JPH06260449A - Plasma processor - Google Patents

Plasma processor

Info

Publication number
JPH06260449A
JPH06260449A JP4108993A JP4108993A JPH06260449A JP H06260449 A JPH06260449 A JP H06260449A JP 4108993 A JP4108993 A JP 4108993A JP 4108993 A JP4108993 A JP 4108993A JP H06260449 A JPH06260449 A JP H06260449A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
plasma
electrode block
mounting table
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4108993A
Other languages
Japanese (ja)
Inventor
Toshihisa Nozawa
俊久 野沢
Takashi Kinoshita
隆 木下
Tetsuya Nishizuka
哲也 西塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4108993A priority Critical patent/JPH06260449A/en
Publication of JPH06260449A publication Critical patent/JPH06260449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To provide a plasma processor with a mounting base structure that causes no damage to an electrostatic chuck when the mounting base having the electrostatic chuck is adjusted at a specific cooling temperature. CONSTITUTION:Within the plasma processor wherein an electrostatic chuck 8 holding a work 12 by electrostatic suction is junctioned on an electrostatic block 13, a mounting base 9 provided with a cooling mechanism is arranged in a vacuum vessel to plasma-process the work 12 using plasma produced in the vacuum vessel, the electrode block 13 is composed of a material in the thermal expansion coefficient having a little difference from that of the electrostatic chuck 8. In such a constitution, simultaneously with the acceleration of the thermal conduction by junctioning the electrostatic chuck 8 with the electrode block 13, the stress due to the difference in the thermal expansion coefficient imposed on said junction surface in the low temperature cooling time can be suppressed. Through these procedures, since no damage is caused to the junction surface due to the stress imposition even in the low temperature cooling time, the mounting base 9 can be controlled at specific cooling temperature thereby enabling the plasma processing such as etching step, etc., to be performed with high precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,プラズマにより生成さ
れるプラズマ粒子を被処理物に照射してエッチング,ス
パッタリング,CVD等の精密処理を行うプラズマ処理
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus for irradiating an object to be processed with plasma particles generated by plasma to perform precision processing such as etching, sputtering and CVD.

【0002】[0002]

【従来の技術】プラズマ処理装置の代表的な例として電
子サイクロトロン共鳴装置(以下ECR装置と呼称す
る)を示すことができる。ECR装置は周知の通り,磁
場が印加された真空容器内に高周波電場と処理ガスとを
導入することにより,磁場と高周波電場と処理ガス原子
中の電子との3要素が引き起こす電子サイクロトロン共
鳴によって処理ガスをプラズマ化して,そのときに発生
するイオン,ラジカルを被処理物に照射することによ
り,エッチング,デポジション等の処理を行うことがで
きる。このECR装置によって半導体基板に対してプラ
ズマ処理を行うECRプラズマ処理装置の従来構成につ
いて以下に説明する。図3に模式図として示すプラズマ
処理装置30は,真空容器7を中心として,該真空容器
7内に磁場を印加するための磁気コイル10a,10b
が真空容器7の中心軸と同心に配置されると共に,真空
容器7の中心軸上の上端にはマイクロ波導入窓2が設け
られ,マイクロ波電源5からのマイクロ波を真空容器7
内に導入する導波管路6が接続されている。真空容器7
内に設置された載置台11上にはエッチング処理するた
めの基板12が載置されており,真空容器7内は排気ポ
ート4から真空排気されて所定の真空状態に保たれる。
上記のように磁場と高周波電場とが印加された真空容器
7内にガス導入ポート3から処理ガスを導入すると,電
子サイクロトロン共鳴によって処理ガスはプラズマ化し
てイオン,ラジカル等のプラズマ粒子が生成される。こ
のプラズマ粒子は磁力線の方向に流れて,載置台11上
に載置された基板12に照射され,基板12に対してプ
ラズマ処理を行うことができる。上記プラズマ処理30
において,載置台11上に載置された基板12は,プラ
ズマ粒子の照射を受けて加熱されるため,温度上昇して
プラズマ処理に悪影響を及ぼす。そこで,基板12の温
度上昇を抑えるため,載置台11に温度調節の手段を設
けることがなされる。図4に載置台11の拡大断面図を
示す。図示するように基板12を載置する載置台11の
上面には,処理速度を向上させるための高周波バイアス
電圧が印加された電極ブロック20が設けられ,該電極
ブロック20は冷媒供給路16から供給される液体窒素
等の冷媒の還流により一定温度に調節される。更に,こ
の電極ブロック20上には基板12を静電吸着により保
持する静電チャック19が配置され,基板12と静電チ
ャック19との間の熱伝導を強化するために,その間に
ガス導入路15から熱伝導を媒介するガスを導入して,
基板12から電極ブロック20に効果的に熱伝導させる
温度調整の構成がなされている。これらの構成は,特公
昭57−44747号あるいは特開昭63−30051
7号公報等に開示されている。
2. Description of the Related Art An electron cyclotron resonance device (hereinafter referred to as an ECR device) can be shown as a typical example of a plasma processing device. As is well known, the ECR device introduces a high-frequency electric field and a processing gas into a vacuum container to which a magnetic field is applied, and performs processing by electron cyclotron resonance caused by three elements of the magnetic field, the high-frequency electric field and electrons in the processing gas atom. By processing the gas into plasma and irradiating the object to be treated with ions and radicals generated at that time, processing such as etching and deposition can be performed. A conventional configuration of an ECR plasma processing apparatus that performs plasma processing on a semiconductor substrate by this ECR apparatus will be described below. A plasma processing apparatus 30 shown as a schematic diagram in FIG. 3 has magnetic coils 10 a and 10 b for applying a magnetic field inside the vacuum container 7 with the vacuum container 7 as a center.
Are arranged concentrically with the central axis of the vacuum container 7, and a microwave introduction window 2 is provided at the upper end on the central axis of the vacuum container 7 to allow microwaves from the microwave power source 5 to pass through the vacuum container 7
The waveguide 6 to be introduced therein is connected. Vacuum container 7
A substrate 12 for etching processing is placed on a mounting table 11 installed inside, and the inside of the vacuum container 7 is evacuated from the exhaust port 4 to be kept in a predetermined vacuum state.
When the processing gas is introduced from the gas introduction port 3 into the vacuum container 7 to which the magnetic field and the high frequency electric field are applied as described above, the processing gas is turned into plasma by electron cyclotron resonance and plasma particles such as ions and radicals are generated. . The plasma particles flow in the direction of the lines of magnetic force and irradiate the substrate 12 mounted on the mounting table 11, so that plasma processing can be performed on the substrate 12. Plasma treatment 30
In the above, since the substrate 12 placed on the placing table 11 is heated by being irradiated with plasma particles, the temperature rises and the plasma processing is adversely affected. Therefore, in order to suppress the temperature rise of the substrate 12, the mounting table 11 is provided with a temperature adjusting means. FIG. 4 shows an enlarged sectional view of the mounting table 11. As shown in the figure, an electrode block 20 to which a high frequency bias voltage for improving the processing speed is applied is provided on the upper surface of the mounting table 11 on which the substrate 12 is mounted, and the electrode block 20 is supplied from the coolant supply path 16. The temperature is adjusted to a constant temperature by refluxing a coolant such as liquid nitrogen. Further, an electrostatic chuck 19 for holding the substrate 12 by electrostatic attraction is arranged on the electrode block 20, and in order to enhance heat conduction between the substrate 12 and the electrostatic chuck 19, a gas introduction path is provided therebetween. Introducing a gas that transfers heat from 15
The temperature is adjusted so that heat is effectively conducted from the substrate 12 to the electrode block 20. These structures are disclosed in JP-B-57-44747 or JP-A-63-30051.
No. 7, etc.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記従
来構成になる載置台11の構成では,互いに接する静電
チャック19と電極ブロック20とをそれぞれ構成する
材料の熱膨張率が考慮されていないため,次に示すよう
な問題点があった。即ち,静電チャック19は図4に示
すように,誘電体(セラミック)の間に静電吸着用電源
18からの高圧電圧が印加される導電体を挟設して構成
されており,一方,電極ブロック20はアルミニウムあ
るいはステンレススチールで形成されている。この電極
ブロック20を液体窒素で冷却した場合,静電チャック
19を構成する材料と電極ブロック20とを構成する材
料との熱膨張率の差によって接着面に応力が発生し,静
電チャック19との接着面が剥がれたり,静電チャック
19が破壊されてしまうことが生じる。この問題点があ
るため,従来構成では,載置台11の冷却温度は−60
℃程度が限度で,特に化学反応が活性なラジカル反応を
制御するために要求される−100℃以下の冷却温度が
達成できない状況にあった。そこで,上記の低温制御を
達成させるために採用される従来手段として,静電チャ
ックを使用せず,メカニカルな手段により基板等の被処
理物をクランプすることがなされる。しかし,この場合
には機械的クランプによる押圧のためクランプ位置のコ
ンタミネーション発生やエッチング状態の悪化等の問題
があり,量産機として使用し得ない実情であった。本発
明は上記問題点に鑑みて創案されたもので,その目的と
するところは,静電チャックを備えた載置台を所要の冷
却温度に調節した場合にも,静電チャックに損傷を与え
ない載置台構造を備えたプラズマ処理装置を提供するこ
とにある。
However, in the structure of the mounting table 11 having the above-mentioned conventional structure, the coefficient of thermal expansion of the materials forming the electrostatic chuck 19 and the electrode block 20 which are in contact with each other is not taken into consideration. There were the following problems. That is, as shown in FIG. 4, the electrostatic chuck 19 is configured by sandwiching a conductor to which a high voltage is applied from the electrostatic attraction power supply 18 between dielectrics (ceramics). The electrode block 20 is made of aluminum or stainless steel. When the electrode block 20 is cooled with liquid nitrogen, stress is generated on the adhesive surface due to the difference in the coefficient of thermal expansion between the material forming the electrostatic chuck 19 and the material forming the electrode block 20, and The adhesive surface of 1 may be peeled off or the electrostatic chuck 19 may be destroyed. Because of this problem, the cooling temperature of the mounting table 11 is -60 in the conventional configuration.
There was a situation in which the cooling temperature of -100 ° C or lower, which is required for controlling the radical reaction in which the chemical reaction is active, cannot be achieved because the temperature is limited to about ° C. Therefore, as a conventional means adopted to achieve the above-mentioned low temperature control, an object to be processed such as a substrate is clamped by mechanical means without using an electrostatic chuck. However, in this case, there are problems such as contamination of the clamp position and deterioration of the etching state due to the pressing by the mechanical clamp, and the situation is that it cannot be used as a mass production machine. The present invention has been made in view of the above problems, and an object of the present invention is not to damage the electrostatic chuck even when the mounting table equipped with the electrostatic chuck is adjusted to a required cooling temperature. It is to provide a plasma processing apparatus having a mounting table structure.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,静電吸着によって被処理物
を保持する静電チャックが電極ブロック上に接合され,
該電極ブロックに前記被処理物を冷却するための冷却構
造を備えて構成された載置台を真空容器内に配置し,該
真空容器内に発生させたプラズマにより前記載置台上に
載置された被処理物をプラズマ処理するプラズマ処理装
置において,前記電極ブロックが前記静電チャックを構
成する材料の熱膨張率との差が小さい熱膨張率の材料で
構成されてなることを特徴とするプラズマ処理装置とし
て構成される。上記構成の具体的な構成材料として,静
電チャックの構成材料がセラミックである場合に,電極
ブロックの構成材料にチタンを使用することができる。
In order to achieve the above-mentioned object, the means adopted by the present invention is such that an electrostatic chuck for holding an object to be processed is bonded onto an electrode block by electrostatic attraction.
A mounting table having a cooling structure for cooling the object to be processed is disposed in the electrode block in a vacuum container, and the mounting table is mounted on the mounting table by plasma generated in the vacuum container. In a plasma processing apparatus for plasma-processing an object to be processed, the electrode block is made of a material having a coefficient of thermal expansion that is small in difference from a coefficient of thermal expansion of a material forming the electrostatic chuck. Configured as a device. As a specific constituent material of the above configuration, when the constituent material of the electrostatic chuck is ceramic, titanium can be used as the constituent material of the electrode block.

【0005】[0005]

【作用】プラズマ処理は被処理物をイオンやラジカルに
よって物理的及び化学的に処理することにあるが,特に
化学反応が活性なラジカル反応を制御するためには,被
処理物を−100℃以下にまで冷却し,しかも,その温
度を精度よく制御することが要求される。この要求を満
たすためには,静電チャックにより被処理物を保持し,
該静電チャックを備えた載置台を−100℃以下に冷却
すると共に,被処理物の温度を効率よく載置台に熱伝導
させなければならない。本発明によれば,静電チャック
を載置台上の電極ブロックに接合して熱伝導を促進させ
ると同時に,低温冷却時に該接合面に生じる熱膨張率の
差による応力の発生を抑制する構成が採用される。即
ち,前記電極ブロックが,前記静電チャックを構成する
材料の熱膨張率との差が小さい熱膨張率の材料で構成さ
れるので,接合面を形成する電極ブロックと静電チャッ
クとの間に熱膨張率の差による応力の発生が抑制され,
低温冷却時にも応力発生による接合面の破壊等が生じな
い。従って,所要の冷却温度への制御が達成され,精度
よくエッチング等のプラズマ処理がなされる。上記接合
面を形成する具体的な材料として,静電チャックの構成
材料がセラミックである場合に,電極ブロックの構成材
料にチタンを使用することにより,載置台の冷却温度を
−100℃以下まで冷却することが可能となる。
[Function] Plasma treatment is to physically and chemically treat an object to be treated with ions or radicals, but in order to control a radical reaction in which a chemical reaction is active, the object to be treated is -100 ° C. or less. It is required to cool to the maximum and to control the temperature with high accuracy. To meet this requirement, hold the workpiece with an electrostatic chuck,
It is necessary to cool the mounting table equipped with the electrostatic chuck to −100 ° C. or lower, and to efficiently conduct the temperature of the object to be processed to the mounting table. According to the present invention, the electrostatic chuck is bonded to the electrode block on the mounting table to promote heat conduction, and at the same time, the generation of stress due to the difference in coefficient of thermal expansion generated on the bonding surface during low temperature cooling is suppressed. Adopted. That is, since the electrode block is made of a material having a coefficient of thermal expansion that has a small difference from the coefficient of thermal expansion of the material forming the electrostatic chuck, the electrode block between the electrode block and the electrostatic chuck forming the bonding surface is Generation of stress due to difference in coefficient of thermal expansion is suppressed,
Even when cooled at a low temperature, the fracture of the joint surface due to stress generation does not occur. Therefore, control to the required cooling temperature is achieved, and plasma processing such as etching is performed accurately. As a specific material for forming the bonding surface, when the constituent material of the electrostatic chuck is ceramic, by using titanium as the constituent material of the electrode block, the cooling temperature of the mounting table is cooled to −100 ° C. or less. It becomes possible to do.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。ここに,図1
はプラズマ処理装置の一例であるECR装置により乾式
エッチングを行う実施例ECRエッチング装置における
載置台の構成を示す断面構成図,図2は図1に示す載置
台が設けられる実施例ECRエッチング装置の構成を示
す模式図である。尚,従来例構成と同一の要素には,同
一の符号を付して,その説明を省略する。図2におい
て,ECRエッチング装置1は,真空容器7内に磁気コ
イル10a,10bによりECR条件(875ガウス)
を満たす磁場が印加されると共に,マイクロ波電源5
(2.45GHz,0〜1kW)から供給されるマイクロ
波がマイクロ波導入窓2から印加され,ガス導入ポート
3から導入した処理ガスを電子サイクロトロン共鳴によ
りプラズマ化し,プラズマにより生成されるイオン,ラ
ジカルを載置台9上に載置された被処理物である基板1
2に照射して,エッチング処理を行うことができるよう
に構成されている。上記のように構成されるECRエッ
チング装置における載置台9は,図1に示すように構成
されている。載置台9は,支持柱17の上端に該支持柱
17と絶縁体14で絶縁されて電極ブロック13が配置
され,該電極ブロック13上に静電チャック8が接合さ
れて構成されている。電極ブロック13には高周波電源
21からの高周波バイアス電圧が印加され,冷媒ガス供
給路16から液体窒素が還流して冷却がなされる。ま
た,静電チャック8は導電体をセラミックの間に挟設し
て,導電体に静電吸着用電源18からの高圧電圧が印加
されて,静電チャック8上に載置される基板(被処理
物)12を静電吸着して保持する。更に,載置する基板
12から電極ブロック13への熱伝導を促進させるため
に,基板12と静電チャック8との間にガス導入路15
から熱伝導媒介用のガスが導入されている。上記のよう
に構成される載置台9は,電極ブロック13を液体窒素
で冷却することにより,基板12の発熱を静電チャック
8を通して抑え,所要のエッチング反応がなされる状態
に制御することができる。上記構成になる電極ブロック
13の構成材料には,チタンが採用されている。電極ブ
ロック13がチタンで形成されたとき,これに接合され
る静電チャック8の接合面がセラミックである場合に
は,互いの熱膨張率の差が少ないため,低温冷却時にも
熱膨張率の差による応力の発生が抑えられる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following example is an example embodying the present invention and does not limit the technical scope of the present invention. Figure 1
FIG. 2 is a cross-sectional configuration diagram showing the configuration of a mounting table in an example ECR etching apparatus that performs dry etching by an ECR apparatus, which is an example of a plasma processing apparatus, and FIG. 2 is a configuration of an example ECR etching apparatus provided with the mounting table shown in FIG. It is a schematic diagram which shows. The same elements as those of the conventional configuration are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 2, the ECR etching apparatus 1 uses the magnetic coils 10a and 10b in the vacuum chamber 7 to perform ECR conditions (875 gauss).
The magnetic field that satisfies the
Microwaves supplied from (2.45 GHz, 0 to 1 kW) are applied from the microwave introduction window 2, the processing gas introduced from the gas introduction port 3 is turned into plasma by electron cyclotron resonance, and ions and radicals generated by the plasma A substrate 1 which is an object to be processed placed on a mounting table 9.
It is configured so that the etching treatment can be performed by irradiating the two. The mounting table 9 in the ECR etching apparatus configured as described above is configured as shown in FIG. The mounting table 9 is configured by disposing the electrode block 13 on the upper end of the support column 17 so as to be insulated from the support column 17 by the insulator 14, and by bonding the electrostatic chuck 8 on the electrode block 13. A high frequency bias voltage from a high frequency power source 21 is applied to the electrode block 13, and liquid nitrogen is circulated from the refrigerant gas supply passage 16 to cool the electrode block 13. Further, the electrostatic chuck 8 has a conductor sandwiched between ceramics, and a high voltage is applied to the conductor from the electrostatic attraction power supply 18, so that a substrate (a substrate to be mounted) mounted on the electrostatic chuck 8 is The processed product 12 is electrostatically adsorbed and held. Further, in order to promote heat conduction from the substrate 12 to be mounted to the electrode block 13, a gas introduction path 15 is provided between the substrate 12 and the electrostatic chuck 8.
A gas for heat transfer is introduced from. The mounting table 9 configured as described above can suppress the heat generation of the substrate 12 through the electrostatic chuck 8 by cooling the electrode block 13 with liquid nitrogen, and control it so that a desired etching reaction is performed. . Titanium is adopted as a constituent material of the electrode block 13 having the above structure. When the electrode block 13 is made of titanium and the joint surface of the electrostatic chuck 8 to be joined thereto is ceramic, the difference in the coefficient of thermal expansion between them is small, so that the coefficient of thermal expansion during low temperature cooling is small. Generation of stress due to the difference is suppressed.

【0007】ここで,静電チャック8の構成材料である
セラミックに対して,本実施例電極ブロック13の構成
材料であるチタンを組み合わせた場合と,従来の構成材
料であるアルミニウムまたはステンレススチールを組み
合わせた場合とを比較して,本実施例になるセラミック
とチタンとの組み合わせの効果を実証する。表1はセラ
ミックと組み合わせるアルミニウム,ステンレススチー
ル(SUS),チタンのそれぞれの材料との熱膨張率の
差によって生じる歪み量(直径200mmの場合)を−1
00℃と−200℃の状態で比較したものである。ま
た,表2はセラミックと接合される前記各金属材料との
間に生じる−100℃冷却時と−200℃冷却時での発
生応力を示すものである。
Here, a case where titanium which is a constituent material of the electrode block 13 of the present embodiment is combined with a ceramic which is a constituent material of the electrostatic chuck 8 and a conventional constituent material such as aluminum or stainless steel is combined. The effect of the combination of the ceramic and titanium according to the present embodiment will be demonstrated by comparing with the case. Table 1 shows the amount of strain (for a diameter of 200 mm) caused by the difference in the coefficient of thermal expansion between aluminum, stainless steel (SUS), and titanium, which are combined with ceramics.
This is a comparison in the state of 00 ° C and -200 ° C. Table 2 shows the stress generated between the ceramic and each of the metal materials to be joined at the time of cooling at -100 ° C and at the time of cooling at -200 ° C.

【表1】 [Table 1]

【表2】 表1及び表2からわかることは,セラミックとチタンと
の組み合わせが最も優れており,他の組み合わせ(従来
構成)では大きな応力の発生により,低温冷却が不可能
であることがわかり,従来構成の−60℃が限界である
ことが理解される。セラミックとチタンとの組み合わせ
は,他の組み合わせと大差があり,−100℃以下の冷
却が可能である。従って,本実施例における電極ブロッ
ク13の構成材料にチタンを使用し,静電チャック8を
構成するセラミックと接合することにより,−100℃
以下の冷却ができる。表2に示されるように,−100
℃における直径200mmにおいて発生する応力は4.9
kg/mm2 であり,これに対してセラミックの強度は20
kg/mm2 なので,−200℃においても使用可能であ
る。上記のように,低温冷却を可能にすることにより,
プラズマエッチングにおける化学反応が活性な場合にお
いても,アンダーカットのない高精度のエッチング形状
を得ることができる。また,従来構成では不可能であっ
た低温冷却時にも静電チャックを使用することができる
ので,エッチング性能が向上し,基板上に形成されるデ
バイスの歩留りの大幅な向上がなされる。上記構成にな
るECRエッチング装置1により,シリコン基板12上
に形成されたレジストのエッチング処理の実施データは
次の通りであった。電極ブロック13を−100℃に冷
却し,真空容器7内に処理ガスとして酸素を導入して,
マイクロ波電力250W,載置台9への高周波バイアス
電圧200Vでエッチングを実施した。その結果,レジ
ストのエッチング速度10000Å/分,SiO2 に対
する選択比100,エッチング形状のマスクに対する寸
法誤差0.02μm,基板12面内のエッチング速度の
均一性は±5%(6インチ)の良好なエッチング処理が
得られた。以上述べた実施例は,本発明のECRエッチ
ング装置への適用例であるが,本発明はECRに限ら
ず,またエッチングに限らず,あらゆるプラズマ処理装
置に適用可能である。
[Table 2] It can be seen from Tables 1 and 2 that the combination of ceramic and titanium is the best, and that other combinations (conventional structure) cannot generate low temperature cooling due to the generation of large stress. It is understood that -60 ° C is the limit. The combination of ceramic and titanium has a great difference from the other combinations, and cooling at -100 ° C or lower is possible. Therefore, by using titanium as the constituent material of the electrode block 13 in this embodiment and joining it to the ceramic constituting the electrostatic chuck 8, -100 ° C.
The following cooling is possible. As shown in Table 2, -100
The stress generated at a diameter of 200 mm at ℃ is 4.9.
kg / mm 2 , whereas the strength of ceramics is 20
Since it is kg / mm 2 , it can be used even at -200 ° C. As mentioned above, by enabling low temperature cooling,
Even when the chemical reaction in plasma etching is active, it is possible to obtain a highly accurate etching shape without undercut. Further, since the electrostatic chuck can be used even at low temperature cooling which is impossible with the conventional configuration, the etching performance is improved and the yield of devices formed on the substrate is significantly improved. The following is the execution data of the etching process of the resist formed on the silicon substrate 12 by the ECR etching apparatus 1 having the above configuration. The electrode block 13 is cooled to −100 ° C., oxygen is introduced into the vacuum container 7 as a processing gas,
Etching was carried out at a microwave power of 250 W and a high frequency bias voltage of 200 V applied to the mounting table 9. As a result, the etching rate of the resist was 10,000 Å / min, the selection ratio to SiO 2 was 100, the dimensional error of the etching shape to the mask was 0.02 μm, and the uniformity of the etching rate within the surface of the substrate 12 was ± 5% (6 inches). An etching treatment was obtained. The embodiment described above is an example of application of the present invention to an ECR etching apparatus, but the present invention is applicable not only to ECR but also to any plasma processing apparatus, not limited to etching.

【0008】[0008]

【発明の効果】以上の説明の通り本発明によれば,被処
理物を載置台上保持する静電チャックを使用して被処理
物を−100℃以下の温度に冷却することが可能となる
ので,プラズマ処理おける活性なラジカル反応を制御す
ることができ,エッチング処理においては加工形状や選
択比の向上,コンタミネーションの低下をなすことがで
き,被処理面上で均一なプラズマ処理が可能となるた
め,デバイス形成の歩留りの大幅な向上がなされる効果
を奏する。
As described above, according to the present invention, the object to be processed can be cooled to a temperature of −100 ° C. or lower by using the electrostatic chuck for holding the object to be processed on the mounting table. Therefore, it is possible to control the active radical reaction in the plasma treatment, and it is possible to improve the processing shape and the selection ratio and reduce the contamination in the etching treatment, and it is possible to perform uniform plasma treatment on the surface to be treated. As a result, the yield of device formation is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係るECRエッチング装置
に採用する載置台の構成を示す断面構成図。
FIG. 1 is a sectional configuration diagram showing a configuration of a mounting table adopted in an ECR etching apparatus according to an embodiment of the present invention.

【図2】 実施例に係るECRエッチング装置の構成を
示す模式図。
FIG. 2 is a schematic diagram showing a configuration of an ECR etching apparatus according to an embodiment.

【図3】 従来例に係るECRエッチング装置の構成を
示す模式図。
FIG. 3 is a schematic diagram showing a configuration of an ECR etching apparatus according to a conventional example.

【図4】 従来例に係る載置台の構成を示す断面構成
図。
FIG. 4 is a cross-sectional configuration diagram showing a configuration of a mounting table according to a conventional example.

【符号の説明】[Explanation of symbols]

1…ECRエッチング装置(プラズマ処理装置) 2…マイクロ波導入窓 3…ガス導入ポート 4…排気ポート 5…マイクロ波電源 6…導波管路 7…真空容器 8…静電チャック 9…載置台 10a,10b…磁気コイル 12…基板(被処理物) 13…電極ブロック 16…冷媒供給路 18…静電吸着用電源 DESCRIPTION OF SYMBOLS 1 ... ECR etching apparatus (plasma processing apparatus) 2 ... Microwave introduction window 3 ... Gas introduction port 4 ... Exhaust port 5 ... Microwave power supply 6 ... Waveguide 7 ... Vacuum container 8 ... Electrostatic chuck 9 ... Mounting table 10a , 10b ... Magnetic coil 12 ... Substrate (object to be processed) 13 ... Electrode block 16 ... Refrigerant supply path 18 ... Electrostatic attraction power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静電吸着によって被処理物を保持する静
電チャックが電極ブロック上に接合され,該電極ブロッ
クに前記被処理物を冷却するための冷却構造を備えて構
成された載置台を真空容器内に配置し,該真空容器内に
発生させたプラズマにより前記載置台上に載置された被
処理物をプラズマ処理するプラズマ処理装置において, 前記電極ブロックが前記静電チャックを構成する材料の
熱膨張率との差が小さい熱膨張率の材料で構成されてな
ることを特徴とするプラズマ処理装置。
1. A mounting table comprising an electrostatic chuck for holding an object to be processed by electrostatic attraction, the electrode block being bonded to the electrode block, and the electrode block having a cooling structure for cooling the object to be processed. In the plasma processing apparatus, which is disposed in a vacuum container and plasma-processes an object to be processed placed on the mounting table by plasma generated in the vacuum container, a material in which the electrode block constitutes the electrostatic chuck. A plasma processing apparatus comprising a material having a coefficient of thermal expansion that has a small difference from the coefficient of thermal expansion.
【請求項2】 上記静電チャックの構成材料がセラミッ
クである場合に,上記電極ブロックの構成材料にチタン
が使用されてなる請求項1記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein titanium is used as a constituent material of the electrode block when the constituent material of the electrostatic chuck is ceramic.
JP4108993A 1993-03-02 1993-03-02 Plasma processor Pending JPH06260449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108993A JPH06260449A (en) 1993-03-02 1993-03-02 Plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108993A JPH06260449A (en) 1993-03-02 1993-03-02 Plasma processor

Publications (1)

Publication Number Publication Date
JPH06260449A true JPH06260449A (en) 1994-09-16

Family

ID=12598751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108993A Pending JPH06260449A (en) 1993-03-02 1993-03-02 Plasma processor

Country Status (1)

Country Link
JP (1) JPH06260449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517583B1 (en) * 1998-05-25 2005-09-28 가부시끼가이샤 히다치 세이사꾸쇼 Vacuum treatment system and its stage
KR20160078879A (en) * 2014-12-25 2016-07-05 도쿄엘렉트론가부시키가이샤 Etching method and etching apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517583B1 (en) * 1998-05-25 2005-09-28 가부시끼가이샤 히다치 세이사꾸쇼 Vacuum treatment system and its stage
KR20160078879A (en) * 2014-12-25 2016-07-05 도쿄엘렉트론가부시키가이샤 Etching method and etching apparatus
JP2016122774A (en) * 2014-12-25 2016-07-07 東京エレクトロン株式会社 Etching processing method and etching processing device

Similar Documents

Publication Publication Date Title
KR100274757B1 (en) Plasma treatment apparatus and plasma treatment method
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
JP4236329B2 (en) Plasma processing equipment
JP2002093776A (en) HIGH SPEED ETCHING METHOD OF Si
JPS634841A (en) Plasma treatment device
JPH11340149A (en) System and method for plasma treatment
JP6486092B2 (en) Plasma etching method
JP3050124B2 (en) Plasma processing equipment
JP3276023B2 (en) Control method of plasma processing apparatus
JP2651597B2 (en) Dry etching method and apparatus
JPH07226383A (en) Plasma generating device and plasma treatment device using this plasma generating device
JP3193815B2 (en) Plasma processing apparatus and control method therefor
KR20200051505A (en) Placing table and substrate processing apparatus
JPH06260449A (en) Plasma processor
JP3372244B2 (en) Plasma processing equipment
JP3045443B2 (en) Plasma processing equipment
TWI717934B (en) Plasma processing equipment
JP3157551B2 (en) Workpiece mounting device and processing device using the same
JP3024148B2 (en) Etching equipment
JP3192352B2 (en) Plasma processing equipment
JPH06120169A (en) Plasma generating apparatus
JP3147769B2 (en) Plasma processing apparatus and processing method
JP2935537B2 (en) Wafer plasma processing equipment
JPH11340215A (en) Cleaning method for plasma treatment chamber