JPH0626132B2 - Fuel concentration detector for liquid fuel cell - Google Patents

Fuel concentration detector for liquid fuel cell

Info

Publication number
JPH0626132B2
JPH0626132B2 JP60074264A JP7426485A JPH0626132B2 JP H0626132 B2 JPH0626132 B2 JP H0626132B2 JP 60074264 A JP60074264 A JP 60074264A JP 7426485 A JP7426485 A JP 7426485A JP H0626132 B2 JPH0626132 B2 JP H0626132B2
Authority
JP
Japan
Prior art keywords
fuel
concentration
electrode
anode electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60074264A
Other languages
Japanese (ja)
Other versions
JPS61233973A (en
Inventor
良太 土井
三郎 安川
勤 津久井
元男 山口
利男 清水
修蔵 岩浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60074264A priority Critical patent/JPH0626132B2/en
Priority to DE8585113834T priority patent/DE3582716D1/en
Priority to CA000494271A priority patent/CA1257647A/en
Priority to EP85113834A priority patent/EP0181569B1/en
Priority to US06/792,888 priority patent/US4629664A/en
Publication of JPS61233973A publication Critical patent/JPS61233973A/en
Publication of JPH0626132B2 publication Critical patent/JPH0626132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体燃料電池の燃料濃度検出装置に係り、特に
燃料電池へ液体燃料を循環供給するように形成されてい
る液体燃料電池の燃料濃度検出装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel concentration detection device for a liquid fuel cell, and more particularly to a fuel concentration detection device for a liquid fuel cell formed so as to circulate liquid fuel to the fuel cell. Regarding the device.

〔発明の背景〕[Background of the Invention]

一般に液体を燃料とする燃料電池としては、酸性型とア
ルカリ型とがあり、そして試料にはメタノール,ホルマ
リン,ヒドラジン等が採用されている。この種燃料電池
についてその原理を簡単に第2図に基づき説明すると、
図中1は燃料電池を示し、+,−は電気取出し端子を示
している。この燃料電池1は、燃料極2,この燃料極に
対向配置された酸化剤極(酸素を使う場合には酸素極,
空気を使う場合には空気極ともいう)3,またこの酸化
剤極3と燃料極2間に設けられた電解質室4,それに燃
料極2に隣接して設けられている燃料室5,酸化剤極3
に隣接して設けられている酸化剤室6等により構成され
ている。尚図中7は燃料(燃料と水を含む場合あり)ま
たは燃料と電解液の混合液とその供給方向を示し、8は
酸化剤とその供給方向を示している。
Generally, there are an acid type and an alkaline type as fuel cells using a liquid as a fuel, and methanol, formalin, hydrazine and the like are used as samples. The principle of this type of fuel cell will be briefly described with reference to FIG.
In the figure, 1 indicates a fuel cell, and +,-indicates electric outlet terminals. The fuel cell 1 includes a fuel electrode 2, an oxidizer electrode (an oxygen electrode if oxygen is used,
When air is used, it is also called an air electrode) 3, and also an electrolyte chamber provided between the oxidant electrode 3 and the fuel electrode 2, a fuel chamber provided adjacent to the fuel electrode 2, and an oxidant Pole 3
And an oxidant chamber 6 and the like provided adjacent to. In the figure, 7 indicates a fuel (which may include fuel and water) or a mixed liquid of fuel and an electrolytic solution and its supply direction, and 8 indicates an oxidant and its supply direction.

このように構成された燃料電池の動作は、燃料7が燃料
室5に供給され、また酸化剤8が酸化剤室6に供給され
ると、燃料7は燃料極2に浸透して電気化学反応により
電子が生成され、外部回路に負荷を与えれば直流電流が
得られる。尚この場合燃料室5には生成物9が発生す
る。この生成物は燃料がメタノールやホルマリンであれ
ば炭酸ガスや炭酸塩であり、燃料がヒドラジンであれば
窒素である。また、燃料7の供給が循環型のものの場合
には、この生成物の中に余剰の燃料や電解液が含まれ
る。このときには勿論排出ガスは循環系の途中から別に
放出する必要がある。
When the fuel 7 is supplied to the fuel chamber 5 and the oxidant 8 is supplied to the oxidant chamber 6, the fuel 7 permeates into the fuel electrode 2 to cause an electrochemical reaction. Electrons are generated by this, and a direct current can be obtained by applying a load to an external circuit. In this case, the product 9 is generated in the fuel chamber 5. This product is carbon dioxide or carbonate when the fuel is methanol or formalin, and nitrogen when the fuel is hydrazine. Further, when the supply of the fuel 7 is of a circulation type, the excess fuel and the electrolytic solution are contained in this product. At this time, of course, the exhaust gas must be separately released from the middle of the circulation system.

一方酸化剤室6側では、酸化剤室に酸化剤8を供給する
と、酸化剤8は酸化剤極3に浸透拡散し、そして電気化
学反応により電子が消費され、電解質が酸性型の場合に
は生成物10が発生する。この生成物は主に水である
が、勿論余剰の空気も含まれている。
On the other hand, on the side of the oxidant chamber 6, when the oxidant 8 is supplied to the oxidant chamber, the oxidant 8 permeates and diffuses into the oxidant electrode 3, and electrons are consumed by the electrochemical reaction. Product 10 is generated. The product is mainly water, but of course also contains excess air.

ところでこの液体を燃料とする燃料電池では、第3図に
示すように、電流一定にとつた場合供給する燃料7の濃
度Cに対してセル電圧Vは山状の特性を示す。すなわ
ち燃料の濃度Cが低いところでは燃料不足をきたして
セル電圧が低下し、逆に燃料の濃度が高いところでは、
燃料極2で反応にあずからない余剰の燃料が電解質室4
を経て酸化剤極3に浸透し、ここで直接燃焼を起こす。
この結果発熱を伴いながら酸化剤極3の電位を低下さ
せ、セル電圧が低下してしまうのである。このように燃
料の濃度が高過ぎたり低過ぎたりする(Cm1以下あるい
はCm2以上)と、消費した燃料の量に対する電気エネル
ギーに変換するに必要な燃料の量の比は小さくなり、燃
料利用率は大巾に低下する。したがってこの燃料の濃度
の選定は非常に大切なのである。
By the way, in the fuel cell using this liquid as a fuel, as shown in FIG. 3, the cell voltage V exhibits a mountain-like characteristic with respect to the concentration C m of the fuel 7 supplied when the current is kept constant. That is, when the fuel concentration C m is low, fuel shortage occurs and the cell voltage decreases, and conversely, when the fuel concentration is high,
Excess fuel that does not participate in the reaction at the fuel electrode 2 is the electrolyte chamber 4
Permeate into the oxidizer electrode 3 through and directly burn there.
As a result, the potential of the oxidant electrode 3 is lowered while generating heat, and the cell voltage is lowered. When the fuel concentration is too high or too low (C m1 or less or C m2 or more) in this way, the ratio of the amount of fuel necessary to convert into electric energy to the amount of fuel consumed becomes small, and the fuel utilization The rate drops significantly. Therefore, the selection of this fuel concentration is very important.

この燃料の濃度の適切値、すなわち第3図に示してある
濃度Cm1〜Cm2の値は種々実験検討されている。
Various experimental studies have been conducted on the appropriate value of the fuel concentration, that is, the values of the concentrations C m1 to C m2 shown in FIG.

たとえばメタノールを燃料とし、酸性電解液型の場合、
第24図電池討論会予稿集No.2B02,第257頁に、電
流密度64mA/Cm2にとつたとき、濃度Cm1として0.5
mol/l,濃度Cm2は2mol/lが示されている。
For example, using methanol as fuel and acidic electrolyte type,
Fig. 24 Battery Discussion Group Proceedings No. 2B02, page 257 shows that when the current density is 64 mA / Cm 2 , the concentration C m1 is 0.5.
The mol / l and the concentration C m2 are shown to be 2 mol / l.

また特開昭56-118273 号公報には濃度Cm2として約5w
t%(約1.6 mol/l)が示されている。
Further, in Japanese Patent Laid-Open No. 56-118273, the concentration C m2 is about 5 w.
t% (about 1.6 mol / l) is indicated.

一方ヒドラジンを燃料とする液体燃料電池でも特公昭48
-31300号公報には1.5 %(0.5 mol/l)付近で安定な
運転がなされているが、これを越えると電圧が低下し、
温度上昇がある旨記載されている。
On the other hand, even in liquid fuel cells using hydrazine as fuel
-31300 discloses stable operation at around 1.5% (0.5 mol / l), but beyond this, the voltage drops and
It is stated that there is a temperature rise.

以上のことからもわかるように、安定に運転ができる濃
度範囲としては濃度Cmが約0.3 mol/l,濃度Cm1
が約2mol/l程度であろう。
As can be seen from the above, the concentration Cm 1 is about 0.3 mol / l and the concentration C m1 is the concentration range in which stable operation is possible.
Is about 2 mol / l.

このように燃料電池においては燃料の濃度は非常に重要
なものであり、したがつてその濃度を検出(あるいは測
定)する装置も正確なものが要求されてくる。
As described above, the concentration of the fuel is very important in the fuel cell, and therefore an accurate device for detecting (or measuring) the concentration is required.

次にこの濃度検出装置について実用に供されている燃料
電池とともに説明する。
Next, this concentration detecting device will be described together with a fuel cell which is practically used.

第4図は濃度検出装置を備えた燃料電池を線図で示した
もので、前述した第1図と同一部品には同一符号が付さ
れている。
FIG. 4 is a diagram showing a fuel cell provided with a concentration detecting device, and the same parts as those in FIG. 1 described above are designated by the same reference numerals.

酸化剤8はブロワー11によつて空気室6に供給され、
反応後残ガス10が排出される。一方燃料供給系は、燃
料と電解液の混合液(アノライトとも云われる)7をポ
ンプ12にて循環する系をもち、かつこれに燃料タンク
13よりバルブ14を経て前記循環系に設けられている
アノライトタンク15に燃料が適量供給される系よりな
つている。尚生成ガス9aは循環系の一部が解放され、
これより排出されるようになつている。
The oxidant 8 is supplied to the air chamber 6 by the blower 11,
After the reaction, the residual gas 10 is discharged. On the other hand, the fuel supply system has a system in which a mixed liquid (also called anolyte) 7 of fuel and an electrolytic solution is circulated by a pump 12, and is provided in the circulation system from a fuel tank 13 through a valve 14. It is composed of a system in which an appropriate amount of fuel is supplied to the anolite tank 15. The generated gas 9a is partially released from the circulation system,
It is supposed to be discharged from this.

燃料の供給はバルブ14の開閉により行なわれるわけで
あるが、このバルブの開閉指令及び制御はアノライトタ
ンク15部に設けられている濃度検出装置16及びバル
ブ制御装置17によつてなされる。
The fuel is supplied by opening / closing the valve 14, and the opening / closing command and control of this valve are performed by the concentration detection device 16 and the valve control device 17 provided in the anolyte tank 15.

濃度検出装置16は次のように形成されている。すなわ
ち第5図に示すようにアノード電極(以下アノードと云
う)17とこのアノードに対向配置されたカソード電極
(以下カソードと云う)18,それに電源19,検出器
20により形成されている。アノード17は集電体と燃
料の電解を行なう電極を兼ねた白金板17aに燃料抑制
層17bをプレスして密着させたものより形成されてい
る。白金板17aの燃料抑制層17bと密着していない
ところは絶縁物等で被覆し、液体燃料に接触しないよう
にしてある。アノード17とカソード18との間に電源
19によりたとえば0.85(V)の直流電圧を印加す
ると、燃料抑制層を透過したメタノールが電解されて電
流が流れる。燃料抑制層を透過するメタノール量がアノ
ライト中のメタノール濃度に比例するので、それに対応
する電解電流から濃度検出ができる。従って、構成が非
常に簡単で、燃料であるメタノールの濃度を測定するこ
とが可能である。
The concentration detector 16 is formed as follows. That is, as shown in FIG. 5, it is formed by an anode electrode (hereinafter referred to as an anode) 17, a cathode electrode (hereinafter referred to as a cathode) 18 arranged to face the anode, a power source 19 and a detector 20. The anode 17 is formed of a platinum plate 17a which also serves as a current collector and an electrode for electrolyzing a fuel, and a fuel suppression layer 17b is pressed and brought into close contact with the platinum plate 17a. The part of the platinum plate 17a that is not in close contact with the fuel suppression layer 17b is covered with an insulator or the like so as not to come into contact with the liquid fuel. When a DC voltage of, for example, 0.85 (V) is applied between the anode 17 and the cathode 18 by the power supply 19, the methanol that has permeated the fuel suppression layer is electrolyzed and a current flows. Since the amount of methanol passing through the fuel suppression layer is proportional to the concentration of methanol in anolyte, the concentration can be detected from the corresponding electrolytic current. Therefore, the structure is very simple, and it is possible to measure the concentration of the fuel methanol.

しかしながら、このものではたしかにメタノールの濃度
が測定できるが、次にようにその検出感度が悪い嫌いが
ある。すなわち第8図を参照願うと、この図は濃度と検
出電流との関係を表わしたもので、曲線aが前述したも
ので、濃度Cに対して電流値は変化しているが、その
電流変化は小さく検出感度は悪いのである。
However, although it is possible to measure the concentration of methanol with this method, the detection sensitivity is poor as described below. That is, referring to FIG. 8, this figure shows the relationship between the concentration and the detected current. The curve a is as described above, and the current value changes with the concentration C m . The change is small and the detection sensitivity is poor.

さらに前述した白金板17a(第5図)と燃料抑制層1
7b間の密着が不十分となりがちでこの間に液だまりが
出来易く、このためにメタノールの濃度変化にともなう
応答性が悪い嫌いもある。また、アノード17を燃料抑
制層17bを取り除いて白金板17aだけで構成した場
合は、第8図に示した曲線bのような燃料濃度と検出電
流の関係になり、燃料電池の運転に適切な濃度範囲で検
出電流が飽和し、燃料の濃度変化をとらえることができ
ない。すなわち、燃料抑制層は制御すべき燃料濃度範囲
で電解電流の変化をとらえるようにコントロールするた
めに必要である。
Further, the platinum plate 17a (FIG. 5) and the fuel suppression layer 1 described above are used.
Adhesion between 7b tends to be insufficient, and a liquid pool is liable to be formed during this time, which may hate poor responsiveness due to change in concentration of methanol. Further, when the anode 17 is composed of only the platinum plate 17a without the fuel suppression layer 17b, the relationship between the fuel concentration and the detected current is as shown by the curve b shown in FIG. 8, which is suitable for the operation of the fuel cell. The detected current is saturated in the concentration range, and it is impossible to detect the change in fuel concentration. That is, the fuel suppression layer is necessary for controlling so as to catch the change in electrolytic current within the fuel concentration range to be controlled.

尚この他にも濃度検出装置として、参照電極を用いるサ
イクリツクボルタンメトリー法や、たとえば特開昭56-1
18273 号公報のように小型の燃料電池を設けてそれを濃
度検出装置として用いるもの等もあるが、しかし前者の
サイクリツクボルタンメトリー法も採用する場合には、
検出用電極の他に参照電極を必要とし、さらにフアンク
シヨンジエネレータなどの装置が必要で、検出系システ
ムが複雑になつてセンサの最大使命である信頼性に欠け
る嫌いがある。
In addition to this, as a concentration detecting device, a cyclic voltammetry method using a reference electrode, or a method disclosed in Japanese Unexamined Patent Publication No.
Although there is a device such as 18273 that has a small fuel cell and uses it as a concentration detection device, however, when the former cyclic voltammetry method is also adopted,
In addition to the detection electrode, a reference electrode is required, and a device such as a function generator is required, which makes the detection system complicated and lacks reliability, which is the maximum mission of the sensor.

また後者の小型の燃料電池を用いる場合には、単にその
装置をアノライトタンクに挿入するだけではすまず、空
気を供給するシステムが必要になるなど小形化に難があ
るとともに信頼性に欠ける嫌いがある。
Also, when using the latter small-sized fuel cell, it is difficult to downsize it by simply inserting the device into the anolite tank, and a system for supplying air is required. There is.

また、燃料にヒドラジンを使う場合にはともかく、メタ
ノールやホルマリンを使う場合にはサイクリツクボルタ
ンメトリー法を使つても検出出力が複雑に変化し判定が
難しいところがある。
In addition, when using hydrazine as fuel, when using methanol or formalin, even if the cyclic voltammetry method is used, the detection output changes in a complicated manner, and there are some places where determination is difficult.

その他、負荷電流に比例するところから積分量が一定量
になると燃料を供給する方法もあるが、これは負荷が変
わつたり、停止がくりかえされると燃料濃度がずれてく
るなどが生じ実用的でないことや、半導体によるガス濃
度センサーでは一定値に落ち着くまでに時間がかかり応
答が悪いなどの問題点がある。
There is also a method of supplying fuel when the integrated amount becomes a constant amount because it is proportional to the load current, but this is not practical because the load changes or the fuel concentration shifts if the stop is repeated. However, a semiconductor gas concentration sensor has a problem in that it takes time to settle at a certain value and the response is poor.

このようなわけで従来から構成簡単にして信頼性のある
この種濃度検出装置が要望されていた。
For this reason, there has conventionally been a demand for a reliable concentration detecting device of this type with a simple structure.

〔発明の目的〕[Object of the Invention]

本発明はこれにかんがみなされたもので、信頼性が高く
かつ高感度で構成の簡単な濃度検出装置を提供するにあ
る。
The present invention has been made in view of this, and an object of the present invention is to provide a concentration detecting device having high reliability, high sensitivity, and simple structure.

〔発明の概要〕[Outline of Invention]

すなわち本発明は、濃度検出装置のアノード電極を集電
体と燃料の電解反応に活性の高い触媒層と燃料の透過を
抑制する燃料抑制層を固着して構成することにより、検
出感度の向上と液だまりの防止による信頼性の向上を図
ることで所期の目的を達成するようにしたものである。
That is, according to the present invention, the anode electrode of the concentration detecting device is constituted by fixing a catalyst layer having high activity to the electrolytic reaction of the current collector and the fuel and a fuel suppressing layer suppressing the permeation of the fuel, thereby improving the detection sensitivity. The intended purpose is achieved by improving reliability by preventing liquid pool.

〔発明の実施例〕Example of Invention

以下図示した実施例に基づいて本発明を詳細に説明す
る。第1図にはその濃度検出装置16が線図で示されて
いる。アノード17,カソード18,電源19,検出器
20は従来同様構成されているが、アノード17には触
媒層21を介して燃料抑制層17bが設けられているの
である。
The present invention will be described in detail based on the illustrated embodiments. FIG. 1 shows the concentration detecting device 16 in a diagram. Although the anode 17, the cathode 18, the power supply 19 and the detector 20 are constructed in the same manner as in the prior art, the anode 17 is provided with the fuel suppression layer 17b via the catalyst layer 21.

燃料抑制層17bは、カーボン繊維をすいて紙状にし、
その浸透性の調節と強撥水性のポリテトラフルオロエチ
レン微粒子の懸濁液を処理し焼成したもので、これらの
調節によつて燃料透過量をたとえば7×10-6mol/lc
m2,min ,mol/l前後にする。そしてこれの片側に白
金系の触媒層21を、同じポリテトラフルオロエチレン
微粒子の懸濁液と混練したものを添着し、焼成すること
で、触媒層と燃料抑制層とを結合させる。これをたとえ
ばタンタルからなるアノード17に触媒層で密着させ
る。尚、このとき、燃料が燃料抑制層側から浸入するよ
うに、かつ電極の押えも兼ねる枠材によつて固定すると
よい。
The fuel suppressing layer 17b is made of carbon fiber in a paper shape,
The permeation control and the strongly water-repellent suspension of polytetrafluoroethylene fine particles are treated and fired, and the fuel permeation amount is adjusted to 7 × 10 −6 mol / lc by these adjustments.
Adjust to around m 2 , min, mol / l. A platinum-based catalyst layer 21 is kneaded with the same suspension of fine particles of polytetrafluoroethylene on one side of the mixture, and the mixture is fired to bond the catalyst layer and the fuel suppression layer. This is adhered to the anode 17 made of, for example, tantalum with a catalyst layer. At this time, it is advisable to fix the fuel so that the fuel can enter from the fuel suppression layer side and also by the frame member that also serves as a retainer for the electrodes.

このような構成のものの実用試験においては、たとえば
電極面積4cm2で、電圧を0.9 (V)に選び、また燃料
抑制層17bの燃料透過量として1×10-6〜2×10
-5(mol/cm2,min ,mol/l)の範囲のもので、燃料
の濃度0〜1.5 mol/lにおいて、検出電流は第8図の
C曲線で示すように良感度でよい直線性を示した。
In a practical test of such a structure, for example, an electrode area of 4 cm 2 and a voltage of 0.9 (V) were selected, and the fuel permeation amount of the fuel suppression layer 17b was 1 × 10 −6 to 2 × 10.
-5 (mol / cm 2 , min, mol / l) range, the detected current is linear with good sensitivity as shown by the C curve in Fig. 8 when the fuel concentration is 0 to 1.5 mol / l. showed that.

すなわちこの装置であると、触媒層21が燃料の電解反
応に高い活性を有していること及び触媒層21と燃料抑
制層17bが固着して形成されるため、この間に液だま
りが生ぜず、液の浸透がよくなり検出感度及び検出の応
答性がよくなるのである。
That is, in this device, since the catalyst layer 21 has a high activity in the electrolysis reaction of fuel and the catalyst layer 21 and the fuel suppression layer 17b are fixedly formed, no liquid pool occurs between them, The liquid permeation is improved, and the detection sensitivity and detection responsiveness are improved.

尚ここで使用した燃料抑制層17bは繊維質カーボン板
でなくても多孔質であればよいし、焼結金属体などの導
電性多孔体でもよい。また、この場合には単に燃料を抑
制する機能を持つていればよいので、絶縁性である焼結
セラミツクスや有機質の多孔体を用いることができる。
また、触媒層の抑制層への付加方法も塗布,添着,電気
泳動法,CVD法など種々の方法が採用可能である。
The fuel suppression layer 17b used here does not have to be a fibrous carbon plate as long as it is porous and may be a conductive porous body such as a sintered metal body. In addition, in this case, since it is sufficient to simply have a function of suppressing fuel, it is possible to use an insulating sintered ceramic or an organic porous body.
Further, as a method of adding the catalyst layer to the suppression layer, various methods such as coating, attachment, electrophoresis method and CVD method can be adopted.

第6図は本発明の他の実施例を示すもので、燃料抑制層
が二重の場合である。すなわち燃料抑制層17bのカソ
ードとの対向面側に第2の燃料抑制層17cが設けられ
た場合である。この第2の燃料抑制層17cはカーボン
粉体やフツ化黒鉛粉体などを撥水性と結着性を兼ねた性
能をもつポリテトラフルオロエチレンの懸濁液と混練し
たものからなり、これを燃料抑制層17bに塗布後焼付
けて一体化して形成される。
FIG. 6 shows another embodiment of the present invention in which the fuel suppression layer is double. That is, this is the case where the second fuel suppression layer 17c is provided on the surface of the fuel suppression layer 17b facing the cathode. The second fuel suppression layer 17c is formed by kneading carbon powder, fluorinated graphite powder, or the like with a suspension of polytetrafluoroethylene having both water repellency and binding properties. After being applied to the suppression layer 17b, it is baked and integrally formed.

またカソード18も白金板を用いず触媒層18bをカソ
ード板18aに添着するか電気泳動法でつけることによ
りカソード板18aに特殊な材質のものを使用する必要
がなく安価で検出感度の良好なものが得られる。
Also, the cathode 18 does not need to use a platinum plate, but the catalyst layer 18b is attached to the cathode plate 18a or is attached by an electrophoretic method, so that it is not necessary to use a special material for the cathode plate 18a, and it is inexpensive and has good detection sensitivity. Is obtained.

次に第7図に示す実施例について説明する。これもカソ
ード側の改良で、カソード18は導電性の多孔質材18
cに触媒層18bを形成後カソード板18aに密着した
構成をとつている。
Next, the embodiment shown in FIG. 7 will be described. This is also an improvement on the cathode side, and the cathode 18 is a conductive porous material 18
After the catalyst layer 18b is formed on c, it is in close contact with the cathode plate 18a.

導電性の多孔質材として、カーボン繊維からなる紙状あ
るいは導電性高分子,焼結金属体などが使用できる。こ
れは、カソード板18aと触媒層18bとの充分な密着
に有効である。
As the conductive porous material, a paper-like or conductive polymer made of carbon fiber, a sintered metal body or the like can be used. This is effective for sufficient adhesion between the cathode plate 18a and the catalyst layer 18b.

〔発明の効果〕〔The invention's effect〕

本発明は以上説明したきたように、アノードを集電体と
燃料の電解反応に高い活性を示す触媒層と燃料抑制層と
を固着したもので構成するようにしたことから、燃料の
電解によって流れる電流の増大から検出感度が向上し、
また、液のたまりなどが生じないことから応答性がよく
なり、従って、信頼性が高く、かつ高感度で構成の簡単
な液体燃料電池の燃料濃度検出装置を得ることができ
る。
As described above, according to the present invention, the anode is composed of the current collector, the catalyst layer exhibiting high activity in the electrolytic reaction of the fuel, and the fuel suppression layer, which are fixed to each other. Detection sensitivity improves from the increase in current,
Further, since the liquid pool is not generated, the responsiveness is improved, so that the fuel concentration detecting device for the liquid fuel cell having high reliability and high sensitivity and having a simple structure can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料濃度検出装置の一実施例を示す線
図、第2図は液体燃料電池を示す線図、第3図は燃料の
濃度とセル電圧の関係を示す特性図、第4図は従来の燃
料濃度検出装置を備えた燃料電池を示す線図、第5図は
従来の燃料濃度検出装置を示す線図、第6図及び第7図
は本発明の燃料濃度検出装置の他の実施例を示す線図、
第8図は燃料濃度と検出電流の関係を示す特性図であ
る。 16……濃度検出装置、17……アノード電極、17b
……燃料抑制層、18……カソード電極、19……電
源、20……検出器。
FIG. 1 is a diagram showing an embodiment of the fuel concentration detecting device of the present invention, FIG. 2 is a diagram showing a liquid fuel cell, and FIG. 3 is a characteristic diagram showing the relationship between fuel concentration and cell voltage. FIG. 4 is a diagram showing a fuel cell having a conventional fuel concentration detecting device, FIG. 5 is a diagram showing a conventional fuel concentration detecting device, and FIGS. 6 and 7 are diagrams showing a fuel concentration detecting device of the present invention. Diagram showing another embodiment,
FIG. 8 is a characteristic diagram showing the relationship between the fuel concentration and the detected current. 16 ... Concentration detection device, 17 ... Anode electrode, 17b
... Fuel suppression layer, 18 ... Cathode electrode, 19 ... Power supply, 20 ... Detector.

フロントページの続き (72)発明者 山口 元男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 清水 利男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 岩浅 修蔵 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Front Page Continuation (72) Inventor Motoo Yamaguchi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Ltd. (72) Toshio Shimizu 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Co., Ltd. In-house (72) Inventor Shuzo Iwasa 4026 Kuji-cho, Hitachi-shi, Ibaraki Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アノード電極、該アノード電極に対向配置
されたカソード電極、前記アノード電極と前記カソード
電極との間に設けられた電解質室、前記アノード電極に
隣接して設けられた燃料室、前記カソード電極に隣接し
て設けられた酸化剤室を備え、前記アノード電極に電解
液と燃料とを混合した液体燃料が循環される燃料電池の
液体燃料中にアノード電極とカソード電極が浸設され、
前記電極間に電圧を印加し電流量の変化によって燃料の
濃度を検出するようになした液体燃料電池の濃度検出装
置において、前記濃度検出装置のアノード電極は集電
体、該集電体が燃料に接する側に設けられた1×10-6
〜2×10-5mol/cm2,min,mol/1 の燃料透過量を有する
燃料抑制層、及び前記集電体と前記燃料抑制層との間に
位置し両者の密着性及び電極間の反応活性を高める触媒
層とを固着したもので構成されたことを特徴とする液体
燃料電池の燃料濃度検出装置。
1. An anode electrode, a cathode electrode arranged to face the anode electrode, an electrolyte chamber provided between the anode electrode and the cathode electrode, a fuel chamber provided adjacent to the anode electrode, An oxidant chamber provided adjacent to the cathode electrode is provided, and the anode electrode and the cathode electrode are immersed in the liquid fuel of the fuel cell in which the liquid fuel in which the electrolyte solution and the fuel are mixed is circulated to the anode electrode,
In a concentration detecting device of a liquid fuel cell adapted to detect a concentration of fuel by applying a voltage between the electrodes and changing a current amount, an anode electrode of the concentration detecting device is a current collector, and the current collector is a fuel collector. 1 × 10 -6 provided on the side in contact with
˜2 × 10 −5 mol / cm 2 , min, mol / 1, a fuel suppression layer having a fuel permeation amount, and an adhesion between the current collector and the fuel suppression layer and between electrodes A fuel concentration detection device for a liquid fuel cell, comprising a catalyst layer for enhancing reaction activity, which is fixed to the catalyst layer.
JP60074264A 1984-10-31 1985-04-10 Fuel concentration detector for liquid fuel cell Expired - Lifetime JPH0626132B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60074264A JPH0626132B2 (en) 1985-04-10 1985-04-10 Fuel concentration detector for liquid fuel cell
DE8585113834T DE3582716D1 (en) 1984-10-31 1985-10-30 LIQUID FUEL CELL.
CA000494271A CA1257647A (en) 1984-10-31 1985-10-30 Liquid fuel cell
EP85113834A EP0181569B1 (en) 1984-10-31 1985-10-30 Liquid fuel cell
US06/792,888 US4629664A (en) 1984-10-31 1985-10-30 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074264A JPH0626132B2 (en) 1985-04-10 1985-04-10 Fuel concentration detector for liquid fuel cell

Publications (2)

Publication Number Publication Date
JPS61233973A JPS61233973A (en) 1986-10-18
JPH0626132B2 true JPH0626132B2 (en) 1994-04-06

Family

ID=13542093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074264A Expired - Lifetime JPH0626132B2 (en) 1984-10-31 1985-04-10 Fuel concentration detector for liquid fuel cell

Country Status (1)

Country Link
JP (1) JPH0626132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003271069A1 (en) * 2002-09-30 2004-04-19 Gs Yuasa Corporation Liquid fuel direct supply fuel cell system and its operation controlling method and controller
JP2005150106A (en) * 2003-10-24 2005-06-09 Yamaha Motor Co Ltd Fuel cell system and transport equipment using above
JP5233166B2 (en) 2007-05-25 2013-07-10 トヨタ自動車株式会社 Fuel cell system and operation method thereof
JP5252866B2 (en) * 2007-09-20 2013-07-31 ヤマハ発動機株式会社 Fuel cell system and transportation equipment including the same

Also Published As

Publication number Publication date
JPS61233973A (en) 1986-10-18

Similar Documents

Publication Publication Date Title
CA1257647A (en) Liquid fuel cell
US4810597A (en) Fuel cell comprising a device for detecting the concentration of methanol
Mizusaki et al. Electrode reaction at Pt, O2 (g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model
US6036841A (en) Method for measuring nitrogen oxide
Alcaide et al. Electrogeneration of hydroperoxide ion using an alkaline fuel cell
Vermeijlen et al. Mechanism of hydrogen oxidation on a platinum-loaded gas diffusion electrode
Giordano et al. An investigation of the effects of electrode preparation parameters on the performance of phosphoric acid fuel cell cathodes
Maoka Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid—II. Effects of teflon content in the catalyst layer and baking temperature of the electrode
US20190103619A1 (en) Method of inspecting output of fuel cell
JPH0626132B2 (en) Fuel concentration detector for liquid fuel cell
Ong et al. Electrocatalytic role of stabilized zirconia on the anodic current—over-potential behavior in hydrocarbon fuel cells
EP0961115A3 (en) Method of stabilizing pump current in gas sensor
Hibino et al. Improvement of CAPCIUS Cell Using SrCe0. 95Yb0. 05O3-. ALPHA. as a Solid Electrolyte.
JPH06236767A (en) Potential monitoring method for fuel cell constituting member
Chang et al. Kinetics of Oxygen Reduction at IrO2‐Coated Titanium Electrode in Alkaline Solution
JPH069143B2 (en) Fuel cell storage method
JPS6210872A (en) Fuel concentration sensor for liquid fuel cell
JPS6210871A (en) Fuel concentration sensor for liquid fuel cell
RU2196322C1 (en) Sensor for analysis of oxidizing gas and process of its manufacture
CN109599579A (en) The output detecting method of fuel cell
JP3340445B2 (en) Operating method of molten carbonate fuel cell
JP3053184B2 (en) Analysis method of battery characteristics
Schefold et al. Non-Ionic Conduction Phenomena in Yttria Stabilised Zirconia Electrolyte in SOFC operated in the Electrolysis Mode
JP2975470B2 (en) Electrochemical device
WO2002046733A1 (en) A methanol sensor operated in a driven mode