteristic Q of FIG. 4 was obtained by the following equation.

【0020】Q=Q1+Z・Q2 ‥‥‥‥‥(1) すなわち、Q=Q1+Z・Q2となる値として、補正係数
ZをQ2の関数として図5のように求めた。
Q = Q 1 + Z · Q 2 (1) That is, the correction coefficient Z is obtained as a function of Q 2 as shown in FIG. 5 as a value of Q = Q 1 + Z · Q 2 . .

【0021】この補正係数Zを用いることにより、溶接
による溶け込みが被溶接物Wの裏面まで及ぶような条件
下においても、表面側および裏面側の双方の光センサ
4,5でレーザ誘起プラズマPを監視することにより、
レーザ溶接部Bの溶接状態(溶け込み状態)の適否を的
確に判定することができる。これは、図3,4に示した
焦点位置以外の他の溶接条件のもとでも同様である。
By using this correction coefficient Z, the laser-induced plasma P is generated by the optical sensors 4 and 5 on both the front surface side and the back surface side even under the condition that the penetration by welding reaches the back surface of the workpiece W. By monitoring
Appropriateness of the welding state (melting state) of the laser welded portion B can be accurately determined. This is the same under welding conditions other than the focus position shown in FIGS.

【0022】図1は図2に示したシステムでの処理手順
を示す図で、図2のコンピュータ10のメモリには上記
の補正係数Zの値と総プラズマ強度の基準値Q0が予め
記憶設定されている。
FIG. 1 is a diagram showing a processing procedure in the system shown in FIG. 2. In the memory of the computer 10 shown in FIG. 2, the value of the correction coefficient Z and the reference value Q 0 of the total plasma intensity are stored and set in advance. Has been done.

【0023】最初に、図1に示すように、溶接が開始さ
れるとコンピュータ10は、溶接部Bの表裏両面でのレ
ーザ誘起プラズマPを監視している光センサ4,5の出
力Q1,Q2を一定の周期で取り込み(図1のステップS
1〜S4)、裏面側の光センサ5の出力Q2をもとに被
溶接物Wの裏面側でレーザ誘起プラズマPの発生が認め
られるか否か、すなわち溶接による溶け込みが被溶接物
Wの裏面側まで貫通しているか否かを判定する(ステッ
プS5)。
First, as shown in FIG. 1, when welding is started, the computer 10 outputs the outputs Q 1 , from the optical sensors 4 and 5 that monitor the laser-induced plasma P on both front and back surfaces of the welded portion B. Q 2 is taken in at a constant cycle (step S in FIG. 1).
1 to S4), based on the output Q 2 of the optical sensor 5 on the back surface side, whether or not the generation of the laser-induced plasma P is recognized on the back surface side of the workpiece W, that is, the penetration by welding is It is determined whether or not it penetrates to the back surface side (step S5).

【0024】そして、溶け込みが被溶接物Wの裏面側ま
で貫通していない時には総プラズマ強度Q=Q1として
次のステップに進み(ステップS7)、他方、ステップ
S5で溶け込みが被溶接物Wの裏面側まで貫通している
時にはQ=Q1+Z・Q2により裏面側の光センサ5の出
力Q2を補正して総プラズマ強度Qを算出する(ステッ
プS6)。
When the penetration has not penetrated to the back surface side of the workpiece W, the total plasma intensity Q = Q 1 is set and the process proceeds to the next step (step S7). When penetrating to the back surface side, the output Q 2 of the photo sensor 5 on the back surface side is corrected by Q = Q 1 + Z · Q 2 to calculate the total plasma intensity Q (step S6).

【0025】さらに、溶接による母材の溶け込みが被溶
接物Wの裏面側まで貫通しているか否かにかかわらず、
上記の総プラズマ強度Qの値を予め設定されている基準
値Q0として比較して適正範囲内におさまっているかど
うかその合否を判定し(ステップS8)、前記総プラズ
マ強度Qが適正であるかぎり上記の一連のステップを溶
接終了まで繰り返す(ステップS9,S10)。
Further, regardless of whether the penetration of the base material by welding penetrates to the back surface side of the workpiece W,
The value of the above-mentioned total plasma intensity Q is compared as a preset reference value Q 0 , and it is judged whether or not it is within an appropriate range (step S8). As long as the above-mentioned total plasma intensity Q is appropriate, The above series of steps is repeated until the welding is completed (steps S9 and S10).

【0026】これに対して、ステップS8で総プラズマ
強度Qが適正範囲を逸脱していると判定された場合に
は、母材の溶け込みに過不足が生じているものとみなし
て溶接エラー処理を実行し、その時点で溶接を中止する
(ステップS11)。
On the other hand, when it is determined in step S8 that the total plasma intensity Q deviates from the proper range, it is considered that there is an excess or deficiency in the penetration of the base metal, and the welding error processing is performed. After that, the welding is stopped at that point (step S11).

【0027】このように本実施例によれば、被溶接物W
の裏面側に発生するレーザ誘起プラズマPを考慮して総
プラズマ強度Qを算出し、この総プラズマ強度Qと予め
設定した基準値Q0とを比較して溶け込み深さの適否を
判定することによって、被溶接物Wの裏面側まで溶け込
みが及んだり及ばなかったりするぎりぎりの条件下での
溶接の場合にもその溶け込み深さを正確に判定すること
ができ、判定結果の信頼性が大幅に向上する。
As described above, according to this embodiment, the workpiece W is welded.
By calculating the total plasma intensity Q in consideration of the laser-induced plasma P generated on the back surface side of the, and comparing the total plasma intensity Q with a preset reference value Q 0 , the suitability of the penetration depth is determined. , The penetration depth can be accurately determined even in the case of welding under the condition where the penetration reaches or does not reach the back surface side of the workpiece W, and the reliability of the determination result is greatly improved. improves.

【0028】図6は本発明の第2の実施例を示す図で、
レーザ誘起プラズマPの監視によりレーザ出力や不活性
ガス流量等の溶接条件を管理する場合の例を示してい
る。なお、図2と共通する部分には同一符号を付してあ
る。
FIG. 6 is a diagram showing a second embodiment of the present invention.
An example of managing welding conditions such as laser output and inert gas flow rate by monitoring the laser-induced plasma P is shown. The same parts as those in FIG. 2 are designated by the same reference numerals.

【0029】図6に示すように、被溶接物Wの上方に
は、互いに溶接部Bを指向しながらもその俯角θ1,θ2
が相違する二つの光センサ11,12が設けられている
点で図2のものと異なっており、一方の光センサ12の
俯角θ2は30度、他方の光センサ11の俯角θ1は60
度にそれぞれ設定されている。
As shown in FIG. 6, above the work W to be welded, the depression angles θ 1 and θ 2 of the welded portions B are oriented while pointing toward each other.
2 is provided in that two different optical sensors 11 and 12 are provided. The depression angle θ 2 of one optical sensor 12 is 30 degrees, and the depression angle θ 1 of the other optical sensor 11 is 60 degrees.
Each time it is set.

【0030】前記光センサ11,12の出力S1,S
2は、アンプ7A,7B、フィルタ8A,8BおよびA
/D変換器9A,9Bを経てコンピュータ10に取り込
まれた上で、そのコンピュータ10のメモリに予め記憶
設定された基準値と比較されることにより、レーザ出力
や不活性ガス流量等の溶接条件の適否の判定が各溶接条
件ごとに個別になされることになる。
Outputs S 1 and S of the optical sensors 11 and 12
2 is an amplifier 7A, 7B, a filter 8A, 8B and A
After being taken into the computer 10 via the D / D converters 9A and 9B and compared with a reference value stored in advance in the memory of the computer 10, the welding conditions such as the laser output and the inert gas flow rate can be determined. Adequacy judgment will be made individually for each welding condition.

【0031】図7は溶接条件の一つであるレーザ出力を
変化させた時のそのレーザ出力変化と各光センサ11,
12の受光量変化(光センサ出力S1,S2)との関係を
示し、また図8は不活性ガスGの流量を変化させた時の
その流量変化と各光センサ11,12受光量変化との関
係を示したものである。
FIG. 7 shows changes in the laser output when the laser output, which is one of the welding conditions, is changed, and the respective optical sensors 11,
12 shows the relationship with the change in the amount of received light (light sensor outputs S 1 , S 2 ), and FIG. 8 shows the change in the flow rate when the flow rate of the inert gas G is changed and the change in the amount of received light of each of the optical sensors 11, 12. It shows the relationship with.

【0032】図7から明らかなように、レーザ出力を変
化させた時には、俯角60度をもつ一方の光センサ11
の出力はレーザ出力の変化に応じて変化するのに対し
て、俯角30度をもつ他方の光センサ12の出力はレー
ザ出力の変化にかかわらずほとんど変化しない。これは
図10にも示すように、一方の光センサ11はその俯角
θ1が他方の光センサ12よりも大きく、キーホールH
の奥深い部分を観察していることから、レーザ出力に応
じて変化するキーホールH内部のレーザ誘起プラズマP
1の変化を敏感にとらえることができるためである。こ
れに対して、他方の光センサ12は、その俯角θ2が小
さいために光センサ11よりもキーホールHの上部を観
察しており、このキーホールH上部のレーザ誘起プラズ
マP2の発光強度はプラズマ自体の密度が小さいために
レーザ出力の変化の割には大きく変化しないためであ
る。
As is apparent from FIG. 7, when the laser output is changed, one optical sensor 11 having a depression angle of 60 degrees is used.
Of the optical sensor 12 having a depression angle of 30 degrees changes little with the change of the laser output, while the output of the other photosensor 12 hardly changes with the change of the laser output. As shown in FIG. 10, the depression angle θ 1 of one optical sensor 11 is larger than that of the other optical sensor 12, and the keyhole H
Since the deep portion of the laser is observed, the laser-induced plasma P inside the keyhole H that changes according to the laser output.
This is because changes in 1 can be sensitively captured. On the other hand, the other optical sensor 12 observes the upper part of the keyhole H more than the optical sensor 11 because the depression angle θ 2 is small, and the emission intensity of the laser-induced plasma P 2 on the upper part of the keyhole H. This is because the density of the plasma itself is small, and therefore the laser output does not change significantly for changes in the laser output.

【0033】一方、図8および図10に示すように、俯
角60度の光センサ11の出力S1はノズル3から吹き
出される不活性ガス流量の変化にはほとんど影響されな
いのに対し、他方の光センサ12の出力S2は、キーホ
ールH上部のレーザ誘起プラズマP2を観察している度
合が大きいために不活性ガス流量の増減によるキーホー
ルH上部のレーザ誘起プラズマP2の影響を受けて、不
活性ガス流量の変化に応じて大きく変化する。
On the other hand, as shown in FIGS. 8 and 10, the output S 1 of the optical sensor 11 having a depression angle of 60 degrees is hardly affected by the change in the flow rate of the inert gas blown from the nozzle 3, while The output S 2 of the optical sensor 12 is influenced by the laser-induced plasma P 2 above the keyhole H due to the increase / decrease in the flow rate of the inert gas because the laser-induced plasma P 2 above the keyhole H is observed to a large extent. Therefore, it changes greatly in accordance with the change in the flow rate of the inert gas.

【0034】そこで、図6の光センサ11,12はいず
れも溶接部Bのレーザ誘起プラズマPを監視しているも
のの、一方の光センサ11の出力によってレーザ出力を
管理するとともに、他方の光センサ12の出力によって
不活性ガス流量を管理するものとして、図7の特性曲線
1および図8の特性曲線S2を相関データとしてコンピ
ュータ10のメモリに予め記憶させておく。
Therefore, although the optical sensors 11 and 12 of FIG. 6 both monitor the laser-induced plasma P of the welded portion B, the laser output is controlled by the output of one optical sensor 11 and the other optical sensor is controlled. In order to control the flow rate of the inert gas by the output of 12, the characteristic curve S 1 of FIG. 7 and the characteristic curve S 2 of FIG. 8 are stored in the memory of the computer 10 in advance as correlation data.

【0035】図9は図6に示したシステムでの処理手順
を示す図で、溶接が開始されるとコンピュータ10は、
溶接部Bでレーザ誘起プラズマPを監視している双方の
光センサ11,12の出力S1,S2を一定の周期で取り
込む。
FIG. 9 is a diagram showing a processing procedure in the system shown in FIG. 6. When welding is started, the computer 10
The outputs S 1 and S 2 of both optical sensors 11 and 12 which monitor the laser-induced plasma P at the welded portion B are taken in at a constant cycle.

【0036】すなわち、最初に一方の光センサ12の出
力S2をコンピュータ10に取り込み(図9のステップ
S1〜S3)、予めコンピュータ10のメモリに記憶さ
れている図8の相関データと比較照合して、その光セン
サ12の出力S2に相当する不活性ガス流量QGを算出す
る(ステップS4)。
That is, first, the output S 2 of one optical sensor 12 is taken into the computer 10 (steps S1 to S3 in FIG. 9) and compared with the correlation data in FIG. 8 stored in the memory of the computer 10 in advance. Then, the inert gas flow rate Q G corresponding to the output S 2 of the optical sensor 12 is calculated (step S 4 ).

【0037】そして、その算出した不活性ガス流量QG
と、コンピュータ10に予め記憶されている基準ガス流
量QG0とを比較して、その不活性ガス流量QGが適正範
囲内におさまっているかどうかその合否を判定する(ス
テップS5)。判定の結果、不活性ガス流量QGが適正
範囲内であれば次のステップに移行し、他方、不活性ガ
ス流量QGが適正範囲を逸脱していれば不活性ガス流量
のエラー処理を実行し、その時点で溶接を中止する(ス
テップS7)。
Then, the calculated inert gas flow rate Q G
And a reference gas flow rate Q G0 stored in advance in the computer 10 are compared to determine whether or not the inert gas flow rate Q G is within an appropriate range (step S5). Execution result, if the inert gas flow rate Q G is proper range shifts to the next step, while the inert gas flow rate Q G is the error processing of the inert gas flow rate if departing from the proper scope of determination Then, the welding is stopped at that point (step S7).

【0038】さらに、図9のステップS6では、他方の
光センサ11の出力S1をコンピュータ10に取り込
み、予めコンピュータ10のメモリに記憶されている図
7の相関データと比較照合して、その光センサ11の出
力S1に相当するレーザ出力WLを算出する(ステップS
7)。
Further, in step S6 of FIG. 9, the output S 1 of the other photosensor 11 is fetched into the computer 10 and compared with the correlation data of FIG. A laser output W L corresponding to the output S 1 of the sensor 11 is calculated (step S
7).

【0039】そして、その算出したレーザ出力WLと、
コンピュータ10に予め記憶されている基準レーザ出力
L0とを比較して、そのレーザ出力WLが適正範囲内に
おさまっているかどうか合否を判定する(ステップS
8)。判定の結果、レーザ出力WLが適正範囲内であれ
ば上記の一連のステップを溶接終了まで繰り返し(ステ
ップS9,S10)、他方、レーザ出力WLが適正範囲
を逸脱している場合にはレーザ出力WLのエラー処理を
実行し、その時点で溶接を中止する(ステップS1
1)。
Then, the calculated laser output W L and
The reference laser output W L0 stored in advance in the computer 10 is compared to determine whether or not the laser output W L is within an appropriate range (step S).
8). As a result of the determination, if the laser output W L is within the proper range, the above series of steps are repeated until the welding is completed (steps S9 and S10). On the other hand, if the laser output W L deviates from the proper range, the laser is released. Error processing of the output W L is executed, and welding is stopped at that point (step S1).
1).

【0040】このように、不活性ガス流量QGおよびレ
ーザ出力WLの各溶接条件ごとに俯角の異なる光センサ
11,12で個別にレーザ誘起プラズマPを監視するこ
とにより、それぞれの溶接条件が適正範囲であるかどう
か独立して判定することができる。
As described above, by individually monitoring the laser-induced plasma P with the optical sensors 11 and 12 having different depression angles for each welding condition of the inert gas flow rate Q G and the laser output W L , each welding condition can be determined. It can be independently determined whether it is within the proper range.

【0041】なお、前記第1,第2のいずれの実施例に
おいても、エラー処理として該当する溶接条件が適正範
囲内に入るようにレーザ出力制御系や不活性ガス流量制
御系に直接フィードバックをかけるようにしてもよい。
In both the first and second embodiments, the feedback is directly applied to the laser output control system and the inert gas flow rate control system so that the corresponding welding condition falls within the proper range as the error processing. You may do it.

【0042】[0042]

【発明の効果】以上のように請求項1の発明によれば、
被溶接物の表面側のレーザ誘起プラズマを監視する表面
側の光センサに加えて、被溶接物の裏面側のレーザ誘起
プラズマを監視する裏面側の光センサを設けて、裏面側
の光センサの出力値に所定の補正係数を乗じた上で表面
側の光センサの出力値に加算して総プラズマ強度を算出
し、この総プラズマ強度と基準値とを比較して溶接状態
の適否を判定するようにしたことにより、溶接部の溶け
込み深さの設定が被溶接物の裏面まで貫通するかしない
かのぎりぎりの条件下にある場合に、万一その溶け込み
が被溶接物の裏面側まで貫通したとしても、その裏面側
でのレーザ誘起プラズマの発生を考慮して溶接状態の判
定を正確に行うことができ、判定結果の信頼性が向上す
る。
As described above, according to the invention of claim 1,
In addition to the front side optical sensor that monitors the laser-induced plasma on the front side of the work piece, a back side optical sensor that monitors the laser-induced plasma on the back side of the work piece is provided. The output value is multiplied by a predetermined correction coefficient and then added to the output value of the optical sensor on the surface side to calculate the total plasma intensity, and this total plasma intensity is compared with a reference value to determine the adequacy of the welding state. By doing so, when the setting of the penetration depth of the welded portion is under the condition where it penetrates to the back surface of the welded object or just under the condition, the penetration penetrates to the back surface side of the welded object. Even in this case, the welding state can be accurately determined in consideration of the generation of laser-induced plasma on the back surface side, and the reliability of the determination result is improved.

【0043】また、請求項2の発明によれば、各溶接条
件ごとに俯角の異なる光センサで個別にレーザ誘起プラ
ズマを監視し、予め記憶設定された光センサの出力値と
溶接条件データとの相関データから該当する溶接条件デ
ータを算出した上で基準値と比較して各溶接条件の適否
を判定することにより、複数の溶接条件について各溶接
条件ごとにその適否を正確に判定することができ、判定
結果の信頼性が向上する。
According to the second aspect of the present invention, the laser-induced plasma is individually monitored by the photosensors having different depression angles for each welding condition, and the output value of the photosensor and the welding condition data stored in advance are stored. By calculating the corresponding welding condition data from the correlation data and comparing it with the reference value to judge the suitability of each welding condition, it is possible to accurately judge the suitability of each welding condition for multiple welding conditions. , The reliability of the determination result is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す処理手順のフロー
チャート。
FIG. 1 is a flowchart of a processing procedure showing a first embodiment of the present invention.

【図2】図1の処理手順を実行するシステムの概略説明
図。
FIG. 2 is a schematic explanatory diagram of a system that executes the processing procedure of FIG.

【図3】レーザ光の焦点位置と光センサ出力との相関を
示す特性図。
FIG. 3 is a characteristic diagram showing a correlation between a focus position of laser light and an output of an optical sensor.

【図4】レーザ光の焦点位置と光センサ出力との相関を
示す特性図。
FIG. 4 is a characteristic diagram showing a correlation between a focus position of laser light and an output of an optical sensor.

【図5】図3の二つの特性を図4の特性にするのに必要
な補正係数の説明図。
5 is an explanatory diagram of a correction coefficient required to make the two characteristics of FIG. 3 into the characteristics of FIG.

【図6】本発明の第2の実施例を示すシステムの概略説
明図。
FIG. 6 is a schematic explanatory diagram of a system showing a second embodiment of the present invention.

【図7】レーザ出力と光センサ出力との相関を示す特性
図。
FIG. 7 is a characteristic diagram showing a correlation between a laser output and an optical sensor output.

【図8】不活性ガス流量と光センサ出力との相関を示す
特性図。
FIG. 8 is a characteristic diagram showing a correlation between an inert gas flow rate and an optical sensor output.

【図9】図6のシステムでの処理手順を示すフローチャ
ート。
9 is a flowchart showing a processing procedure in the system of FIG.

【図10】溶接部の断面説明図。FIG. 10 is a cross-sectional explanatory view of a welded portion.

【図11】従来の溶接状態管理システムの概略説明図。FIG. 11 is a schematic explanatory diagram of a conventional welding state management system.

【図12】溶接部の断面説明図で、(A)は溶け込みが
裏面まで及ばない場合の断面説明図、(B)は溶け込み
が裏面まで及んだ場合の断面説明図。
12A and 12B are cross-sectional explanatory views of a welded portion, where FIG. 12A is a cross-sectional explanatory view when the penetration does not reach the back surface, and FIG. 12B is a cross-sectional explanatory view when the penetration reaches the back surface.

【符号の説明】[Explanation of symbols]

1…レーザ発振機 2…集光光学系 4,5…光センサ 6…信号処理装置 10…コンピュータ 11,12…光センサ B…溶接部 G…不活性ガス L…レーザ光 P…レーザ誘起プラズマ W…被溶接物 DESCRIPTION OF SYMBOLS 1 ... Laser oscillator 2 ... Condensing optical system 4, 5 ... Optical sensor 6 ... Signal processing apparatus 10 ... Computer 11, 12 ... Optical sensor B ... Welding part G ... Inert gas L ... Laser light P ... Laser induced plasma W ... Workpiece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G07C 3/00 9146−3E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G07C 3/00 9146-3E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被溶接物にレーザ光を照射して溶接を行
うにあたり、前記レーザ光に誘起されて溶接部位から発
生するプラズマを光センサにより監視し、そのレーザ誘
起プラズマの強度に基づいて溶接状態を管理する方法に
おいて、 前記被溶接物の表裏両面側に配置した光センサにより溶
接部位の表裏両面でのレーザ誘起プラズマの発生を個別
に監視し、 前記裏面側の光センサの出力値が所定値未満の場合に
は、表面側の光センサの出力値を総プラズマ強度として
予め設定した基準値と比較して溶接状態の適否を判定す
る一方、 前記裏面側の光センサの出力値が所定値以上の場合に
は、その裏面側の光センサの出力値に所定の補正係数を
乗じた上で前記表面側の光センサの出力値に加算して総
プラズマ強度を算出し、この総プラズマ強度と前記基準
値とを比較して溶接状態の適否を判定することを特徴と
するレーザ溶接の溶接状態管理方法。
1. When irradiating a workpiece with laser light to perform welding, plasma generated by the laser light at a welding site is monitored by an optical sensor, and welding is performed based on the intensity of the laser-induced plasma. In the method of managing the state, the generation of laser-induced plasma on the front and back surfaces of the welding site is individually monitored by the optical sensors arranged on the front and back surfaces of the workpiece, and the output value of the back side optical sensor is predetermined. If the value is less than the value, the output value of the optical sensor on the front surface side is compared with a reference value preset as the total plasma intensity to determine whether the welding state is appropriate, while the output value of the optical sensor on the rear surface side is a predetermined value. In the above case, the output value of the optical sensor on the back surface side is multiplied by a predetermined correction coefficient and then added to the output value of the optical sensor on the front surface side to calculate the total plasma intensity. Previous A welding state management method for laser welding, characterized in that the appropriateness of the welding state is determined by comparing with a reference value.
【請求項2】 被溶接物にレーザ光を照射するとともに
溶接部位に不活性ガスを吹き付けながらレーザ溶接を行
うにあたり、前記レーザ光に誘起されて溶接部位から発
生するプラズマを光センサにより監視し、そのレーザ誘
起プラズマの強度に基づいてレーザ出力や不活性ガス流
量等の複数の溶接条件を監理する方法において、 前記被溶接物の上方から溶接部位を指向する俯角の異な
る複数の光センサによりその溶接部位でのレーザ誘起プ
ラズマの発生を個別に監視し、 前記各光センサが管理すべき溶接条件の項目を各光セン
サごとに予め定めておく一方、 前記各溶接条件のデータの変動とそれに伴う該当する光
センサ出力との関係を相関データとして予め規定してお
き、 溶接中の前記各光センサの出力を該当する相関データと
照合してその各光センサ出力に対応する溶接条件データ
を個別に算出し、 この算出された各溶接条件データと予め設定された基準
値とを比較して溶接条件ごとにその適否を判定すること
を特徴とするレーザ溶接の溶接条件管理方法。
2. When performing laser welding while irradiating a workpiece with a laser beam and spraying an inert gas onto the welded part, plasma generated by the laser beam at the welded part is monitored by an optical sensor, In a method of controlling a plurality of welding conditions such as a laser output and an inert gas flow rate based on the intensity of the laser-induced plasma, the welding is performed by a plurality of optical sensors having different depression angles that direct the welding site from above the workpiece. Individually monitor the generation of laser-induced plasma in the site, while predetermining the welding condition items to be managed by each optical sensor for each optical sensor, the variation of the data of each welding condition and the corresponding The relationship between the output of each optical sensor is specified in advance as correlation data, and the output of each optical sensor during welding is compared with the corresponding correlation data. It is characterized in that welding condition data corresponding to each optical sensor output is individually calculated, and each of the calculated welding condition data is compared with a preset reference value to determine suitability for each welding condition. Welding condition management method for laser welding.
JP5056240A 1993-03-17 1993-03-17 Laser welding condition and welding condition management method Expired - Lifetime JP2876930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5056240A JP2876930B2 (en) 1993-03-17 1993-03-17 Laser welding condition and welding condition management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056240A JP2876930B2 (en) 1993-03-17 1993-03-17 Laser welding condition and welding condition management method

Publications (2)

Publication Number Publication Date
JPH06262377A true JPH06262377A (en) 1994-09-20
JP2876930B2 JP2876930B2 (en) 1999-03-31

Family

ID=13021577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056240A Expired - Lifetime JP2876930B2 (en) 1993-03-17 1993-03-17 Laser welding condition and welding condition management method

Country Status (1)

Country Link
JP (1) JP2876930B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215868A (en) * 1995-02-09 1996-08-27 Nissan Motor Co Ltd Method and device for monitoring welding
JP2001116510A (en) * 1999-10-14 2001-04-27 Isamu Miyamoto Welding part monitoring method and welding part monitoring apparatus for laser beam welding
JP2001124697A (en) * 1999-08-03 2001-05-11 General Electric Co <Ge> Monitoring and control method for laser impact peening using successive plasma light special analysis
JP2001517554A (en) * 1997-09-19 2001-10-09 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method and apparatus for material processing using induced high energy beam plasma
WO2012063381A1 (en) * 2010-11-08 2012-05-18 パナソニック株式会社 Battery module and method for welding battery module
KR20150067378A (en) * 2012-10-19 2015-06-17 아이피지 포토닉스 코포레이션 Robotic laser seam stepper
KR20150105298A (en) * 2012-10-19 2015-09-16 아이피지 포토닉스 코포레이션 Hand maneuverable laser welding gun
US9321131B2 (en) 2008-09-24 2016-04-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for CO2 laser welding with a dynamic jet nozzle
JP2017177222A (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Laser welding method and laser welding device
US9884392B2 (en) 2014-11-14 2018-02-06 Toyota Jidosha Kabushiki Kaisha Laser welding apparatus and laser welding method
KR20190032399A (en) * 2016-06-30 2019-03-27 싸우에르 게엠바하 Process monitoring device in deposition welding process
US11664342B2 (en) 2020-06-25 2023-05-30 Fuji Electric Co., Ltd. Semiconductor device with a laser-connected terminal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735657B (en) * 2012-07-10 2014-07-23 广东电网公司电力科学研究院 Laser induced breakdown spectrometer and spectral signal collection method of same
FR3134735A1 (en) * 2022-04-20 2023-10-27 Societe D'assemblage Par Faisceaux D'electrons Et Laser Laser machine comprising two nozzles and associated manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215868A (en) * 1995-02-09 1996-08-27 Nissan Motor Co Ltd Method and device for monitoring welding
JP2001517554A (en) * 1997-09-19 2001-10-09 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method and apparatus for material processing using induced high energy beam plasma
JP4662621B2 (en) * 1997-09-19 2011-03-30 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method and apparatus for material processing using high energy beam
JP2001124697A (en) * 1999-08-03 2001-05-11 General Electric Co <Ge> Monitoring and control method for laser impact peening using successive plasma light special analysis
JP2001116510A (en) * 1999-10-14 2001-04-27 Isamu Miyamoto Welding part monitoring method and welding part monitoring apparatus for laser beam welding
US9321131B2 (en) 2008-09-24 2016-04-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for CO2 laser welding with a dynamic jet nozzle
JPWO2012063381A1 (en) * 2010-11-08 2014-05-12 パナソニック株式会社 Battery module and battery module welding method
JP5528571B2 (en) * 2010-11-08 2014-06-25 パナソニック株式会社 Battery module and battery module welding method
WO2012063381A1 (en) * 2010-11-08 2012-05-18 パナソニック株式会社 Battery module and method for welding battery module
KR20150067378A (en) * 2012-10-19 2015-06-17 아이피지 포토닉스 코포레이션 Robotic laser seam stepper
KR20150105298A (en) * 2012-10-19 2015-09-16 아이피지 포토닉스 코포레이션 Hand maneuverable laser welding gun
US9884392B2 (en) 2014-11-14 2018-02-06 Toyota Jidosha Kabushiki Kaisha Laser welding apparatus and laser welding method
JP2017177222A (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Laser welding method and laser welding device
KR20190032399A (en) * 2016-06-30 2019-03-27 싸우에르 게엠바하 Process monitoring device in deposition welding process
US11664342B2 (en) 2020-06-25 2023-05-30 Fuji Electric Co., Ltd. Semiconductor device with a laser-connected terminal

Also Published As

Publication number Publication date
JP2876930B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JPH06262377A (en) Method for controlling welding state of laser beam welding and welding condition
US6215094B1 (en) Process for determining the instantaneous penetration depth and a machining laser beam into a workpiece, and device for implementing this process
US6329635B1 (en) Methods for weld monitoring and laser heat treatment monitoring
EP1238744B1 (en) Laser weld quality monitoring method and system
JP2000271768A (en) Monitoring method of quality for yag laser beam welded part
JPS61123493A (en) Laser working device
JPH07236984A (en) Method and device for laser beam processing
JP4936718B2 (en) Laser welding method
JP3530129B2 (en) Laser processing apparatus and processing method
Sanders et al. Real-time monitoring of laser beam welding using infrared weld emissions
JP3154176B2 (en) Focus position control device for laser welding machine
JP2003019589A (en) Equipment and method for welding control for controlling temperature of molten part by feedback
JP2001087879A (en) Laser beam welding method
JP3147459B2 (en) Processing head of laser beam machine
JP3407655B2 (en) Laser welding monitoring method
JP2737472B2 (en) Welding condition detector
JP4098024B2 (en) Laser spot welding method
Xudong et al. Double closed-loop control of the focal point position in laser beam welding
JP4136547B2 (en) Pulsed laser welding method
JP4136551B2 (en) Laser welding method
JP4667446B2 (en) Determination method of pulse frequency of laser output in pulse laser welding
JP3259695B2 (en) Laser processing apparatus and laser processing method
JPH05177372A (en) Laser beam machine
JPS589783A (en) Method of inspection for laser working
CN116765652B (en) Optical fiber sensor laser welding focus tracking and energy distribution monitoring method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 15