JPH06260207A - Stack of phosphate type fuel cell - Google Patents

Stack of phosphate type fuel cell

Info

Publication number
JPH06260207A
JPH06260207A JP5040321A JP4032193A JPH06260207A JP H06260207 A JPH06260207 A JP H06260207A JP 5040321 A JP5040321 A JP 5040321A JP 4032193 A JP4032193 A JP 4032193A JP H06260207 A JPH06260207 A JP H06260207A
Authority
JP
Japan
Prior art keywords
stack
cell
platinum
fuel
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5040321A
Other languages
Japanese (ja)
Inventor
Makoto Aoki
信 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5040321A priority Critical patent/JPH06260207A/en
Publication of JPH06260207A publication Critical patent/JPH06260207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the output of a cell from being lowered due to carbon monoxide in the reformed fuel gas without a cost increased very much by using an alloy catalyser of platinum and precious metal for the fuel electrode catalyser layer of each cell from the uppermost part and the lowermost part of a stack to the third one. CONSTITUTION:A cell (unit cell) is laminated in 21 layers through a separator plate 2 and a cooling plate 3, and a fastening plate 4 is mounted above and below, and an air and a fuel manifold 5, 6 for supplying and discharging a reactant gas are arranged in the side surface. In that case, an alloy catalyser of platinum and precious metal is used for a fuel electrode catalyser layer of each cell 1 from the uppermost part and the lowermost part of a stack to each third one in which an operating temperature becomes low. For the precious metal is used one of ruthenium, palladium, rhodium, rhenium or gold. Thereby, carbon monoxide contained in the reactant gas of a fuel is absorbed in a precious metal element, the lowering of the output of a cell due to the harmfulness of the carbon monoxide of platinum can be prevented without a cost increase very much.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燐酸形燃料電池のスタッ
クの構成に関する。
FIELD OF THE INVENTION The present invention relates to the construction of a phosphoric acid fuel cell stack.

【0002】[0002]

【従来の技術】燐酸形燃料電池のスタックは単電池を上
下方向に多数積層したものであり、図1に燐酸形燃料電
池スタックの外観を模式斜視図で示すが、図1は説明の
便宜上一部を剥離した状態で示してある。図1におい
て、この燐酸形燃料電池スタックは、空気極、燃料極お
よびマトリックスからなる各セル(単電池)1を、セパ
レータ板2、および一部に温度調節のための冷却板3を
介在させて多数積層し、上下に締付板4を取り付け、側
面に反応ガスを供給し排気するための空気マニホルド5
と燃料マニホルド6とを配置してある。
2. Description of the Related Art A phosphoric acid fuel cell stack is a stack of a plurality of unit cells vertically, and FIG. 1 is a schematic perspective view showing the appearance of the phosphoric acid fuel cell stack. It is shown in a state where the parts are peeled off. In FIG. 1, this phosphoric acid fuel cell stack has cells (unit cells) 1 each consisting of an air electrode, a fuel electrode and a matrix, a separator plate 2 and a cooling plate 3 for temperature control partially interposed. An air manifold 5 for stacking a large number of layers, attaching clamping plates 4 on the top and bottom, and supplying and exhausting reaction gas on the side surface.
And a fuel manifold 6 are arranged.

【0003】図2は、セル1の構成部材を示す部分的な
模式断面図であり、図2(a)は構成部材を示し、図2
(b)はそのうちの触媒層の一部を拡大して示した模式
断面図である。図2(a)において、空気極はカーボ
ン基材8と、触媒14[図2(b)]をバインダーのフ
ッ素樹脂9で結着した空気極触媒層10とからなり、燃
料極11は同様にカーボン基材8と、触媒14をフッ素
樹脂9で結着した燃料極触媒層12からなり、空気極
と燃料極11がマトリックス13を挟持している。触媒
14は図2(b)に示すように、カーボン担体15上に
白金16を担持する。
FIG. 2 is a partial schematic cross-sectional view showing the constituent members of the cell 1, and FIG. 2 (a) shows the constituent members.
(B) is a schematic cross-sectional view showing an enlarged part of the catalyst layer. In FIG. 2 (a), the air electrode 7 comprises a carbon base material 8 and an air electrode catalyst layer 10 in which a catalyst 14 [FIG. 2 (b)] is bound by a fluororesin 9 as a binder, and the fuel electrode 11 is the same. Is composed of a carbon base material 8 and a fuel electrode catalyst layer 12 in which a catalyst 14 is bound with a fluororesin 9, and the air electrode 7
And the fuel electrode 11 sandwiches the matrix 13. As shown in FIG. 2B, the catalyst 14 carries platinum 16 on a carbon carrier 15.

【0004】[0004]

【発明が解決しようとする課題】以上のセル1を多数積
層した燃料電池のスタックについて、下記のような問題
がある。電池に供給される燃料の改質ガス、即ち、燃料
改質器により天然ガスや石油ガスなどを改質して得られ
る水素リッチなガスの中には、電池の運転条件によって
も異なるが、1%程度の一酸化炭素が含まれることがあ
り、問題は、その一酸化炭素が燃料極11の触媒14中
の白金16の表面に吸着して、水素の還元反応を阻害す
るので、触媒14に対して被毒物質となり、電池の出力
を低下させることである。
The fuel cell stack in which a large number of the above cells 1 are stacked has the following problems. The reformed gas of the fuel supplied to the battery, that is, the hydrogen-rich gas obtained by reforming natural gas or petroleum gas by the fuel reformer, varies depending on the operating conditions of the battery. % Carbon monoxide may be contained, and the problem is that the carbon monoxide adsorbs on the surface of the platinum 16 in the catalyst 14 of the fuel electrode 11 and inhibits the hydrogen reduction reaction. On the other hand, it is a poisonous substance and reduces the output of the battery.

【0005】一般に、燐酸形燃料電池はスタックに積層
した各セル1の温度が200℃程度になるように、温度
を調節して運転を行なう。しかし、スタックの上部と下
部に位置するセル1は、上下の締付板4からの大きな放
熱の影響を受け、その他のセル1に比べて温度が10〜
30℃程度低下する。一酸化炭素の白金16表面上への
吸着量は、温度が170℃以上になれば減少し、通常、
200℃程度の電池の運転条件では、一酸化炭素によっ
て燃料極11の触媒14が被毒される影響は無視できる
程小さい。しかし、温度の低いスタック上部と下部に位
置するセル1では、一酸化炭素による触媒14の被毒を
無視することができなくなり、電池の出力低下が著し
い。
Generally, the phosphoric acid fuel cell is operated by adjusting the temperature so that the temperature of each cell 1 stacked in the stack is about 200.degree. However, the cells 1 located at the upper and lower parts of the stack are affected by the large heat radiation from the upper and lower tightening plates 4, and the temperature is 10 to 10 compared to the other cells 1.
It drops about 30 ° C. The amount of carbon monoxide adsorbed on the surface of platinum 16 decreases when the temperature rises above 170 ° C.
Under the operating condition of the battery at about 200 ° C., the influence of carbon monoxide poisoning the catalyst 14 of the fuel electrode 11 is negligible. However, in the cells 1 located above and below the stack where the temperature is low, poisoning of the catalyst 14 by carbon monoxide cannot be ignored, and the output of the battery is significantly reduced.

【0006】そこで、燃料極11の触媒14には、白金
とルテニウム,パラジウム,ロジウム,レニウム,金な
どの貴金属合金をカーボン担体15に担持した触媒を用
い、これら合金元素の方に一酸化炭素を吸着させ、白金
16自体が侵されないようにし、白金16への一酸化炭
素吸着の影響をなくすことも考えらるが、全ての触媒1
4に貴金属を用いるのは、電池の製造コストを増大させ
ることから好ましくない。
Therefore, for the catalyst 14 of the fuel electrode 11, a catalyst in which platinum and a precious metal alloy such as ruthenium, palladium, rhodium, rhenium, and gold are supported on a carbon carrier 15 is used, and carbon monoxide is added to these alloy elements. It may be considered that platinum 16 itself is not attacked by adsorption so that the effect of carbon monoxide adsorption on platinum 16 is eliminated, but all catalysts 1
It is not preferable to use a noble metal for No. 4 because it increases the manufacturing cost of the battery.

【0007】本発明は上述の点に鑑みてなされたもので
あり、その目的は、電池のコストを余り増大させること
なく、燃料改質ガス中に含まれる一酸化炭素によつて電
池出力が低下しないように構成した燐酸形燃料電池のス
タックを提供することにある。
The present invention has been made in view of the above points, and an object thereof is to reduce the cell output by carbon monoxide contained in the fuel reformed gas without significantly increasing the cost of the cell. Another object of the present invention is to provide a stack of phosphoric acid fuel cells configured not to do so.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明の燐酸形燃料電池のスタックは、スタック
最上部および最下部からそれぞれ3番目までの各セルの
燃料極触媒層に、白金とルテニウム,パラジウム,ロジ
ウム,レニウム,または金などの貴金属との合金触媒を
用いる。または、このスタック最上部および最下部から
それぞれ3番目までの各セルの燃料極触媒層の白金量
を、あらかじめ他のセルに比べて2倍にしておく。
In order to solve the above-mentioned problems, the stack of the phosphoric acid fuel cell of the present invention has a fuel electrode catalyst layer of each cell from the top and the bottom of the stack to the third, respectively. An alloy catalyst of platinum and a noble metal such as ruthenium, palladium, rhodium, rhenium, or gold is used. Alternatively, the amount of platinum in the fuel electrode catalyst layer of each cell from the top and the bottom of the stack to the third is doubled in advance as compared with the other cells.

【0009】[0009]

【作用】上記のように、本発明の燐酸形燃料電池のスタ
ックは、運転温度が低くなるスタック最上部および最下
部からそれぞれ3番目までの各セルの燃料極触媒層に、
白金と貴金属との合金触媒を用いることにより、燃料の
改質ガス中に含まれる一酸化炭素が貴金属元素の方に吸
着し、白金が一酸化炭素により被毒されるのを抑えるこ
とができ、スタックを構成する全てのセルに白金と貴金
属との合金触媒を用いるのに比べて、電池の製造コスト
を余り増大させることなく、一酸化炭素に起因する電池
の出力低下を防ぐことができる。
As described above, in the stack of the phosphoric acid fuel cell of the present invention, the fuel electrode catalyst layer of each cell from the top and the bottom of the stack where the operating temperature becomes low to the third,
By using an alloy catalyst of platinum and a noble metal, carbon monoxide contained in the reformed gas of the fuel is adsorbed on the noble metal element, and it is possible to prevent platinum from being poisoned by carbon monoxide. Compared to using an alloy catalyst of platinum and a noble metal for all the cells constituting the stack, it is possible to prevent the output reduction of the battery due to carbon monoxide without significantly increasing the manufacturing cost of the battery.

【0010】または、スタック最上部および最下部から
それぞれ3番目までの各セルの燃料極触媒層の白金量
を、あらかじめ他のセルに比べて過剰にしておくことに
より、一酸化炭素の吸着していない白金が、燃料極にお
ける水素の還元反応に十分足りるだけ保持されるので、
上記と同様に、電池の製造コストを余り増大させること
なく、一酸化炭素に起因する電池の出力低下を防ぐこと
ができる。
[0010] Alternatively, carbon monoxide is adsorbed by making the amount of platinum in the fuel electrode catalyst layer of each cell from the top and the bottom of the stack to the third to be excessive compared with other cells in advance. Since there is enough platinum retained for the hydrogen reduction reaction at the fuel electrode,
Similar to the above, it is possible to prevent a decrease in the output of the battery due to carbon monoxide without significantly increasing the manufacturing cost of the battery.

【0011】[0011]

【実施例】以下、本発明を実施例に基づき説明する。は
じめに、電極面積2000cm2 ,セル積層数21のシ
ョートスタックセルを作製したが、スタックの構造は図
1に示したものと、基本的には同じであるからその説明
は省略する。このスタックの各セルの燃料極には、Ca
bot社製の商品名Vulcan XC−72のカーボ
ン担体に10wt%の白金を担持した触媒を用い、電極
触媒層の単位面積当たりの白金重量(以下、単に白金量
とする)を0.5mg−Pt/cm2 とした。各セルに
挿入した熱電対で温度をモニターしたところ、スタック
の最上部に位置するセルは181℃、上から2番目のセ
ルは186℃、3番目のセルは192℃であり、スタッ
クの最下部に位置するセルは175℃、下から2番目の
セルは181℃、3番目のセルは190℃であった。ス
タックの中間にあるその他の15セルの温度は、200
±5℃である。
EXAMPLES The present invention will be described below based on examples. First, a short stack cell having an electrode area of 2000 cm 2 and a cell stack number of 21 was prepared, but since the structure of the stack is basically the same as that shown in FIG. 1, its description is omitted. The fuel electrode of each cell of this stack has Ca
A platinum carrier with a trade name of Vulcan XC-72 manufactured by Bot Co., which carries 10 wt% of platinum, is used, and the platinum weight per unit area of the electrode catalyst layer (hereinafter, simply referred to as platinum amount) is 0.5 mg-Pt. / Cm 2 . When the temperature was monitored with a thermocouple inserted in each cell, the cell at the top of the stack was 181 ° C, the second cell from the top was 186 ° C, and the third cell was 192 ° C. The cell located at was 175 ° C, the second cell from the bottom was 181 ° C, and the third cell was 190 ° C. The temperature of the other 15 cells in the middle of the stack is 200
± 5 ° C.

【0012】このショートスタックセルに燃料ガスとし
て、水素80%/二酸化炭素20%の組成を持つガスを
流したときの全セル電圧は、13.8Vである。しか
し、燃料ガスとして、改質ガスを模擬した水素80%/
二酸化炭素19%/一酸化炭素1%の組成を持つガスを
流したとき、全セル電圧は13.2Vに低下した。次
に、このショートスタックセルを解体し、セル温度の低
い上下の各3セルの燃料極触媒層として、前述のVul
can XC−72カーボン担体に、白金50%/ルテ
ニウム50%の合金を20wt%担持した触媒を用い、
触媒層の白金量を0.5mg−Pt/cm2 とした燃料
極に取り替えて、ショートスタックセルを組み直した。
このように構成したスタックに、燃料ガスとして、水素
80%/二酸化炭素20%の組成を持つガスを流したと
きの全セル電圧は、前回と同じく13.8Vであった。
また、燃料ガスを、改質ガスを模擬した水素80%/二
酸化炭素19%/一酸化炭素1%の組成を持つガスとし
て流したとき、全セル電圧は13.7Vであり、ほぼ同
じ電池出力が得られた。
The total cell voltage is 13.8 V when a gas having a composition of hydrogen 80% / carbon dioxide 20% is passed as a fuel gas into the short stack cell. However, as fuel gas, hydrogen 80% / simulating reformed gas
When a gas having a composition of carbon dioxide 19% / carbon monoxide 1% was passed, the total cell voltage dropped to 13.2V. Next, this short stack cell was disassembled, and the above-mentioned Vul was used as the fuel electrode catalyst layers of the upper and lower three cells with low cell temperature.
Using a catalyst in which 20 wt% of an alloy of platinum 50% / ruthenium 50% is supported on a can XC-72 carbon carrier,
The platinum in the catalyst layer was replaced with a fuel electrode having 0.5 mg-Pt / cm 2, and the short stack cell was reassembled.
The total cell voltage when a gas having a composition of 80% hydrogen / 20% carbon dioxide was passed through the stack configured as described above was 13.8 V as in the previous time.
Further, when the fuel gas was made to flow as a gas having a composition of hydrogen 80% / carbon dioxide 19% / carbon monoxide 1% simulating a reformed gas, the total cell voltage was 13.7 V, and the battery output was almost the same. was gotten.

【0013】一方、スタック上部および下部のセルの燃
料極のみ、あらかじめ触媒の白金量を過剰にしておき、
一酸化炭素を含む燃料ガスを供給しておくことにより、
白金粒子表面に一酸化炭素が吸着した場合でも、一酸化
炭素が吸着していない白金粒子として、燃料極における
水素の還元反応に十分足りるだけの白金量を保持させる
ようにすることもできる。
On the other hand, only the fuel electrodes of the cells at the top and bottom of the stack have an excessive amount of platinum in the catalyst in advance,
By supplying the fuel gas containing carbon monoxide,
Even if carbon monoxide is adsorbed on the surface of the platinum particles, the platinum particles not adsorbing carbon monoxide can be made to retain a sufficient amount of platinum for the hydrogen reduction reaction at the fuel electrode.

【0014】そこで、上記のショートスタックセルを再
び解体し、セル温度の低いスタック上下の各3セルの燃
料極触媒層として、前述のVulcan XC−72カ
ーボン担体に10wt%の白金を担持した触媒を用い、
この上下各3セルのみ、触媒層の白金量を1.0mg−
Pt/cm2 とした燃料極に取り替えて、ショートスタ
ックセルを組み直した。これに、燃料ガスとして、水素
80%/二酸化炭素20%の組成を持つガスを流したと
きの全セル電圧は、前回と同じく13.8Vであり、ま
た、燃料ガスを、改質ガスを模擬した水素80%/二酸
化炭素19%/一酸化炭素1%の組成を持つガスとして
流したとき、全セル電圧は13.7Vであり、前回とほ
ぼ同様の結果を得ることができた。
Therefore, the above short stack cells were disassembled again, and the above-mentioned Vulcan XC-72 carbon carrier loaded with 10 wt% platinum was used as the fuel electrode catalyst layers of the upper and lower three cells of the stack having a low cell temperature. Used,
The platinum amount in the catalyst layer was 1.0 mg
The fuel electrode was changed to Pt / cm 2 and the short stack cell was reassembled. The total cell voltage when a gas having a composition of 80% hydrogen / 20% carbon dioxide was passed as the fuel gas was 13.8 V, the same as the previous time, and the fuel gas simulated the reformed gas. When a gas having a composition of 80% hydrogen / 19% carbon dioxide / 1% carbon monoxide was passed, the total cell voltage was 13.7 V, and almost the same result as the previous time could be obtained.

【0015】この場合は、スタック上下の各3セルの
み、燃料極触媒層の白金量を0.5mg−Pt/cm2
から1.0mg−Pt/cm2 としており、スタックの
中間に属するセルと比べて、白金量を2倍としたことに
より、上下3セルを白金−貴金属の合金触媒としたとき
と同じ効果が得られる。以上のように、本発明では燃料
電池スタックの温度が低くなるセル、即ち、スタックの
冷却板を用いない領域である最上部および最下部から3
番目までの各セルについて、燃料極触媒層に白金−貴金
属合金を担持した触媒を用い、または触媒に白金を用い
るときは、スタックの最上部および最下部から3番目ま
での各セルの燃料極触媒層の白金量をあらかじめ過剰に
しておき、いずれの場合も、燃料の改質ガスの一酸化炭
素によって触媒が被毒されて電池出力が低下するのを防
ぐようにスタックを構成したものである。
In this case, the amount of platinum in the fuel electrode catalyst layer is 0.5 mg-Pt / cm 2 only in each of the three cells above and below the stack.
From 1.0 mg-Pt / cm 2 and the amount of platinum is doubled compared to the cells belonging to the middle of the stack, and the same effect as when the upper and lower three cells are made of platinum-noble metal alloy catalyst can be obtained. To be As described above, according to the present invention, the cells in which the temperature of the fuel cell stack becomes low, that is, 3 from the top and bottom of the stack, which are regions where no cooling plate is used,
For each of the cells up to the 3rd, when a catalyst supporting a platinum-noble metal alloy is used in the anode catalyst layer, or when platinum is used as the catalyst, the anode catalysts of the cells from the top and bottom to the 3rd of the stack are used. The amount of platinum in the layer is set to an excessive amount in advance, and in any case, the stack is configured to prevent the catalyst output from being poisoned by carbon monoxide, which is a reformed gas of the fuel, and lowering the cell output.

【0016】[0016]

【発明の効果】燐酸形燃料電池に供給する燃料の水素リ
ッチな改質ガスに含まれる一酸化炭素が含まれ、その一
酸化炭素が燃料極の触媒中の白金表面に吸着して、水素
の還元反応を阻害するので、触媒に対して被毒物質とな
り、電池の出力を低下させることがあり、これに対して
本発明の燐酸形燃料電池のスタックは、スタック最上部
および最下部からそれぞれ3番目までの各セルの燃料極
の触媒層に、白金と貴金属との合金触媒を用いることに
より 一酸化炭素を貴金属元素の方に吸着させて、白金
が一酸化炭素により被毒されるのを抑えることができ
る。
The carbon monoxide contained in the hydrogen-rich reformed gas of the fuel supplied to the phosphoric acid fuel cell is contained, and the carbon monoxide is adsorbed on the platinum surface in the catalyst of the fuel electrode to generate hydrogen. Since it inhibits the reduction reaction, it may become a poisonous substance to the catalyst and reduce the output of the cell. On the other hand, the phosphoric acid fuel cell stack of the present invention has three stacks from the top and bottom of the stack, respectively. By using an alloy catalyst of platinum and a noble metal in the catalyst layers of the fuel electrodes of each cell up to the third, carbon monoxide is adsorbed by the noble metal element and platinum is prevented from being poisoned by carbon monoxide. be able to.

【0017】また、スタックの各セルに白金触媒を用い
るときは、スタック最上部および最下部からそれぞれ3
番目までの各セルの燃料極の触媒層の白金量を、あらか
じめ他のセルに比べて過剰にしておくことにより、燃料
極における水素の還元反応に十分足るだけ、一酸化炭素
が吸着していない白金が残るようになる。いずれの場合
も、スタックを構成する全てのセルに白金と貴金属との
合金触媒を用い、または、スタックを構成する全てのセ
ルの白金量を過剰にしておくのに比べて、本発明による
スタック構成は、電池の製造コストを余り増大させるこ
となく、一酸化炭素に起因する電池の出力低下を防ぐこ
とができる。
When a platinum catalyst is used in each cell of the stack, the top 3 and the bottom 3 of the stack are used respectively.
By setting the amount of platinum in the catalyst layer of the fuel electrode of each cell up to the second to be excessive compared with other cells in advance, carbon monoxide is not adsorbed enough to reduce hydrogen in the fuel electrode. Platinum will remain. In any case, as compared with using an alloy catalyst of platinum and a noble metal in all cells forming the stack, or making the amount of platinum in all cells forming the stack excessive, the stack structure according to the present invention is used. Can prevent the output reduction of the battery due to carbon monoxide without significantly increasing the manufacturing cost of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】燐酸形燃料電池スタックの外観を示す模式斜視
FIG. 1 is a schematic perspective view showing the appearance of a phosphoric acid fuel cell stack.

【図2】(a)はセルの構成部材を示す部分模式断面
図、(b)は触媒層の一部を拡大して示した模式断面図
FIG. 2A is a partial schematic cross-sectional view showing constituent members of a cell, and FIG. 2B is a schematic cross-sectional view showing a part of a catalyst layer in an enlarged manner.

【符号の説明】[Explanation of symbols]

1 セル 2 セパレータ 3 冷却板 4 締付板 5 空気マニホルド 6 燃料マニホルド 空気極 8 カーボン基材 9 フッ素樹脂 10 空気極触媒層11 燃料極 12 燃料極触媒層 13 マトリックス 14 触媒 15 カーボン担体 16 白金1 Cell 2 Separator 3 Cooling Plate 4 Tightening Plate 5 Air Manifold 6 Fuel Manifold 7 Air Electrode 8 Carbon Base Material 9 Fluororesin 10 Air Electrode Catalyst Layer 11 Fuel Electrode 12 Fuel Electrode Catalyst Layer 13 Matrix 14 Catalyst 15 Carbon Carrier 16 Platinum

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】空気極、燃料極およびマトリックスからな
るセルを、セパレータ板および冷却板を介在させて多数
積層した燐酸形燃料電池のスタックであって、このスタ
ック最上部および最下部からそれぞれ3番目までの各セ
ルの燃料極の触媒層に、白金と貴金属との合金触媒を用
いることを特徴とする燐酸形燃料電池のスタック。
1. A stack of a phosphoric acid fuel cell in which a large number of cells composed of an air electrode, a fuel electrode and a matrix are stacked with a separator plate and a cooling plate interposed, and the stack is the third from the top and the bottom of the stack. A stack of a phosphoric acid fuel cell characterized by using an alloy catalyst of platinum and a noble metal in the catalyst layer of the fuel electrode of each cell up to.
【請求項2】請求項1記載の燐酸形燃料電池のスタック
において、貴金属はルテニウム,パラジウム,ロジウ
ム,レニウム,または金のうちのいずれか一つであるこ
とを特徴とする燐酸形燃料電池のスタック。
2. The phosphoric acid fuel cell stack according to claim 1, wherein the noble metal is any one of ruthenium, palladium, rhodium, rhenium, and gold. .
【請求項3】空気極、燃料極およびマトリックスからな
るセルを、セパレータ板および冷却板を介在させて多数
積層した燐酸形燃料電池のスタックであって、このスタ
ック最上部および最下部からそれぞれ3番目までの各セ
ルの燃料極の触媒層の白金量を、他のセルに比べて2倍
とすることを特徴とする燐酸形燃料電池のスタック。
3. A stack of a phosphoric acid fuel cell in which a large number of cells composed of an air electrode, a fuel electrode and a matrix are laminated with a separator plate and a cooling plate interposed, and the stack is the third from the top and the bottom of the stack. Up to twice the amount of platinum in the catalyst layer of the fuel electrode of each cell compared to other cells.
JP5040321A 1993-03-02 1993-03-02 Stack of phosphate type fuel cell Pending JPH06260207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040321A JPH06260207A (en) 1993-03-02 1993-03-02 Stack of phosphate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040321A JPH06260207A (en) 1993-03-02 1993-03-02 Stack of phosphate type fuel cell

Publications (1)

Publication Number Publication Date
JPH06260207A true JPH06260207A (en) 1994-09-16

Family

ID=12577353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040321A Pending JPH06260207A (en) 1993-03-02 1993-03-02 Stack of phosphate type fuel cell

Country Status (1)

Country Link
JP (1) JPH06260207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989005031A1 (en) * 1987-11-26 1989-06-01 Max-Planck-Gesellschaft Zur Förderung Der Wissensc SINTERED Fe-Nd-B MAGNET
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
US6326098B1 (en) 1998-04-23 2001-12-04 N. E. Chemcat Corporation Electrocatalyst, and electrodes, membrane-electrode assembly and solid polymer electrolyte fuel cells, using said electrocatalyst
JP2005142001A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Fuel cell having stack structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989005031A1 (en) * 1987-11-26 1989-06-01 Max-Planck-Gesellschaft Zur Förderung Der Wissensc SINTERED Fe-Nd-B MAGNET
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
JPH11250918A (en) * 1997-12-19 1999-09-17 Degussa Ag Platinum/ruthenium alloy catalyst, its manufacture, gas diffusion electrode, membrane electrode unit, and proton conductive polymer membrane for pem fuel cell
JP4582594B2 (en) * 1997-12-19 2010-11-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Platinum / ruthenium alloy catalyst, process for producing the same, gas diffusion electrode, membrane electrode unit and proton conducting polymer membrane for PEM fuel cell
US6326098B1 (en) 1998-04-23 2001-12-04 N. E. Chemcat Corporation Electrocatalyst, and electrodes, membrane-electrode assembly and solid polymer electrolyte fuel cells, using said electrocatalyst
JP2005142001A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Fuel cell having stack structure

Similar Documents

Publication Publication Date Title
US5795669A (en) Electrode
JP3634304B2 (en) Electrode structure for polymer electrolyte fuel cell
US6309769B1 (en) Carbon monoxide filter layer
US20020068213A1 (en) Multiple layer electrode for improved performance
CA2238123A1 (en) A carbon monoxide tolerant anode catalyst for polymer electrolyte membrane fuel cells and a process for its preparation
US20070015015A1 (en) Solid oxide fuel cell
JP2002184426A (en) Fuel cell provided with complicated mea
JPS6240824B2 (en)
AU2005269099A1 (en) Fuel-cell stack comprising a tensioning device
JPH06260189A (en) Fuel cell
JP5766401B2 (en) Fuel cell assembly
JPH08203537A (en) Solid polymer type fuel battery
JP2003051319A (en) Cell plate for solid electrolyte type fuel cell and power generation unit
JP5030583B2 (en) Electrochemical cell having catalyst for oxidizing carbon monoxide and power generation method using the same
EP1192681B1 (en) Gas diffusion substrate and electrode
US9941523B2 (en) Bilayer cathode catalyst structure for solid polymer electrolyte fuel cell
JPH06260207A (en) Stack of phosphate type fuel cell
JP3446254B2 (en) Fuel cell and method of manufacturing the same
JP3850721B2 (en) Control method of polymer electrolyte fuel cell
Kiros et al. Electrode R&D, stack design and performance ofbiomass-based alkaline fuel cell module
US8093178B2 (en) Catalyst for reducing carbon monoxide concentration
JP4156213B2 (en) Solid oxide fuel cell
US3253956A (en) Fuel cell and electrodes for the production of electrical energy by direct reaction of gaseous fuels with oxidizing gases
JP2010533941A (en) Cell material variations in SOFC stacks addressing thermal gradients in all planes
JP2649470B2 (en) Fuel cell