JPH06259675A - Fire measuring method - Google Patents

Fire measuring method

Info

Publication number
JPH06259675A
JPH06259675A JP7276393A JP7276393A JPH06259675A JP H06259675 A JPH06259675 A JP H06259675A JP 7276393 A JP7276393 A JP 7276393A JP 7276393 A JP7276393 A JP 7276393A JP H06259675 A JPH06259675 A JP H06259675A
Authority
JP
Japan
Prior art keywords
flame
radiation
infrared
intensity
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7276393A
Other languages
Japanese (ja)
Other versions
JP2670959B2 (en
Inventor
Kazunari Naya
一成 納屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP7276393A priority Critical patent/JP2670959B2/en
Publication of JPH06259675A publication Critical patent/JPH06259675A/en
Application granted granted Critical
Publication of JP2670959B2 publication Critical patent/JP2670959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Abstract

PURPOSE:To accurately measure the burning scale of fire from a position separated from the fire by calculating the exoergic scale of the fire by using a value in which a radioactive component proper to flame is subtracted from the intensity of a detected infrared ray. CONSTITUTION:Infrared intensity in plural infrared radiation zones including a resonance radiation zone for CO2 are detected. For example, the intensity of wavebands (1) 2.8-3.2mum, (2) 4.2-4.6mum, and (3) 4.6-5.5mum when the magnitude of flame is changed by using normal heptane and methanol are measured. In such a case, the radioactive component proper to the flame is located on a line connecting an FR point to the line segment of black body radiation in spite of the kind of fuel. In other words, the radioactive component proper to the flame is provided with the intensity of the waveband (2) and the waveband (3) of the component ratio of a PR point. Therefore, the intensity is concentrated on one point on the line of black body radiation by subtracting the radioactive component proper to the flame in spite of the magnitude of the flame, and output added on the waveband (3) is corrected, and temperature can be accurately measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火炎から放射される赤
外線を検出して火炎の規模を測定するものであり、特に
燃料などの火炎の状態に関わり無く正確な燃焼規模を測
定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the scale of a flame by detecting infrared rays emitted from the flame, and more particularly to a method for accurately measuring the scale of combustion regardless of the state of the flame such as fuel. .

【0002】[0002]

【従来の技術】従来より、火炎から放射される赤外線の
特定波長のみを検出し、火炎の燃焼規模を測定する火炎
測定方法は実用化されている。これらの火炎測定方法で
は、炎から放射される特有のスペクトル線(4.4μm帯;
CO2の共鳴放射帯)を検出するものが主流である。ま
た、COの共鳴放射帯(4.7μm帯)を検出することによ
り、不完全燃焼などの火炎の燃焼状態を測定する火炎測
定方法などが実用化されている。
2. Description of the Related Art Conventionally, a flame measuring method has been put into practical use, in which only a specific wavelength of infrared rays emitted from a flame is detected to measure the combustion scale of the flame. In these flame measurement methods, the characteristic spectral lines (4.4 μm band;
The mainstream is to detect the resonance radiation band of CO 2 . In addition, a flame measurement method for measuring the combustion state of a flame such as incomplete combustion by detecting the resonance radiation band (4.7 μm band) of CO has been put into practical use.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
火炎測定方法は特定の条件の下で特定の燃料の燃焼のみ
を測定するものであり、例えば広範囲の空間の一部に生
じた火炎(火災など)の燃焼規模を測定することは不可
能であった。
However, the conventional flame measuring method is to measure only the combustion of a specific fuel under specific conditions. For example, a flame (a fire, etc.) generated in a part of a wide range of space. It was not possible to measure the combustion scale of).

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに、(1)CO2の共鳴放射帯を含む複数の赤外線放射
帯における赤外線強度を検出して、検出した赤外線の強
度から炎特有の放射成分を差し引いた値を用いて火炎の
発熱規模を算出することを特徴とする火炎計測方法。 (2)上記(1)において、検出する赤外線放射帯が
2.8μm〜3.2μm,4.2μm〜4.6μm,4.6μm〜5.5μm
であることを特徴とする火炎計測方法。を発明した。
In order to solve the above problems, (1) the infrared intensity in a plurality of infrared radiation bands including the resonance radiation band of CO 2 is detected, and the intensity of the detected infrared light is characteristic of a flame. A flame measurement method characterized by calculating a heat generation scale of a flame using a value obtained by subtracting the radiation component of. (2) In (1) above, the infrared radiation band to be detected is
2.8 μm to 3.2 μm, 4.2 μm to 4.6 μm, 4.6 μm to 5.5 μm
A flame measurement method characterized in that Invented

【0005】[0005]

【本発明の具体的説明】以下、本発明を具体的に説明す
る。検知波長帯をλ1,λ2,…λn(n=2以上の整数)
とし、赤外線センサーにおいて検出されたそれぞれの波
長帯の検出出力をV1,V2,…Vnとする。そしてこれ
らの検出出力は赤外線センサーに入射した各波長帯の赤
外線強度を正確に反映しているものとする。ところで、
プランクの放射則により、ある温度Tの物体が波長λで
半空間内に放射する赤外線の単位面積当たりの放射強度
は次式で表される。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. Detecting wavelength band is λ 1 , λ 2 , ... λn (n = integer of 2 or more)
, And the detection outputs of the respective wavelength bands detected by the infrared sensor are V 1 , V 2 , ... Vn. It is assumed that these detection outputs accurately reflect the infrared intensity of each wavelength band incident on the infrared sensor. by the way,
According to Planck's radiation law, the radiant intensity per unit area of infrared rays radiated by a body at a certain temperature T into a half space at a wavelength λ is expressed by the following equation.

【数1】 なお、ここでC1,C2は、C1=2πhc2,C2=hc/kで
決まる定数である。ただし、hはプランク定数、cは光速
度、kはボルツマン定数である。
[Equation 1] Here, C 1 and C 2 are constants determined by C 1 = 2πhc 2 and C 2 = hc / k. However, h is Planck's constant, c is light velocity, and k is Boltzmann's constant.

【0006】上記の式1に2つの検出波長帯λ1,λ2
その波長帯での放射赤外線強度P1,P2を代入し、温度
Tを求める近似式を導くと、
Substituting the two detection wavelength bands λ 1 and λ 2 and the infrared radiation intensities P 1 and P 2 in the wavelength bands into the above formula 1 to derive an approximate formula for obtaining the temperature T,

【数2】 ここで、赤外線源Sから赤外線検知部Dまでの間の吸収
がλ1,λ2ともに無いとすれば上記式2のP1,P2はV
1,V2に置き換えることができる。すなわち、
[Equation 2] Here, P 1, P 2 in the formula 2 when the infrared source S 1 absorption lambda between to the infrared detection unit D, lambda 2 are both not V
1 , V 2 can be substituted. That is,

【数3】 となる。式3より、異なった2波長の赤外線を各々検出
することによって赤外線源の温度が求められる。
[Equation 3] Becomes From equation 3, the temperature of the infrared source can be obtained by detecting infrared rays of two different wavelengths.

【0007】次に、式3によって求めた温度Tからλ1
或はλ2における単位面積当たりの黒体輻射強度(これ
をP1’或はP2’とする)がプランクの輻射則すなわち
式1より求まる。一方、赤外線検知部Dに入射する赤外
線の強度は赤外線源Sとの距離Lによって、1/2πL2
になる。したがって、上記求めた温度Tのある面積を持
った(単位面積のs倍)赤外線源から赤外線センサーに
入射すべき赤外線強度P1”或はP2”は、P1’或は
2’に2πL2とsを乗じた値となる。即ち、
Next, from the temperature T obtained by the equation 3, λ 1
Alternatively, the blackbody radiation intensity per unit area at λ 2 (this is referred to as P 1 'or P 2 ') is obtained from Planck's radiation law, that is, Equation 1. On the other hand, the intensity of the infrared rays incident on the infrared detector D depends on the distance L from the infrared source S to 1 / 2πL 2
become. Therefore, the infrared intensity P 1 ″ or P 2 ″ that should be incident on the infrared sensor from the infrared source having the area having the temperature T obtained above (s times the unit area) becomes P 1 ′ or P 2 ′. It is a value obtained by multiplying 2πL 2 by s. That is,

【数4】 となる。ここで赤外線検知部の出力が入射赤外線強度を
正確に反映していると仮定しているので、V1或はV2
ら上記式3、2を用いてP1或はP2がわかる。従って、
距離Lを既知とすれば実際に検出された入射赤外線強度
1或はP2と計算によって求めた入射赤外線強度P1
或はP2”との比は式4から判るように赤外線源Sの面
積sを表していることになる。
[Equation 4] Becomes Since it is assumed here that the output of the infrared detector accurately reflects the intensity of the incident infrared light, P 1 or P 2 can be found from V 1 or V 2 by using the above equations 3 and 2 . Therefore,
If the distance L is known, the actually detected incident infrared ray intensity P 1 or P 2 and the calculated incident infrared ray intensity P 1
Alternatively, the ratio with P 2 ″ represents the area s of the infrared source S as can be seen from the equation 4.

【0008】さらに、CO2の共鳴放射帯域を検出する波
長帯を用いて、上記手段で求めた赤外線源の温度および
発熱面積から式1によってCO2の共鳴放射帯域における
黒体放射の赤外線強度Pco2’を算出し、上記P1などと
同様に赤外線センサーに入射すべき赤外線強度Pco2
を求め、これと実際に観測されたPco2との比を算出す
る。ここで、Pco2”《Pco2であれば赤外線源は炎を伴
うものである。
Furthermore, by using the wavelength band for detecting the resonance radiation band of CO 2, an infrared intensity of black body radiation in resonance radiation band of CO 2 by the equation 1 from the temperature and heating area of the infrared source obtained above means Pco calculating a 2 ', infrared intensity Pco 2 to be incident on the infrared sensor in the same manner as such the P 1 "
And calculate the ratio of this to the actually observed Pco 2 . Here, if Pco 2 ″ << Pco 2 , the infrared source is accompanied by a flame.

【0009】ところで、炎の放射は、炎の中の黒体の放
射部分と炎特有の放射の部分とに分けられ、黒体の部分
の放射と炎特有の部分の放射との和になっている。さら
に炎特有の放射成分は炎の大きさによってその量が変化
する。ここで、炎特有の放射が現れる波長帯は主にCO2
の共鳴放射帯で、4.2μm〜4.6μmの波長帯であるが、
4.6μm〜5.5μmの波長帯にも炎特有の放射が現れる。
波長帯に現れる放射は燃焼にともなって発生した水分
と考えられる。
By the way, the radiation of a flame is divided into a radiation portion of a black body in the flame and a radiation portion peculiar to the flame, and becomes the sum of the radiation of the black body portion and the radiation peculiar to the flame. There is. Further, the amount of the radiation component peculiar to the flame changes depending on the size of the flame. Here, the wavelength band in which the radiation peculiar to flame appears is mainly CO 2
In the resonance radiation band of 4.2μm ~ 4.6μm wavelength band,
Radiation peculiar to flame appears in the wavelength band of 4.6 μm to 5.5 μm.
Radiation appearing in the wavelength band is considered to be water generated by combustion.

【0010】そこで本発明者はノルマルヘプタンとメタ
ノ−ルを用いて炎の大きさを種々に変えたときの上記波
長帯、、の強度を測定した。その結果を図1に示
す。図1より、燃料の種類に依らず炎特有の放射成分は
図1のFR点と黒体放射の線分を結ぶ線上にあることが
わかる。すなわち、炎特有の放射成分はFR点の成分比
の波長帯と波長帯の強度を持っていることがわか
る。従って、炎特有の放射成分を差し引くと、炎の大き
さに関係なく黒体放射のライン上のある一点に集まり、
波長帯に加算されていた出力が補正され正確な温度を
測定することができる。本発明は、この知見をもとにな
されたものである。
Therefore, the inventor of the present invention measured the intensity of the above-mentioned wavelength band when the size of the flame was variously changed by using normal heptane and methanol. The result is shown in FIG. It can be seen from FIG. 1 that the radiation component peculiar to the flame is on the line connecting the FR point and the black body radiation line segment in FIG. 1 regardless of the type of fuel. That is, it can be seen that the radiation component peculiar to the flame has the wavelength band and the intensity of the wavelength band of the component ratio at the FR point. Therefore, if you subtract the radiation component peculiar to the flame, it will gather at a certain point on the line of blackbody radiation regardless of the size of the flame,
The output added to the wavelength band is corrected and the accurate temperature can be measured. The present invention is based on this finding.

【00011】炎の放射とは、燃焼によって発生したCO
2、H2O等の分子振動による共鳴放射と、燃焼によって発
生した黒鉛等の固体粒子による熱放射が重畳したもので
ある。固体粒子の放射はおおむね炎全体に分布し、気体
中に分散されている粒子による放射であるので半透明体
の放射である。そしてこの部分が半透明体としても、炎
がある程度大きいならば放射率はほぼ1と考えることが
できる。また、CO2、H2O等による炎特有の放射は放射効
率が非常に高く、炎の表面からの放射となる。従って、
例えばノルマルヘプタンの燃焼に伴う放射は、燃焼によ
って発生した黒鉛等の固体粒子による熱放射であるa点
とCO2、H2O等による炎特有の放射であるFR点との間に引
いた直線上の放射成分を持つ。同様にメタノールの燃焼
に伴う放射はb点とFR点間の直線上の放射成分となる。
Radiation of flame means CO generated by combustion.
2 , resonance radiation due to molecular vibration such as H 2 O and thermal radiation due to solid particles such as graphite generated by combustion are superposed. The radiation of solid particles is mostly distributed over the flame and is the radiation of particles that are dispersed in a gas, and is therefore translucent. Even if this part is a translucent body, the emissivity can be considered to be approximately 1 if the flame is large to some extent. Also, the radiation peculiar to the flame due to CO 2 , H 2 O, etc. has a very high radiation efficiency, and is emitted from the surface of the flame. Therefore,
For example, the radiation accompanying the combustion of normal heptane is a straight line drawn between the point a, which is the heat radiation by solid particles such as graphite generated by the combustion, and the FR point, which is the radiation peculiar to the flame due to CO 2 , H 2 O, etc. Has the radiant component above. Similarly, the radiation accompanying the combustion of methanol becomes the radiation component on the straight line between the point b and the FR point.

【00012】炎の温度は炎の外層のガス体が最も高く
なる。従って熱放射をおこす温度は炎の最高温度ではな
い場合が多いが、炎全体を包括して規模を考える場合に
は、上記の考えに従って炎全体の放射、すなわち燃焼に
よって発生した黒鉛等の固体粒子による熱放射を考えた
方がよい。
The temperature of the flame is highest in the gas body in the outer layer of the flame. Therefore, the temperature that causes thermal radiation is often not the maximum temperature of the flame, but when considering the scale of the flame as a whole, the radiation of the flame as a whole, that is, solid particles such as graphite generated by combustion, should be followed according to the above idea. It is better to consider the heat radiation by.

【00013】以下でこの温度を求める計算方法を検討
する。図1の例では、ノルマルヘプタンとメタノールの
それぞれの炎の特徴を示す直線の原点であるFR点は、波
長帯:波長帯=74:26の成分比を持つ。従ってこの点
を頂点とした形の相図を考えれば良い。
The calculation method for obtaining this temperature will be examined below. In the example of FIG. 1, the FR point, which is the origin of the straight line showing the characteristic of each flame of normal heptane and methanol, has a component ratio of wavelength band: wavelength band = 74: 26. Therefore, a phase diagram with this point as the apex may be considered.

【0011】このように考えると、実際に検出された炎
の放射成分からFR点で表される炎特有の放射を差し引け
ば炎中の熱放射の成分を分離することができ、これは図
中の黒体放射の曲線上に乗ることになる。このような処
理を行えば通常の黒体放射の温度計算と同様に波長帯
と波長帯の比率から式3の計算によって温度を求めら
れる。従って波長帯から炎の放射成分を差し引けば良
い。
Considering in this way, the component of thermal radiation in the flame can be separated by subtracting the radiation peculiar to the flame represented by the FR point from the radiation component of the flame actually detected. You will ride on the curve of the black body radiation inside. If such a process is performed, the temperature can be obtained by the calculation of the equation 3 from the ratio of the wavelength band and the wavelength band as in the case of the temperature calculation of the normal black body radiation. Therefore, the radiation component of the flame may be subtracted from the wavelength band.

【0012】以下、具体的な計算例を示す。この計算例
では、計算の簡略化をはかるために、近似計算を行って
いる。これは、図1等を検討すると、黒体放射の曲線の
特徴として、波長帯の割合が温度に対して変化が少な
く3波長合計の2割程度であることがわかる。従って波長
帯の割合が、波長帯−波長帯−波長帯の3波長
合計の約20%となるように炎特有の成分を差し引くこと
で、ほぼ黒体の放射成分を残すことができる。ここで、
差し引いた後の波長帯の割合の基準を700℃〜1000℃
の黒体放射に合わせておくことで誤差を少なくできる。
この場合に温度の計算結果に与える誤差は大きくても20
℃程度である。これを500℃以下の黒体放射に合わせた
場合は高温での誤差が大きくなる。
A concrete calculation example will be shown below. In this calculation example, an approximate calculation is performed in order to simplify the calculation. It can be seen from the examination of FIG. 1 and the like that the characteristic of the curve of the black body radiation is that the ratio of the wavelength band is small with respect to temperature and is about 20% of the total of the three wavelengths. Therefore, by subtracting the flame-specific component so that the ratio of the wavelength band is about 20% of the total of the three wavelengths of wavelength band-wavelength band-wavelength band, it is possible to leave almost a blackbody radiation component. here,
The standard of the ratio of the wavelength band after subtraction is 700 ℃ ~ 1000 ℃
The error can be reduced by adjusting to the blackbody radiation of.
In this case, the error given to the temperature calculation result is at most 20.
It is about ℃. If this is adjusted to blackbody radiation below 500 ° C, the error at high temperature becomes large.

【0013】以下にその計算手順を述べる。まず被検知
体の温度を少なくともCO2の共鳴放射域にある赤外線の
強度を含む複数の赤外線放射帯の強度の相対比を求める
前に、炎特有の放射成分を差し引く。例えば、3つの波
長帯の各成分〜を検出する赤外線センサーの出力値
をそれぞれV1,V2,V3とし、炎特有の成分として差し引く
値をVxとする。Vxは波長帯及び波長帯の炎特有の成
分の合計であり、それぞれの割合をVf2,Vf3とする。図
2のc点においては、VxはFR点からc点への直線の延長
上のc点から黒体放射の曲線までの距離であり、そのう
ちの波長帯の成分がVf2,波長帯の成分がVf3であ
る。また、基準となる黒体放射での波長帯の割合をR2
とすれば、
The calculation procedure will be described below. First, the radiation component peculiar to the flame is subtracted before obtaining the relative ratio of the intensities of a plurality of infrared radiation bands including the infrared radiation intensity in at least the CO 2 resonance radiation region to the temperature of the object to be detected. For example, let V 1 , V 2 , and V 3 be the output values of the infrared sensors that detect the components 3 to 3 of the three wavelength bands, and Vx be the values that are subtracted as the flame-specific components. Vx is the sum of the wavelength band and the components peculiar to the flame in the wavelength band, and the respective ratios are Vf 2 and Vf 3 . At point c in Fig. 2, Vx is the distance from point c on the extension of the straight line from FR point to point c to the curve of black body radiation, of which the component of the wavelength band is Vf 2 and the component of the wavelength band. Is Vf 3 . In addition, the ratio of the wavelength band in the reference black body radiation is R 2
given that,

【数5】 となる。従って、[Equation 5] Becomes Therefore,

【数6】 となる。ここで求めたVxを用いて波長帯と波長帯か
ら炎の放射成分を差し引けば良い。
[Equation 6] Becomes It is sufficient to subtract the radiation component of the flame from the wavelength band and the wavelength band using Vx obtained here.

【0014】以上の手順によって、炎の放射成分から黒
体放射成分と炎特有の放射成分とが分離できる。炎の燃
焼規模を測定するには、ここで得られた黒体放射成分を
用いる。波長帯の値とここで補正された波長帯の値
を式3に当てはめることによって炎の温度が求まる。そ
して面積、Pco2”の計算はここで求めた温度から、面
積は波長帯に対して、Pco2”比は波長帯に対して
式4を適用して求める。
By the above procedure, the blackbody radiation component and the flame-specific radiation component can be separated from the flame radiation component. The blackbody radiation component obtained here is used to measure the scale of flame combustion. By applying the value of the wavelength band and the value of the wavelength band corrected here to Equation 3, the temperature of the flame can be obtained. The area, Pco 2 ″, is calculated from the temperature obtained here by applying the equation 4 to the area for the wavelength band and the Pco 2 ″ ratio for the wavelength band.

【0015】ここで求めた温度T、面積sの熱源の放射
エネルギーWはステファン−ボルツマンの法則から、
The radiant energy W of the heat source having the temperature T and the area s obtained here is calculated from the Stefan-Boltzmann law as follows.

【数7】 と表される。ここでσはステファン−ボルツマンの定数
で、σ=5.673×10-12(W/cm2・deg4)である。しかし
ながら、実際の火炎では発生する熱エネルギーの大部分
が燃焼生成ガスの対流によって拡散する。発明者は、生
成ガスの対流によって拡散する熱量と放射熱量とが常に
一定の比率であることを見出した。放射熱量は図3に示
すごとく発熱量の30分の1乃至10分の1であり、平均的に
は放射熱量は発熱量の20分の1である。また、これは燃
料がメタノールの場合でもノルマルヘプタンの場合でも
ほぼ等しい値となっており、燃料の種類に影響を受ける
ものではない。
[Equation 7] Is expressed as Here, σ is a Stefan-Boltzmann constant, and σ = 5.673 × 10 −12 (W / cm 2 · deg 4 ). However, in the actual flame, most of the generated thermal energy is diffused by the convection of the combustion product gas. The inventor has found that the amount of heat diffused by convection of the produced gas and the amount of radiant heat always have a constant ratio. The radiant heat amount is 1/30 to 1/10 of the calorific value as shown in FIG. 3, and the radiant heat amount is 1/20 of the calorific value on average. In addition, this value is almost the same regardless of whether the fuel is methanol or normal heptane, and is not affected by the type of fuel.

【0016】すなわち、火炎の燃焼規模を発熱量で表す
と、式7で求めた放射熱量の20倍の値が得られる。した
がって、上記1〜6式によって求めた温度面積から火炎
の発熱量を求めると、
That is, when the combustion scale of the flame is represented by the calorific value, a value 20 times the radiant heat quantity obtained by the equation 7 is obtained. Therefore, when the calorific value of the flame is calculated from the temperature area calculated by the above formulas 1 to 6,

【数8】 となる。[Equation 8] Becomes

【0017】[0017]

【実施例】本発明の実施例として、火災検知に応用した
例を示す。図4は本発明を応用した火災検知機の一つの
構成例である。この例では、火源または類似の発熱源か
ら放射された赤外線をチョッパーによって周期的に分断
し、4個の焦電型赤外線センサーで各々異なった4波長
帯を検出する。これらのセンサーには、あらかじめ定ま
った波長帯を透過するバンドパスフィルターが内蔵され
ている。ただし、4個以下の焦電型赤外線センサーであ
っても、切替手段を用いて4つに分割した波長を検知す
る方式としてもよい。また、4個以下の焦電型赤外線セ
ンサーであっても、切替手段を用いて4種の波長帯を検
知する方式としてもよい。各々のセンサーで検出した信
号は、増幅回路で増幅した後にA/D変換器によってデ
ジタル信号に変換される。マイクロプロセッサはこのデ
ジタル信号に対してチョッパーの分断周期による同期検
波およびろ波を行ない、チョッパーによって分断されて
いた信号を連続的な信号系列に戻している。さらに、こ
こで得られた信号系列を通信用の信号系列に変換し、ホ
ストコンピュータにデジタル伝送を行なっている。
EXAMPLE An example of application to fire detection will be shown as an example of the present invention. FIG. 4 shows an example of the configuration of a fire detector to which the present invention is applied. In this example, infrared rays emitted from a fire source or a similar heat source are periodically divided by a chopper, and four pyroelectric infrared sensors detect different four wavelength bands. These sensors have a built-in bandpass filter that transmits a predetermined wavelength band. However, even with four or less pyroelectric infrared sensors, a method of detecting the wavelength divided into four using the switching means may be used. Further, even with four or less pyroelectric infrared sensors, a method of detecting four kinds of wavelength bands by using the switching means may be used. The signal detected by each sensor is amplified by an amplifier circuit and then converted into a digital signal by an A / D converter. The microprocessor performs synchronous detection and filtering on the digital signal according to the division cycle of the chopper, and returns the signal divided by the chopper to a continuous signal sequence. Furthermore, the signal sequence obtained here is converted into a signal sequence for communication and digitally transmitted to the host computer.

【0018】図4の例で検出している赤外線の波長帯
は、図5に示すごとく低温域から高温域までの発熱体の
放射を効率良く検出する波長帯としている。すなわち、
中心波長3μm半値幅0.4μm,中心波長4.4μm半値幅
0.4μm,中心波長5.5μm半値幅0.8μm,中心波長8.
5μm半値幅1.0μmである。上記波長帯については、主
に高温域の発熱体の放射を検出し、波長帯で検出した
赤外線強度と組み合せて400℃以上の高温域の発熱体を
監視する。波長帯については炎の有無を監視する。波
長帯は低温域から高温に到るまで効率良く検出する波
長帯で、波長帯と組み合せて高温域の発熱体の監視
と、波長帯と組み合せて低温域の発熱体の監視、並び
に波長帯と組み合わせて炎の燃焼規模の測定を行
う。波長帯は、400℃以下の低温の発熱体の放射を効
率良く検出し、波長帯と組み合せて400℃以下の低温
域の発熱体の監視を行なう。燻焼状態から火災に到る過
程では、低温の発熱体が次第に高温になりながら拡大し
ていく。従って、低温から高温までの幅広い温度範囲で
発熱源の温度を監視できることが必要となる。
The infrared wavelength band detected in the example of FIG. 4 is a wavelength band for efficiently detecting the radiation of the heating element from the low temperature region to the high temperature region as shown in FIG. That is,
Center wavelength 3 μm half width 0.4 μm, center wavelength 4.4 μm half width
0.4 μm, center wavelength 5.5 μm, half width 0.8 μm, center wavelength 8.
The half-value width of 5 μm is 1.0 μm. Regarding the above wavelength band, the radiation of the heating element in the high temperature region is mainly detected, and the heating element in the high temperature region of 400 ° C. or higher is monitored in combination with the infrared intensity detected in the wavelength band. The presence or absence of flame is monitored for the wavelength band. The wavelength band is a wavelength band that efficiently detects from low temperature to high temperature.In combination with the wavelength band, the heating element in the high temperature area is monitored, and in combination with the wavelength band, the heating element in the low temperature area is monitored and In combination, flame burning scale measurements are made. As for the wavelength band, the radiation of the low-temperature heating element below 400 ° C is efficiently detected, and the heating element in the low-temperature region below 400 ° C is monitored in combination with the wavelength band. In the process from a smoldering state to a fire, a low temperature heating element gradually increases in temperature and expands. Therefore, it is necessary to monitor the temperature of the heat source in a wide temperature range from low temperature to high temperature.

【0019】本実施例では図4に示す検知部の各センサ
−の検知波長帯は、3.0±0.2μm,4.4±0.2μm,5.0
±0.4μm,8.5±0.5μmとなっている。ホストコンピ
ュ−タには計算式1〜8が記憶され、発熱体の温度、面
積、炎の有無ならびに放射熱量が算出される。また、ホ
ストコンピュ−タではセンサ−の出力がノイズレベルの
100倍以下の場合には雑音低減化のろ波処理を行う。ろ
波処理の時定数はセンサ−の出力がノイズレベルの100
倍以下の場合に8秒であり、センサ−の出力が小さい場
合には時定数を大きくし、10倍以下の場合に64秒として
いる。火災の判定は放射熱量から6段階の区分でなされ
る。さらに放射熱量の増加率を最小自乗法によって求
め、これが1W/sec以上の場合には発熱体が拡大中とし、
10W/sec以上の場合には急激に拡大中としている。拡大
中の場合には上記火災判定の区分を1段階危険側に進
め、急激に拡大中の場合には2段階危険側に進めてい
る。最小自乗法を行う際の記憶時間は、センサ−の出力
がノイズレベルの100倍以上の場合には20秒であるがセ
ンサ−の出力が小さい場合には記憶時間を長くし、セン
サ−の出力がノイズレベルの10倍以下である場合には3
分間としている。本実施例では図1のFR点を、波長帯
:波長帯=74:26と設定している。また、式6のR2
を700℃の黒体放射を基準に0.21と設定している。
In this embodiment, the detection wavelength bands of the respective sensors of the detection section shown in FIG. 4 are 3.0 ± 0.2 μm, 4.4 ± 0.2 μm, 5.0.
± 0.4μm and 8.5 ± 0.5μm. Calculation formulas 1 to 8 are stored in the host computer, and the temperature, area, presence / absence of flame, and radiant heat amount of the heating element are calculated. Also, in the host computer, the output of the sensor is
If it is 100 times or less, noise reduction filtering is performed. The time constant of the filtering process is 100 when the sensor output is the noise level.
If it is less than double, it is 8 seconds, if the output of the sensor is small, the time constant is increased, and if it is less than 10 times, it is 64 seconds. Fires are judged in 6 stages based on the amount of radiant heat. Furthermore, the increase rate of radiant heat is obtained by the method of least squares, and if this is 1 W / sec or more, it is assumed that the heating element is expanding,
If it is 10 W / sec or more, it is said to be expanding rapidly. If the fire is being expanded, the classification of fire determination is advanced to the one-stage risk side, and if it is being expanded rapidly, it is advanced to the two-stage risk side. The storage time when performing the least squares method is 20 seconds when the sensor output is 100 times the noise level or more, but when the sensor output is small, the storage time is lengthened and the sensor output Is less than 10 times the noise level, 3
I'm going for a minute. In this embodiment, the FR point in FIG. 1 is set as wavelength band: wavelength band = 74: 26. Also, R 2 in Equation 6
Is set to 0.21 based on 700 ° C blackbody radiation.

【0020】本発明によって測定した火炎の規模を火災
の判定に用いる。単純には例えば20KW以上の発熱量を持
つ火炎であれば火災と判断するが、床面10mの位置に設
置した本実施例ではこの判定を6段階とし、600W未満で
正常、600W以上で発熱体の存在を知らせる警報、1.5KW
以上で規模の大きな発熱体の存在を知らせる警報、3KW
以上で危険な発熱体の存在を知らせる警報、6KW以上で
火災の可能性が否定できない状態を知らせる警報、12KW
以上で火災の警報を発信する。もちろんこの値は設置す
る空間の状態によって随時設定する必要のある値であ
る。なお、実施例ではR2を700℃の黒体放射を基準に0.
21としたが、計算された温度に合わせて再計算させてよ
り正確な値とすることもできる。
The scale of the flame measured according to the present invention is used for judging a fire. Simply, for example, a flame having a calorific value of 20 KW or more is judged to be a fire, but in this embodiment installed at a position of the floor surface of 10 m, this judgment is made into 6 stages, normal is less than 600 W, and heating element is 600 W or more. Alarm to notify the presence of 1.5KW
With the above, an alarm to notify the presence of a large-scale heating element, 3KW
The above alerts for the presence of dangerous heating elements, 6KW and above alerts that the possibility of fire cannot be denied, 12KW
With the above, a fire alarm is sent. Of course, this value is a value that needs to be set as needed depending on the state of the space in which it is installed. In the embodiment, R 2 is set to 0.
Although it is set to 21, a more accurate value can be obtained by recalculating according to the calculated temperature.

【0021】[0021]

【発明の効果】本発明による火炎測定方法によって火炎
の燃焼規模を火炎から離れた位置から正確に測定でき
る。本発明の火炎測定方法は燃焼物の種類によらず、燃
焼の発熱量を測定できるため、特に火災の検出には有効
であり、初期火災の燃焼規模を正確に検出して的確な対
応を取ることが可能となる。さらに、燃焼物の種類によ
らずに燃焼規模が測定できるため、不特定燃料を使用す
る燃焼制御等に効果的である。
According to the flame measuring method of the present invention, the combustion scale of a flame can be accurately measured from a position away from the flame. The flame measurement method of the present invention can measure the calorific value of combustion irrespective of the type of the combusted material, and is particularly effective for detecting a fire, and accurately detects the combustion scale of the initial fire to take an appropriate response. It becomes possible. Furthermore, since the scale of combustion can be measured regardless of the type of combusted material, it is effective for combustion control using an unspecified fuel.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、さまざまな発熱体を検出する実験を行った
ときの各波長帯のセンサー出力の相対比を示す。
FIG. 1 shows relative ratios of sensor outputs in respective wavelength bands when an experiment for detecting various heating elements was performed.

【図2】は、本発明における処理手続き数式の参考図。FIG. 2 is a reference diagram of a processing procedure formula in the present invention.

【図3】は、火炎の発熱量と放射熱量の関係を示す図。FIG. 3 is a diagram showing a relationship between a calorific value of a flame and a radiant heat value.

【図4】は、本発明の一実施例である火災検知器の構成
図を示す。
FIG. 4 is a configuration diagram of a fire detector that is an embodiment of the present invention.

【図5】は、一実施例である火災検知器の検出波長帯域
を示す。
FIG. 5 shows a detection wavelength band of a fire detector which is an embodiment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CO2の共鳴放射帯を含む複数の赤外線放
射帯における赤外線強度を検出して、検出した赤外線の
強度から炎特有の放射成分を差し引いた値を用いて火炎
の発熱規模を算出することを特徴とする火炎測定方法。
1. A flame exothermic scale is calculated by detecting infrared intensities in a plurality of infrared emission bands including a CO 2 resonance emission band and using a value obtained by subtracting a radiation component peculiar to a flame from the detected infrared intensity. A flame measuring method characterized by:
【請求項2】 請求項1において、検出する赤外線放射
帯が2.8μm〜3.2μm,4.2μm〜4.6μm,4.6μm〜
5.5μmであることを特徴とする火炎測定方法。
2. The infrared radiation band to be detected according to claim 1, which is 2.8 μm to 3.2 μm, 4.2 μm to 4.6 μm, 4.6 μm
A flame measuring method characterized by being 5.5 μm.
JP7276393A 1993-03-09 1993-03-09 Flame measurement method Expired - Fee Related JP2670959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7276393A JP2670959B2 (en) 1993-03-09 1993-03-09 Flame measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7276393A JP2670959B2 (en) 1993-03-09 1993-03-09 Flame measurement method

Publications (2)

Publication Number Publication Date
JPH06259675A true JPH06259675A (en) 1994-09-16
JP2670959B2 JP2670959B2 (en) 1997-10-29

Family

ID=13498737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7276393A Expired - Fee Related JP2670959B2 (en) 1993-03-09 1993-03-09 Flame measurement method

Country Status (1)

Country Link
JP (1) JP2670959B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329860A3 (en) * 2002-01-11 2003-09-03 Hochiki Corporation Flame detection device
JP2008202960A (en) * 2007-02-16 2008-09-04 Japan Atomic Energy Agency Thermophysical property measuring device
JP2020094916A (en) * 2018-12-13 2020-06-18 深田工業株式会社 Abnormality detector
JPWO2019160161A1 (en) * 2018-02-19 2020-12-10 株式会社Ihi Heat source detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329860A3 (en) * 2002-01-11 2003-09-03 Hochiki Corporation Flame detection device
JP2008202960A (en) * 2007-02-16 2008-09-04 Japan Atomic Energy Agency Thermophysical property measuring device
JPWO2019160161A1 (en) * 2018-02-19 2020-12-10 株式会社Ihi Heat source detector
US11933673B2 (en) 2018-02-19 2024-03-19 Ihi Corporation Heat source detection device
JP2020094916A (en) * 2018-12-13 2020-06-18 深田工業株式会社 Abnormality detector

Also Published As

Publication number Publication date
JP2670959B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
JP2851110B2 (en) Method and apparatus for measuring temperature and emissivity of thermal radiator
US4463260A (en) Flame detector
WO1994016297A1 (en) Apparatus and method for remote temperature measurement
US5594421A (en) Method and detector for detecting a flame
JP2007263583A (en) Temperature detector for measuring object, temperature detection method therefor, and cooker provided with temperature detector
JP2670959B2 (en) Flame measurement method
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
JPH07134069A (en) Method for monitoring temperature of substrate
JP2606749B2 (en) Fire detection method
JP2608512B2 (en) Fire detection method
Markham et al. Spectroscopic method for measuring surface temperature that is independent of material emissivity, surrounding radiation sources, and instrument calibration
JPH05159174A (en) Fire sensing method
US20140151581A1 (en) Terahertz source
JPH0791656A (en) Flame detecting and combustion diagnosing apparatus
JP2673135B2 (en) Fire detection method and fire detector
JP3119926B2 (en) Fire detector
Tsai et al. Measurement system using ultraviolet and multiband infrared technology for identifying fire behavior
JPH0684912B2 (en) thermometer
JPH0822584A (en) Fire detecting device
JPS6011124A (en) Temperature measuring method of radiation of infrared ray
Bordbar et al. Optimizing the spectral based fire detection strategy with high-fidelity radiation spectra
JPS6046433A (en) Apparatus for detecting flame
JPH05159175A (en) Fire sensor
JPS6119925B2 (en)
JPS6176922A (en) Flame detecting device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees