JPH06260328A - Cylindrical anisotropic magnet and manufacture thereof - Google Patents

Cylindrical anisotropic magnet and manufacture thereof

Info

Publication number
JPH06260328A
JPH06260328A JP13595392A JP13595392A JPH06260328A JP H06260328 A JPH06260328 A JP H06260328A JP 13595392 A JP13595392 A JP 13595392A JP 13595392 A JP13595392 A JP 13595392A JP H06260328 A JPH06260328 A JP H06260328A
Authority
JP
Japan
Prior art keywords
magnetic
pair
cylindrical
molding
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13595392A
Other languages
Japanese (ja)
Inventor
Takahiro Sunaga
▲高▼弘 須永
Hirobumi Takabayashi
博文 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA SUMITOKU DENSHI KK
Hitachi Metals Ltd
Original Assignee
YOKOHAMA SUMITOKU DENSHI KK
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA SUMITOKU DENSHI KK, Sumitomo Special Metals Co Ltd filed Critical YOKOHAMA SUMITOKU DENSHI KK
Priority to JP13595392A priority Critical patent/JPH06260328A/en
Priority to TW082103259A priority patent/TW231395B/zh
Priority to PCT/JP1993/000539 priority patent/WO1993022778A1/en
Priority to EP93909421A priority patent/EP0591555A1/en
Priority to KR1019930704038A priority patent/KR940701579A/en
Priority to CN93106368A priority patent/CN1086932A/en
Publication of JPH06260328A publication Critical patent/JPH06260328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cylindrical anisotropic magnet in which a total magnetic flux amount generated from a pole surface is improved and cogging characteristic of a motor can be improved and a method for manufacturing the same. CONSTITUTION:A nonmagnetic ring 30 is disposed on an outer periphery of an elliptical molding space whose major axis is parallel to arrow M between a pair of poles 1a and 1b so that a pair of poles 4a, 4b are disposed in opposed parts in a major-axis direction and a par of nonmagnetic elements 5a, 5b are disposed on opposed parts of a minor-axis direction, and an elliptical molded form molded by a unit in which a core 6 made of a magnetic element substantially similar to the molding space is disposed at the center is sintered. Thus, a substantially regular circle cylindrical anisotropic sintered magnet in which the pair of the opposed parts have radial anisotropy in a predetermined angle range, and the residue has a right angle anisotropy and/or isotropy is obtained at the time of sintering without crack.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁極面から発生する
総磁束量の向上およびモーターのコギング特性を良好に
できる円筒状異方性磁石とその製造方法の改良に係り、
特に、2極モーター等に使用され、所要範囲をラジアル
異方性となし残部を直角異方性および/または等方性と
なした円筒状異方性磁石およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a cylindrical anisotropic magnet capable of improving the total amount of magnetic flux generated from a magnetic pole surface and good cogging characteristics of a motor, and an improvement in its manufacturing method.
In particular, the present invention relates to a cylindrical anisotropic magnet used for a two-pole motor or the like, in which the required range is radial anisotropy and the rest is orthogonal anisotropy and / or isotropicity, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】2極モーター等に使用される磁石として
はフェライト系磁石、希土類系磁石等の焼結磁石やボン
ド磁石が知られており、通常、低出力用には円筒状等方
性焼結磁石が使用され、高出力用には弓型状異方性焼結
磁石を円筒状に組立て使用されていた。しかし、近年の
高性能化とともに組立工程の簡略化等の要望から、磁気
特性に優れた円筒状異方性焼結磁石の使用が検討されて
いる。2極モーターに使用される円筒状異方性焼結磁石
としては、その異方性の方向によってラジアル異方性焼
結磁石と直角異方性焼結磁石とが知られている。
2. Description of the Related Art Sintered magnets such as ferrite magnets and rare earth magnets and bonded magnets are known as magnets used for two-pole motors and the like, and are generally cylindrical isotropic burners for low output. A binder magnet was used, and for high output, an arched anisotropic sintered magnet was assembled into a cylindrical shape and used. However, the use of cylindrical anisotropic sintered magnets having excellent magnetic properties has been studied in response to recent demands for higher performance and simplification of the assembly process. Radial anisotropic sintered magnets and orthogonal anisotropic sintered magnets are known as cylindrical anisotropic sintered magnets used for two-pole motors, depending on the direction of their anisotropy.

【0003】[0003]

【発明が解決しようとする課題】上記円筒状のラジアル
異方性焼結磁石と直角異方性焼結磁石とを、それぞれ2
極モーターに使用する場合、以下に示すような問題点を
有している。ここでは、これらの円筒状異方性焼結磁石
を2極モーターのステーター側に配置した構成において
説明する。円筒状のラジアル異方性焼結磁石では、ステ
ーターとローターとの空隙中央部における円周方向のど
の位置においても、ほぼ一定の磁束密度となり、効率が
よく、同じ磁気特性を有する磁石原料を使用した場合に
は、直角異方性焼結磁石を配置した構成に比べ、優れた
モーター出力を得ることが可能となる。しかし、各々の
磁極端部における上記磁束分布が急激に変化するため、
モーターのコギング特性が悪いと言う問題点を有してい
る。
The cylindrical radial anisotropic sintered magnet and the orthotropic sintered magnet are each provided in 2 pieces.
When it is used in a polar motor, it has the following problems. Here, the configuration will be described in which these cylindrical anisotropic sintered magnets are arranged on the stator side of a two-pole motor. In a cylindrical radial anisotropic sintered magnet, the magnetic flux density is almost constant at any position in the circumferential direction at the center of the air gap between the stator and rotor, and a magnet raw material with good efficiency and the same magnetic characteristics is used. In this case, an excellent motor output can be obtained as compared with the configuration in which the orthotropic sintered magnet is arranged. However, since the magnetic flux distribution at each magnetic pole end changes rapidly,
There is a problem that the cogging characteristic of the motor is bad.

【0004】また、磁石原料の磁気特性をある程度以上
に高くすると、焼結時に成形体に割れが発生し、要求さ
れる高磁気特性を有する円筒状のラジアル異方性焼結磁
石は、事実上、一体品として製造することは困難であ
る。
Further, when the magnetic characteristics of the magnet raw material are increased to a certain extent or more, cracks occur in the compact during sintering, and the cylindrical radial anisotropic sintered magnet having the required high magnetic characteristics is practically used. However, it is difficult to manufacture as an integrated product.

【0005】一方、円筒状の直角異方性焼結磁石では、
磁気特性に優れた磁石原料を用いても焼結時に成形体に
割れが発生することはなく、容易に円筒状の一体品とし
て得ることができるが、ステーターとローターとの空隙
中央部における円周方向の磁束分布は、磁極の中央部が
高く両端部に近づくにしたがって徐々に低下する所謂サ
インカーブ状となることから、ラジアル異方性焼結磁石
を配置した構成に比べ、磁極の中央部では高い磁束密度
を得ることが可能であっても、磁極面から発生する総磁
束量が低いと言う問題点を有している。しかし、上記の
様な磁束分布を有することからモーターのコギング特性
はラジアル異方性焼結磁石を配置した構成に比べ優れて
いる。
On the other hand, in the cylindrical orthotropic sintered magnet,
Even if a magnet raw material with excellent magnetic properties is used, the compact will not crack during sintering, and it can be easily obtained as a cylindrical integrated product. However, the circumference at the center of the gap between the stator and rotor The magnetic flux distribution in the direction is a so-called sine curve shape in which the central portion of the magnetic pole is high and gradually decreases toward both ends. Even if a high magnetic flux density can be obtained, there is a problem that the total amount of magnetic flux generated from the magnetic pole surface is low. However, because of the magnetic flux distribution as described above, the cogging characteristic of the motor is superior to the configuration in which the radial anisotropic sintered magnet is arranged.

【0006】さらに、上記焼結磁石の如き焼結時の割れ
の発生がないボンド磁石でも、同様に磁極面から発生す
る総磁束量の向上およびモーターのコギング特性を良好
にすることを要求されるが、両方の要求をともに満足す
るすぐれた特性を示すものは提案されていない。
Further, even in the case of a bonded magnet such as the above-mentioned sintered magnet which does not cause cracks during sintering, it is required to improve the total amount of magnetic flux generated from the magnetic pole faces and to improve the cogging characteristic of the motor. However, no material having excellent properties that satisfies both requirements has been proposed.

【0007】この発明は、上記各々の異方性磁石が有す
る問題点を解決し、磁極面から発生する総磁束量の向上
およびモーターのコギング特性を良好とする円筒状異方
性磁石およびその製造方法の提供を目的として提案する
ものである。
The present invention solves the problems of the above anisotropic magnets, improves the total amount of magnetic flux generated from the magnetic pole faces, and improves the cogging characteristics of the motor. It is proposed for the purpose of providing a method.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、種々の検討を行った結果、一体の円
筒状異方性磁石の所定箇所をラジアル異方性とし、残部
を直角異方性とすることによって、それぞれの異方性磁
石が有する長所を有効に活用でき、しかも量産性よく製
造可能であることを知見し、ここに提案するものであ
る。
In order to achieve the above-mentioned object, the present invention has made various investigations, and as a result, a predetermined location of an integral cylindrical anisotropic magnet has a radial anisotropy and the remainder is By making the orthotropic property anisotropic, the advantages of each anisotropic magnet can be effectively utilized, and it is possible to manufacture with good mass productivity, and it is proposed here.

【0009】すなわち、この発明は、一対の対向部分が
所要角度範囲内においてラジアル異方性を有し、残部が
直角異方性および/または等方性を有することを特徴と
する円筒状異方性磁石である。
That is, according to the present invention, the pair of opposed portions has radial anisotropy within a required angle range, and the rest has orthogonal anisotropy and / or isotropicity. It is a sex magnet.

【0010】また、この円筒状異方性磁石を製造する具
体的な方法として、一対の磁極間に磁界印加方向が長径
となる楕円状の成型空間を有する成型用ダイスを配置
し、該成型空間の長径方向の対向部分に一対の磁性体を
配置するとともに、成型空間の中央部に該成型空間と略
相似形の磁性体からなるコアを配置してなる成型装置に
て、磁性原料粉末を磁界中成型し、さらに楕円状の成形
体を焼結することによって一対の対向部分が所要角度範
囲内においてラジアル異方性を有し、残部が直角異方性
および/または等方性を有する略真円状の焼結体とする
ことを特徴とする円筒状異方性磁石の製造方法を併せて
提案するものである。
As a specific method of manufacturing this cylindrical anisotropic magnet, a molding die having an elliptical molding space whose major axis in the magnetic field application direction is a major axis is arranged between a pair of magnetic poles, and the molding space is formed. The magnetic raw material powder is placed in a magnetic field in a molding machine in which a pair of magnetic bodies are arranged in the opposing portions in the major axis direction of the core and a core made of a magnetic body having a similar shape to the molding space is arranged in the center of the molding space. By medium molding and sintering an elliptical compact, the pair of opposed parts have radial anisotropy within the required angle range, and the rest have a substantially true anisotropy and / or isotropic property. The present invention also proposes a method for manufacturing a cylindrical anisotropic magnet, which is characterized in that a circular sintered body is used.

【0011】この発明は、Srフェライト磁石、Baフ
ェライト磁石等のフェライト系磁石、希土類・コバルト
磁石、希土類・鉄・ボロン磁石等の希土類系磁石など公
知のいずれの異方性焼結磁石、異方性ボンド磁石にも適
用可能である。
This invention is applicable to any known anisotropic sintered magnet such as ferrite magnets such as Sr ferrite magnets and Ba ferrite magnets, rare earth / cobalt magnets, rare earth magnets such as rare earth / iron / boron magnets, and anisotropic magnets. It can also be applied to adhesive bond magnets.

【0012】[0012]

【作用】この発明の構成、作用を図1〜図3に示すこの
発明の一実施例の円筒状異方性焼結磁石および該円筒状
異方性焼結磁石を製造するための成型装置に基づいて詳
細に説明する。図1のAにこの発明による円筒状異方性
焼結磁石10の一実施例を示す。すなわち、一対の対向
部分11a,11bがそれぞれθ1の角度範囲内におい
てラジアル異方性を有し、残部の12a,12bの部分
が直角異方性を有する直径D1からなる円筒状異方性焼
結磁石10である。図中矢印Mは、後述する成型装置に
おける磁界印加方向である。
1 to 3 show the structure and operation of the present invention, a cylindrical anisotropic sintered magnet and a molding apparatus for manufacturing the cylindrical anisotropic sintered magnet. Based on this, a detailed description will be given. FIG. 1A shows an embodiment of a cylindrical anisotropic sintered magnet 10 according to the present invention. That is, the cylindrical anisotropic pair of opposing portions 11a, 11b has a radial anisotropic in the theta 1 angle range, respectively, consist of a diameter D 1 of the remainder of 12a, the portion of 12b having a perpendicular anisotropy The sintered magnet 10. An arrow M in the drawing indicates a magnetic field application direction in a molding device described later.

【0013】図2のA,Bは、この発明の円筒状異方性
焼結磁石を製造するための成型装置の一実施例である。
すなわち、電磁コイル2a,2bを巻回した一対の磁極
1a,1b間に磁界印加方向(図中矢印M方向)が長径
となる楕円状の成型空間を有する成型用ダイス3を配置
し、該成型空間の外周部でかつ長径方向の対向部分に一
対の磁性体4a,4bを、また短径方向の対向部分に一
対の非磁性体5a,5bを配置するとともに、成型空間
の中央部に該成型空間と略相似形の磁性体からなるコア
6を配置してなる。なお、各々磁性体4a,4bは楕円
状の成型空間の外周部にθ3の角度範囲にて対向してい
る。図中8は非磁性体からなるリング状下パンチ、9は
非磁性体からなる上パンチである。
2A and 2B show an embodiment of a molding apparatus for manufacturing the cylindrical anisotropic sintered magnet of the present invention.
That is, a molding die 3 having an elliptical molding space whose major axis is the magnetic field application direction (direction of arrow M in the figure) is arranged between the pair of magnetic poles 1a and 1b around which the electromagnetic coils 2a and 2b are wound, and the molding is performed. A pair of magnetic bodies 4a and 4b are arranged at the outer peripheral portion of the space and facing each other in the major axis direction, and a pair of non-magnetic bodies 5a and 5b are arranged at the facing portion in the minor axis direction, and the molding is performed at the center of the molding space. A core 6 made of a magnetic material having a shape substantially similar to the space is arranged. The magnetic bodies 4a and 4b face the outer peripheral portion of the elliptical molding space in the angle range of θ 3 . In the drawing, 8 is a ring-shaped lower punch made of a non-magnetic material, and 9 is an upper punch made of a non-magnetic material.

【0014】上記の構成からなる成型装置の成型用ダイ
ス3内の楕円状成型空間に所定組成からなる磁性原料粉
末7を所定量挿入した後、電磁コイル2a,2bに電流
を印加して一対の磁極1a,1b間に図中矢印M方向の
磁界を印加しながら圧縮成型すると、該磁性原料粉末7
の圧縮成型時には、成型用ダイス3を構成する一対の磁
性体4a,4bおよび一対の非磁性体5a,5bの配置
により図中破線にて示す如き磁束線が作用し、それぞれ
一対の磁性体4a,4bに対向する部分はラジアル異方
性を有し、一対の非磁性体5a,5bに対向する部分は
直角異方性を有することとなる。特に、図2の構成にお
いては、成形空間の外周部に直接対向する一対の磁性体
4a,4b配置することにより、磁性原料粉末7に磁極
からの磁界を効果的に印加することができる。
After inserting a predetermined amount of the magnetic raw material powder 7 having a predetermined composition into the elliptical molding space in the molding die 3 of the molding apparatus having the above-mentioned structure, a current is applied to the electromagnetic coils 2a and 2b to make a pair. The magnetic raw material powder 7 is obtained by compression molding while applying a magnetic field in the direction of arrow M between the magnetic poles 1a and 1b.
At the time of compression molding, magnetic flux lines as indicated by broken lines in the figure act due to the arrangement of the pair of magnetic bodies 4a, 4b and the pair of non-magnetic bodies 5a, 5b constituting the molding die 3, and the pair of magnetic bodies 4a respectively. , 4b has radial anisotropy, and the parts facing the pair of non-magnetic bodies 5a, 5b have orthogonal anisotropy. In particular, in the configuration of FIG. 2, a magnetic field from the magnetic poles can be effectively applied to the magnetic raw material powder 7 by arranging the pair of magnetic bodies 4a and 4b directly facing the outer peripheral portion of the molding space.

【0015】このようにして得られた成形体は図1のB
に示すように、一対の対向部分21a,21bがそれぞ
れθ2の角度範囲内においてラジアル異方性を有し、残
部の22a,22bの部分が直角異方性を有する長径D
2、短径D3からなる楕円状成形体20となる。図中矢印
Mは、前述の成型装置における磁界印加方向である。
The molded body thus obtained is shown in FIG.
As shown in FIG. 4, the pair of facing portions 21a and 21b each have radial anisotropy within the angle range of θ 2 , and the remaining portions 22a and 22b have orthogonal anisotropy.
2 and an elliptical shaped body 20 having a minor axis D 3 . The arrow M in the figure is the magnetic field application direction in the above-mentioned molding apparatus.

【0016】さらに、この楕円状成形体20を所定温度
にて焼結することによって図1のAに示す如き一対の対
向部分が所要角度範囲内においてラジアル異方性を有
し、残部が直角異方性を有する略真円状の円筒状異方性
焼結磁石とすることができる。なお、図1において、一
対の対向部分と残部の境を実線で示しているが、例えば
ラジアル異方性と直角異方性が当該実線部で明確に変化
していることを必ずしも示しているわけではない。ま
た、当該残部も直角異方性のみの場合だけでなく、上記
の成形装置の構成等に伴い圧縮成形時の磁性原料粉末7
に作用する磁界の方向により部分的にあるいは残部のす
べてが等方性を有する場合もある。
Further, by sintering the elliptical shaped body 20 at a predetermined temperature, a pair of opposed portions as shown in A of FIG. 1 have radial anisotropy within a required angle range, and the rest have different right angles. It can be made into a substantially perfect circular cylindrical anisotropic sintered magnet having directionality. Note that, in FIG. 1, the boundary between the pair of opposed portions and the remaining portion is indicated by a solid line, but it does not necessarily indicate that the radial anisotropy and the orthogonal anisotropy are clearly changed in the solid line portion, for example. is not. Further, not only when the remaining portion is only orthotropic, but also due to the configuration of the above-mentioned molding apparatus, the magnetic raw material powder 7 at the time of compression molding
Depending on the direction of the magnetic field acting on, there may be a case where some or all of the rest are isotropic.

【0017】この発明において、円筒状異方性焼結磁石
を得るための成形体20を楕円状とするのは、磁界中で
圧縮成型すると、磁界印加方向とその直角方向では収縮
率が異なり、通常、磁界印加方向の収縮率が大きくなる
ことから、予めそれらの収縮率を考慮して磁界印加方向
が長径となるような楕円状とし、焼結後に略真円状とす
ることによって、研削加工の加工取代を減少させ、歩留
りを向上しコストダウンを達成するためである。
In the present invention, the molded body 20 for obtaining the cylindrical anisotropic sintered magnet has an elliptic shape, which means that when compression-molded in a magnetic field, the shrinkage rate differs between the direction in which the magnetic field is applied and the direction perpendicular thereto. Usually, the shrinkage rate in the magnetic field application direction becomes large, so by considering these shrinkage rates in advance, an elliptical shape with a major axis in the magnetic field application direction is formed, and after sintering, it is made into a substantially circular shape, so that the grinding process is performed. This is to reduce the machining allowance, improve yield, and achieve cost reduction.

【0018】なお、この成形体20の形状寸法は最終的
に焼結して得られる円筒状異方性焼結磁石の形状寸法と
ともに、その磁気特性等に応じて適宜選定されるが、通
常、多用される2極モーターに使用されるフェライト系
の円筒状異方性焼結磁石の場合、成形体20の長径D2
と短径D3との比D2/D3は1.05〜1.15程度で
あり、またラジアル異方性の角度範囲θ2も100°〜
160°程度が好ましい。すなわち、成形体20におけ
る比D2/D3が上記の範囲外であると、焼結後に略真円
状とならず、またラジアル異方性の角度範囲θ2が小さ
すぎると目的とする効果が得られなく、大きすぎると焼
結時に割れが発生することから上記範囲内にて選定する
ことが望ましい。希土類系の円筒状異方性焼結磁石の場
合も、前記の収縮率がフェライト系と同程度であること
から、成型装置なども同様に構成すればよい。
The shape and size of the molded body 20 are appropriately selected depending on the shape and size of the cylindrical anisotropic sintered magnet finally obtained by sintering and the magnetic characteristics thereof. In the case of a ferrite-based cylindrical anisotropic sintered magnet used in a frequently used two-pole motor, the long diameter D 2 of the molded body 20
The ratio D 2 / D 3 of the minor axis D 3 is about 1.05 to 1.15, also radially anisotropic angular range theta 2 also 100 ° ~
About 160 ° is preferable. That is, if the ratio D 2 / D 3 in the molded body 20 is out of the above range, it does not become a substantially circular shape after sintering, and if the angular range θ 2 of radial anisotropy is too small, the desired effect is obtained. Is not obtained, and cracks occur during sintering if it is too large, it is desirable to select within the above range. Also in the case of a rare earth-based cylindrical anisotropic sintered magnet, since the shrinkage ratio is about the same as that of the ferrite-based magnet, a molding device and the like may be similarly configured.

【0019】さらに、図3のA,Bに示す如く、図2と
同様構成において、成型用ダイス3の成型空間と一対の
磁性体4a,4b及び一対の非磁性体5a,5bとの間
に非磁性リング30を配置した構成とすることにより、
得られた成形体を焼結した際のひびや割れの発生をさら
に一層低減できる。図3においては、真円筒状の非磁性
リング30を用いて、成型空間と一対の磁性体4a,4
bとの間のリング厚みを少なくかつ周方向に厚みが変化
するように構成してある。また、非磁性リング30の材
質に超硬材を採用してダイス寿命の延長を図っている。
従って、成型用ダイスの構成は上述の構成の如く、一対
の磁性体と一対の非磁性体が明確に区分されたもの以外
に当該磁性体が磁極と一体化されるなど種々構成を採用
することができ、少なくとも一対の磁極間に磁界印加方
向が長径となる楕円状の成型空間を有する成型用ダイス
を配置し、該成型空間の長径方向の対向部分に一対の磁
性体を配置するとともに、成型空間の中央部に該成型空
間と略相似形の磁性体からなるコアを配置した構成であ
ればよい。
Further, as shown in FIGS. 3A and 3B, in the same structure as in FIG. 2, between the molding space of the molding die 3 and the pair of magnetic bodies 4a and 4b and the pair of nonmagnetic bodies 5a and 5b. By disposing the non-magnetic ring 30,
It is possible to further reduce the occurrence of cracks and cracks when the obtained molded body is sintered. In FIG. 3, a true cylindrical non-magnetic ring 30 is used to form a molding space and a pair of magnetic bodies 4a, 4
The ring thickness between b and b is small and the thickness varies in the circumferential direction. Further, a super hard material is adopted as the material of the non-magnetic ring 30 to extend the life of the die.
Therefore, as for the structure of the molding die, various structures such as the one in which the pair of magnetic bodies and the pair of non-magnetic bodies are clearly separated and the magnetic body is integrated with the magnetic pole are adopted as in the above-described construction. A molding die having an elliptical molding space having a major axis in the direction of magnetic field application is disposed between at least a pair of magnetic poles, and a pair of magnetic bodies are disposed at opposing portions in the major axis direction of the molding space. Any structure may be used in which a core made of a magnetic material having a shape similar to that of the molding space is arranged in the center of the space.

【0020】また、ボンド磁石を製造する方法として
は、圧縮成型、射出成型、樹脂含浸法など公知のいずれ
の製造方法であってもよい。例えば、焼結磁石の如き熱
収縮率を考慮する必要がないため、成形体は真円状でよ
く、一対の磁極間に円状の成型空間を有する成型用ダイ
スを配置し、該成型空間の磁極対向部分に一対の磁性体
を配置するとともに、成型空間の中央部に該成型空間と
略相似形の磁性体からなるコアを配置してなる成型装置
にて、磁性粉末に熱硬化性樹脂、カップリング剤、滑剤
等を添加混練した磁性原料粉末を磁界中成型し、さらに
使用したバインダーなどに応じて常温固化、熱固化させ
るとよい。特に、樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。
The bonded magnet may be manufactured by any known manufacturing method such as compression molding, injection molding and resin impregnation. For example, since it is not necessary to consider the heat shrinkage ratio of a sintered magnet, the molded body may have a perfect circular shape, and a molding die having a circular molding space is arranged between a pair of magnetic poles, and the molding space A pair of magnetic bodies are arranged in the magnetic pole facing portions, and a core made of a magnetic body having a similar shape to the molding space is arranged in the center of the molding space. It is preferable that the magnetic raw material powder in which a coupling agent, a lubricant and the like are added and kneaded is molded in a magnetic field and further solidified at room temperature and heat depending on the binder used. Particularly, in the resin impregnation method, the magnetic powder is obtained by compression molding, heat treatment if necessary, impregnation with a thermosetting resin, and heating to cure the resin. Alternatively, the magnetic powder may be obtained by compression molding, heat treatment if necessary, and impregnation with a thermoplastic resin.

【0021】ボンド磁石中の磁性粉末の充填率は、上記
製造方法に応じて適宜選定すればよい。バインダーとし
て用いる合成樹脂は、熱硬化性、熱可塑性のいずれの性
質を有するものも利用できるが、熱的に安定な樹脂が好
ましく、例えば、ポリアミド、ポリイミド、フェノール
樹脂、弗素樹脂、けい素樹脂、エポキシ樹脂などを適宜
選定できる。
The filling rate of the magnetic powder in the bonded magnet may be appropriately selected according to the above manufacturing method. The synthetic resin used as the binder, thermosetting, it is possible to use those having any of the properties of thermoplasticity, a thermally stable resin is preferred, for example, polyamide, polyimide, phenolic resin, fluororesin, silicon resin, Epoxy resin or the like can be appropriately selected.

【0022】[0022]

【実施例】実施例1 Srフェライト系の円筒状異方性焼結磁石の場合を一実
施例として示し、この発明の効果をより一層明らかにす
る。磁性原料粉末として、基本磁気特性が残留磁束密度
Br=3.77kG、保磁力Hc=2.97kOe、最
大エネルギー積(BH)max=3.34MGOeであ
るSrフェライト粉末を図3にて示す成型装置(θ4
120°)を用いて6kOeの磁界中で1ton/cm
2の圧力にて圧縮成型し、図1のBに示す成形体を得
た。成形体の寸法は長径D2=52.6mm、短径D3
47.1mm(D2/D3は1.12)であり、高さは約
12.6mm、さらにθ2=120〜130°であっ
た。この成形体を1200°C×1時間で焼結したの
ち、機械的加工を施して外径40mm×内径30mm×
高さ10mmの略真円状のこの発明の円筒状異方性焼結
磁石を得、該磁石を2極モーターのステーター側に配置
しローターとの空隙中央部における円周方向の磁束分布
を測定した。
Example 1 The case of a cylindrical anisotropic sintered magnet of Sr ferrite system is shown as an example to further clarify the effect of the present invention. As a magnetic raw material powder, an Sr ferrite powder having basic magnetic characteristics of residual magnetic flux density Br = 3.77 kG, coercive force Hc = 2.97 kOe, and maximum energy product (BH) max = 3.34 MGOe is shown in FIG. (Θ 4 =
120 °) in a magnetic field of 6 kOe at 1 ton / cm
Compression molding was performed at a pressure of 2 to obtain a molded body shown in B of FIG. The dimensions of the molded body are major axis D 2 = 52.6 mm and minor axis D 3 =
The height was 47.1 mm (D 2 / D 3 was 1.12), the height was about 12.6 mm, and θ 2 = 120 to 130 °. This compact was sintered at 1200 ° C for 1 hour and then mechanically processed to give an outer diameter of 40 mm × an inner diameter of 30 mm ×
A substantially circular cylindrical anisotropic sintered magnet of the present invention having a height of 10 mm was obtained, and the magnet was arranged on the stator side of a two-pole motor and the magnetic flux distribution in the circumferential direction at the center of the gap with the rotor was measured. did.

【0023】比較例 また、比較例1として、上記と同一の磁性原料粉末を用
い、公知の方法にて外径40mm×内径30mm×高さ
10mmの円筒状直角異方性焼結磁石を得、この発明の
磁石と同様の測定を行った。さらに、比較例2として、
基本磁気特性が残留磁束密度Br=3.16kG、保磁
力Hc=2.46kOe、最大エネルギー積(BH)m
ax=2.20MGOeであるSrフェライト粉末を用
いた従来から知られる焼結時に割れの発生しない範囲で
最高特性値を有する外径40mm×内径30mm×高さ
10mmの円筒状ラジアル異方性焼結磁石を得、この発
明の磁石と同様の測定を行った。各々の磁束分布を図4
に示す。図4において横軸は空隙中央部における円周方
向の測定位置(角度°)、縦軸は各々測定位置における
磁束密度Bg(kG)を示している。
Comparative Example As Comparative Example 1, the same magnetic raw material powder as described above was used to obtain a cylindrical orthotropic anisotropic sintered magnet having an outer diameter of 40 mm, an inner diameter of 30 mm and a height of 10 mm by a known method. The same measurement as the magnet of the present invention was performed. Furthermore, as Comparative Example 2,
The basic magnetic characteristics are residual magnetic flux density Br = 3.16 kG, coercive force Hc = 2.46 kOe, and maximum energy product (BH) m.
Cylindrical radial anisotropic sintering having an outer diameter of 40 mm, an inner diameter of 30 mm, and a height of 10 mm, which has the highest characteristic value in a range where cracking does not occur during sintering, which is conventionally known, using Sr ferrite powder with ax = 2.20 MGOe. A magnet was obtained, and the same measurement as that of the magnet of the present invention was performed. Fig. 4 shows each magnetic flux distribution
Shown in. In FIG. 4, the horizontal axis represents the measurement position (angle) in the circumferential direction at the center of the gap, and the vertical axis represents the magnetic flux density Bg (kG) at each measurement position.

【0024】図4より、○印でプロットしたこの発明の
円筒状異方性焼結磁石による磁束分布は、●印でプロッ
トした比較例1(円筒状直角異方性焼結磁石)の磁束分
布に比べ、一部がラジアル異方性を有するために、磁極
表面から発生する磁束量、すなわち、磁束量に相当する
グラフの横軸と磁束分布曲線にて囲まれている面積が多
いことが明らかである。従って、モーターの出力を向上
させることが可能となる。また、全体としての磁束分布
は比較例1と同様に、円周方向において磁極の中央部が
高く両端部に近づくにしたがって徐々に低下する所謂サ
インカーブ状となることから、コギング特性も良好であ
る。さらに、×印でプロットした比較例2(円筒状ラジ
アル異方性焼結磁石)に比べ、磁気特性の高い磁石原料
を使用しても割れずに製造できることから、比較例2よ
り磁極表面から発生する磁束量も多く、コギング特性も
良好である。
From FIG. 4, the magnetic flux distribution of the cylindrical anisotropic sintered magnet of the present invention plotted with a circle is the magnetic flux distribution of Comparative Example 1 (cylindrical orthotropic sintered magnet) plotted with a solid circle. Compared to the above, it is clear that a large amount of magnetic flux is generated from the magnetic pole surface, that is, the area surrounded by the horizontal axis and the magnetic flux distribution curve of the graph corresponding to the amount of magnetic flux is large because of the partial radial anisotropy. Is. Therefore, it becomes possible to improve the output of the motor. Further, the magnetic flux distribution as a whole has a so-called sine curve shape in which the central portion of the magnetic pole is high in the circumferential direction and gradually decreases toward both ends in the same manner as in Comparative Example 1, so that the cogging characteristic is also good. . Further, as compared with Comparative Example 2 (cylindrical radial anisotropic sintered magnet) plotted with X marks, it can be produced without cracking even if a magnet raw material having high magnetic properties is used. The amount of magnetic flux generated is large, and the cogging characteristic is good.

【0025】この実施例においては、Srフェライト系
の円筒状異方性焼結磁石の場合において説明したが、こ
の発明者は、希土類系など他の材料からなる円筒状異方
性焼結磁石の場合においても同様な効果が得られること
を確認した。さらに、バインダーにエポキシ樹脂を使用
したSrフェライト系の円筒状異方性ボンド磁石を、成
形空間を円筒状とする以外は実施例と同様の装置にて作
製し、同様な効果が得られることを確認した。
In this embodiment, the explanation was made on the case of the cylindrical anisotropic sintered magnet of Sr ferrite type, but the present inventor has proposed the cylindrical anisotropic sintered magnet made of other materials such as rare earth type. It was confirmed that similar effects could be obtained in some cases. Further, an Sr ferrite-based cylindrical anisotropic bonded magnet using an epoxy resin as a binder was produced in the same apparatus as in the example except that the molding space was cylindrical, and the same effect was obtained. confirmed.

【0026】[0026]

【発明の効果】この発明は、一体の円筒状異方性磁石の
所定箇所をラジアル異方性とし、残部を直角異方性とす
ることによって、それぞれの異方性磁石が有する長所を
有効に活用でき、磁極面から発生する総磁束量の向上に
伴うモーター出力の向上を達成でき、さらにモーターの
コギング特性を良好にすることができる。またこの発明
の製造方法によって、上記効果を有する円筒状異方性焼
結磁石を焼結時のひびや割れの発生がなく量産性よく製
造できる。
As described above, according to the present invention, the advantages of each anisotropic magnet are effectively made by making the predetermined portion of the one-piece cylindrical anisotropic magnet radial anisotropy and the rest the right angle anisotropy. It can be utilized, the improvement of the motor output can be achieved along with the improvement of the total magnetic flux generated from the magnetic pole surface, and the cogging characteristic of the motor can be improved. Further, according to the manufacturing method of the present invention, it is possible to manufacture the cylindrical anisotropic sintered magnet having the above-described effects with high productivity without causing cracks or cracks during sintering.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの発明の円筒状異方性焼結磁石の一実施
例を示す平面説明図である。Bはこの発明の円筒状異方
性焼結磁石を得るために成型された、焼結前の成形体の
一実施例を示す平面説明図である。
FIG. 1A is an explanatory plan view showing one embodiment of a cylindrical anisotropic sintered magnet of the present invention. FIG. 3B is an explanatory plan view showing an example of a molded body before sintering, which is molded to obtain the cylindrical anisotropic sintered magnet of the present invention.

【図2】この発明の円筒状異方性焼結磁石を製造する際
に使用される成型装置の一実施例を示す説明図であり、
Aは横断説明図、Bは縦断説明図である。
FIG. 2 is an explanatory view showing an example of a molding apparatus used when manufacturing the cylindrical anisotropic sintered magnet of the present invention,
A is a cross-sectional explanatory diagram, and B is a vertical cross-sectional explanatory diagram.

【図3】この発明の円筒状異方性焼結磁石を製造する際
に使用される成型装置の他の実施例を示す説明図であ
り、Aは横断説明図、Bは縦断説明図である。
FIG. 3 is an explanatory view showing another embodiment of the molding apparatus used when manufacturing the cylindrical anisotropic sintered magnet of the present invention, A is a transverse explanatory view, and B is a longitudinal sectional explanatory view. .

【図4】この発明の円筒状異方性焼結磁石の効果を明ら
かにするために、従来の円筒状異方性焼結磁石ととも
に、2極モーターのステーター側に配置しローターとの
空隙中央部における円周方向の磁束分布を測定した結果
を示すグラフである。
FIG. 4 is a view showing the effect of the cylindrical anisotropic sintered magnet of the present invention, together with the conventional cylindrical anisotropic sintered magnet, is arranged on the stator side of the two-pole motor and is located in the center of the gap with the rotor. 7 is a graph showing the results of measuring the magnetic flux distribution in the circumferential direction in the portion.

【符号の説明】[Explanation of symbols]

1a,1b 磁極 2a,2b 電磁コイル 3 成型用ダイス 4a,4b 磁性体 5a,5b 非磁性体 6 コア 7 磁性原料粉末 8 リング状下パンチ 9 上パンチ 10 円筒状異方性焼結磁石 11a,11b 対向部分 12a,12b 残部 20 楕円状成形体 21a,21b 対向部分 22a,22b 残部 30 非磁性リング 1a, 1b Magnetic pole 2a, 2b Electromagnetic coil 3 Molding dies 4a, 4b Magnetic material 5a, 5b Non-magnetic material 6 Core 7 Magnetic raw material powder 8 Ring-shaped lower punch 9 Upper punch 10 Cylindrical anisotropic sintered magnet 11a, 11b Opposing portion 12a, 12b Remaining portion 20 Elliptical molded body 21a, 21b Opposing portion 22a, 22b Remaining portion 30 Non-magnetic ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一対の対向部分が所要角度範囲内におい
てラジアル異方性を有し、残部が直角異方性および/ま
たは等方性を有することを特徴とする円筒状異方性磁
石。
1. A cylindrical anisotropic magnet, characterized in that a pair of opposed portions have radial anisotropy within a required angle range and the rest have orthogonal anisotropy and / or isotropicity.
【請求項2】 一対の磁極間に磁界印加方向が長径とな
る楕円状の成型空間を有する成型用ダイスを配置し、該
成型空間の長径方向の対向部分に一対の磁性体を配置す
るとともに、成型空間の中央部に該成型空間と略相似形
の磁性体からなるコアを配置してなる成型装置にて、磁
性原料粉末を磁界中成型し、さらに楕円状の成形体を焼
結することによって一対の対向部分が所要角度範囲内に
おいてラジアル異方性を有し、残部が直角異方性および
/または等方性を有する略真円状の焼結体とすることを
特徴とする円筒状異方性磁石の製造方法。
2. A molding die having an elliptical molding space having a major axis in a magnetic field application direction is arranged between a pair of magnetic poles, and a pair of magnetic bodies are arranged at opposing portions of the molding space in a major axis direction. By molding a magnetic raw material powder in a magnetic field with a molding device in which a core made of a magnetic material having a similar shape to that of the molding space is arranged in the center of the molding space, and by sintering an elliptical molded body. Cylindrical anomaly characterized in that a pair of opposed portions are substantially circular sintered bodies having radial anisotropy within a required angle range and the rest having orthogonal anisotropy and / or isotropicity. Method for manufacturing an isotropic magnet.
JP13595392A 1992-04-28 1992-04-28 Cylindrical anisotropic magnet and manufacture thereof Pending JPH06260328A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13595392A JPH06260328A (en) 1992-04-28 1992-04-28 Cylindrical anisotropic magnet and manufacture thereof
TW082103259A TW231395B (en) 1992-04-28 1993-04-27
PCT/JP1993/000539 WO1993022778A1 (en) 1992-04-28 1993-04-27 Cylinder type anisotropic magnets and their manufacturing methods and motors
EP93909421A EP0591555A1 (en) 1992-04-28 1993-04-27 Cylinder type anisotropic magnets and their manufacturing methods and motors
KR1019930704038A KR940701579A (en) 1992-04-28 1993-04-27 Cylindrical anisotropic magnet, manufacturing method and motor
CN93106368A CN1086932A (en) 1992-04-28 1993-04-28 Cylinder type anisotropic magnets and manufacture method thereof and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13595392A JPH06260328A (en) 1992-04-28 1992-04-28 Cylindrical anisotropic magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06260328A true JPH06260328A (en) 1994-09-16

Family

ID=15163705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13595392A Pending JPH06260328A (en) 1992-04-28 1992-04-28 Cylindrical anisotropic magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06260328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP2005294757A (en) * 2004-04-05 2005-10-20 Minebea Co Ltd Anisotropy rare earth bond magnet
JP2005317845A (en) * 2004-04-30 2005-11-10 Minebea Co Ltd Anisotropic bond magnet and its manufacturing method
JPWO2005124796A1 (en) * 2004-06-22 2008-04-17 信越化学工業株式会社 Radially anisotropic cylindrical sintered magnet and permanent magnet motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063438A1 (en) * 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Production method of a radial anisotropic sintered magnet, and magnet rotor or motor using said sintered magnet
KR20030035852A (en) * 2001-10-31 2003-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Radial Anisotropic Sintered Magnet and Its Preparation Process, and Magnet Rotor and Motor
EP1308970A3 (en) * 2001-10-31 2004-12-29 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
EP1308970A2 (en) * 2001-10-31 2003-05-07 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US6984270B2 (en) 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
KR100891856B1 (en) * 2001-10-31 2009-04-08 신에쓰 가가꾸 고교 가부시끼가이샤 Preparation Process of Radial Anisotropic Sintered Magnet
KR100891855B1 (en) * 2001-10-31 2009-04-08 신에쓰 가가꾸 고교 가부시끼가이샤 Radial Anisotropic Cylindrical Magnet, Magnet Rotor and Motor
EP2063439A1 (en) * 2001-10-31 2009-05-27 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet, its production method, and magnet rotor or motor using said sintered magnet
JP2005294757A (en) * 2004-04-05 2005-10-20 Minebea Co Ltd Anisotropy rare earth bond magnet
JP2005317845A (en) * 2004-04-30 2005-11-10 Minebea Co Ltd Anisotropic bond magnet and its manufacturing method
JPWO2005124796A1 (en) * 2004-06-22 2008-04-17 信越化学工業株式会社 Radially anisotropic cylindrical sintered magnet and permanent magnet motor
JP5089979B2 (en) * 2004-06-22 2012-12-05 信越化学工業株式会社 Radial anisotropic cylindrical sintered magnet, manufacturing method thereof, and permanent magnet motor

Similar Documents

Publication Publication Date Title
KR100908424B1 (en) Parts for magnetic circuits and manufacturing method thereof
US11381123B2 (en) Hybrid stator core component design for axial flux motor
JP4096843B2 (en) Motor and manufacturing method thereof
CN111837314B (en) Radial gap type rotating electrical machine
JP2006086319A (en) Ring type sintered magnet
US6509667B1 (en) Rotor for a reluctance motor
WO2006064589A1 (en) Rotor for motor and manufacturing method of the same
JP6308205B2 (en) Method for manufacturing anisotropic magnet, method for manufacturing anisotropic soft magnetic material, and method for manufacturing rotor of rotating electrical machine
CN105590714B (en) Jig and method for forming aligned magnetic cores
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP4029679B2 (en) Bond magnet for motor and motor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JPH06260328A (en) Cylindrical anisotropic magnet and manufacture thereof
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP2017229192A (en) Rotary electric machine and manufacturing method for rotary electric machine
JPH0686484A (en) Motor
JP4300525B2 (en) Magnetic pole face spherical bonded magnet and manufacturing method thereof
JP6712518B2 (en) Polar anisotropic magnet, manufacturing method thereof, and permanent magnet type motor generator
JP2007028725A (en) Anisotropic bonded magnet assembly, its manufacturing method, and permanent magnet motor using the magnet assembly
JPS5923448B2 (en) anisotropic magnet
JPH0775295A (en) Magnet with metal ring, magnet rotor and its manufacture
US20240039349A1 (en) Rotary electric machine and manufacturing method therefor
JPH10177928A (en) Molding device for cylindrical radial anisotropic magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device