JPH06258477A - Oxygen potential self-control type nuclear fuel compound - Google Patents

Oxygen potential self-control type nuclear fuel compound

Info

Publication number
JPH06258477A
JPH06258477A JP5045300A JP4530093A JPH06258477A JP H06258477 A JPH06258477 A JP H06258477A JP 5045300 A JP5045300 A JP 5045300A JP 4530093 A JP4530093 A JP 4530093A JP H06258477 A JPH06258477 A JP H06258477A
Authority
JP
Japan
Prior art keywords
nuclear fuel
dioxide
oxygen potential
uranium
fuel compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5045300A
Other languages
Japanese (ja)
Inventor
Tadasumi Muromura
忠純 室村
Toshiyuki Yamashita
利之 山下
Kinji Ouchi
金二 大内
Noriko Nitani
訓子 二谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP5045300A priority Critical patent/JPH06258477A/en
Publication of JPH06258477A publication Critical patent/JPH06258477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enhance the performance of a nuclear reactor for power plant by dispersion sintering a molybdenum metal at a specific rate to a dioxide based nuclear fuel compound thereby allowing self control of oxygen potential to a constant level during nuclear fission. CONSTITUTION:A dioxide based nuclear fuel compound means an uranium dioxide (UQ2) and an uranium dioxide added with several % of adolinium (Gd2Q3) is also used partially. A dioxide mixed with uranium and plutonium ((U, Pu) Q2) is also a nuclear fuel. For example, 1.7-5.1wt.% molybdenum metal is dispersed to 98.3-94.9wt.% uranium dioxide and sintered. Consequently, two phases of uranium dioxide and molybdenum metal are chemically balanced to produce a nuclear fuel compound in two phase coexisting state. Oxygen potential of such nuclear compound can be controlled based only on the temperature not on the degree of burn-up. Consequently, stability of nuclear fuel is enhanced thus enhancing the degree of burn-up. Furthermore, the stability of nuclear fuel can be evaluated easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電用原子炉の
性能向上を目的とする核燃料に関する。さらには、燃焼
度向上に伴う酸素ポテンシャルの自己抑制能力を持つ組
成と相平衡状態を持った核燃料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fuel for improving the performance of a nuclear power reactor. Furthermore, the present invention relates to a nuclear fuel having a composition and phase equilibrium state with the ability of self-suppressing the oxygen potential as the burnup is improved.

【0002】[0002]

【従来の技術】現用の発電用原子炉の核燃料は、ウラン
二酸化物(UO2 )であり、一部には、数%のガドリニ
ア(Gd23 )を添加したウラン二酸化物も利用され
ている。ウラン・プルトニウム混合二酸化物((U,P
u)O2 )もまた核燃料である。以下では、これらを二
酸化物系核燃料化合物と称する。該核燃料化合物は、ジ
ルコニア系合金またはステンレス製の被覆管中に密閉
し、原子炉での利用に供する。原子炉では、核燃料化合
物中のウラン(U)及びプルトニウム(Pu)の核分裂
により熱が発生し、この熱が発電に利用される。
2. Description of the Related Art The nuclear fuel of a current power generation reactor is uranium dioxide (UO 2 ), and some of them also use uranium dioxide containing a few% of gadolinia (Gd 2 O 3 ). There is. Uranium-plutonium mixed dioxide ((U, P
u) O 2 ) is also a nuclear fuel. In the following, these are referred to as dioxide-based nuclear fuel compounds. The nuclear fuel compound is sealed in a cladding tube made of a zirconia-based alloy or stainless steel and provided for use in a nuclear reactor. In a nuclear reactor, heat is generated by nuclear fission of uranium (U) and plutonium (Pu) in a nuclear fuel compound, and this heat is used for power generation.

【0003】核燃料化合物中のウラン及びプルトニウム
は、核分裂により核分裂生成物(FP)と称する元素群
となる。核分裂生成物(FP)は、二酸化物系核燃料化
合物においては殆んどが核燃料化合物の他方の成分であ
る酸素(O)と結合し酸化物となり、核燃料化合物中に
溶解・固定される。しかし核分裂生成物(FP)の一部
は、酸素と殆ど結合しないパラジウム、ロジウム、ルテ
ニウム等の白金族元素であり、そのためもあって化学結
合できない酸素が生じる事になる。この事から、被覆管
内部の酸素圧が上昇する。当業者は、この現象を核燃料
の酸素ポテンシャルの上昇と称する。
Uranium and plutonium in a nuclear fuel compound become a group of elements called fission products (FP) by fission. Most of the fission products (FP) in the dioxide-based nuclear fuel compound are bonded to oxygen (O) which is the other component of the nuclear fuel compound to form an oxide, which is dissolved and fixed in the nuclear fuel compound. However, a part of the fission product (FP) is a platinum group element such as palladium, rhodium, or ruthenium that hardly bonds with oxygen, and therefore oxygen that cannot be chemically bonded is generated. From this, the oxygen pressure inside the cladding increases. Those skilled in the art refer to this phenomenon as an increase in the oxygen potential of nuclear fuel.

【0004】[0004]

【発明が解決しようとする課題】該酸素ポテンシャルの
上昇は、核燃料の安全性に大きな影響を与える次のよう
な問題を生じさせる。すなわち、二酸化物系核燃料化合
物を密閉した被覆管は酸素ポテンシャルの上昇により酸
化される事になり、その寿命を著しく低下させるおそれ
がある。また、酸素ポテンシャルの上昇は、核燃料化合
物中での核分裂生成物(FP)等の拡散速度を高くし、
核燃料化合物の焼結、クリープ、焼しまり、核分裂ガス
放出、スエリング(体積膨張)等を促進する。特に、核
分裂ガス放出は、被覆管内のガス圧力を上昇する。さら
にまた、近年進められている高燃焼度化は、核燃料中に
上述の化学結合できない酸素量を増大させ、上記問題を
さらに重大化する畏れがある。このため、原子炉で核分
裂に供される二酸化物系核燃料化合物の酸素ポテンシャ
ルの抑制法を早急に開発する必要に迫られている。
The increase in the oxygen potential causes the following problems that greatly affect the safety of nuclear fuel. That is, the cladding tube in which the dioxide-based nuclear fuel compound is sealed will be oxidized by the increase in oxygen potential, and its life may be significantly shortened. In addition, the increase in oxygen potential increases the diffusion rate of fission products (FP) in the nuclear fuel compound,
It promotes sintering, creep, burning, nuclear fission gas release, swelling (volume expansion) of nuclear fuel compounds. In particular, fission gas release increases the gas pressure in the cladding. Furthermore, the high burn-up that has been promoted in recent years increases the amount of oxygen that cannot be chemically bound in the nuclear fuel, which is a serious problem. For this reason, there is an urgent need to develop a method for suppressing the oxygen potential of the dioxide-based nuclear fuel compound used for nuclear fission in a nuclear reactor.

【0005】被覆管内部に純ジルコニウム金属の内張り
を施す方法があり、これに酸素ポテンシャルの上昇を抑
制する働きがある。すなわち、内張りは、酸素と化学反
応し酸素ポテンシャルの上昇を抑制する効果が期待でき
る。しかし、被覆管の表面温度は約250〜300℃と
低いため、酸素ポテンシャル抑制効果は制限され、効果
的な酸素ポテンシャル抑制法の開発が望まれている。
There is a method of lining pure zirconium metal inside the cladding tube, which has a function of suppressing an increase in oxygen potential. That is, the lining can be expected to have the effect of chemically reacting with oxygen to suppress an increase in oxygen potential. However, since the surface temperature of the cladding tube is as low as about 250 to 300 ° C., the oxygen potential suppressing effect is limited, and the development of an effective oxygen potential suppressing method is desired.

【0006】[0006]

【課題を解決するための手段】本発明は、核分裂による
二酸化物系核燃料化合物の酸素ポテンシャル上昇を抑制
するのみならず、核分裂中に酸素ポテンシャルを一定に
自己制御できる新しい核燃料化合物を提供する事であ
る。
DISCLOSURE OF THE INVENTION The present invention provides a new nuclear fuel compound that not only suppresses the increase in oxygen potential of a dioxide-based nuclear fuel compound due to nuclear fission but also self-controls the oxygen potential constantly during nuclear fission. is there.

【0007】酸素ポテンシャルを自己制御できる新しい
二酸化物系核燃料化合物は、以下の3燃料条件を満足す
る必要がある。
A new dioxide-based nuclear fuel compound capable of self-controlling the oxygen potential is required to satisfy the following three fuel conditions.

【0008】燃料条件−I:現用の核燃料製造技術に大
きな影響を及ぼさない。
Fuel condition-I: Does not have a great influence on the existing nuclear fuel manufacturing technology.

【0009】燃料条件−II:核分裂で生成する化学結合
しない酸素の捕集能力を持ち、酸素ポテンシャルを適切
な値に制御できる。
Fuel condition-II: It has the ability to collect oxygen that is not chemically bonded and is generated by fission, and the oxygen potential can be controlled to an appropriate value.

【0010】燃料条件−III:核分裂により該二酸化物系
核燃料化合物に予測を超える物理的、化学的変化が無
い。
Fuel Condition-III: There is no unexpected physical or chemical change in the dioxide-based nuclear fuel compound due to fission.

【0011】本発明者は、従来の二酸化物系核燃料化合
物の核分裂効果と酸素ポテンシャルの関連を研究し、適
切な酸素捕集剤を二酸化物系核燃料化合物に加える事に
より酸素ポテンシャルを適切な値に制御できる事を見出
した。すなわち、二酸化物系核燃料化合物の製造条件、
核分裂生成物の化学的挙動及び種々の元素と化合物の熱
力学データの比較検討から、モリブデン金属を二酸化物
系核燃料化合物中に均一に分散した燃料化合物が酸素ポ
テンシャルを自己制御する能力を持っている事を見出し
た。
The present inventor has studied the relationship between the fission effect and the oxygen potential of a conventional dioxide-based nuclear fuel compound, and added an appropriate oxygen scavenger to the dioxide-based nuclear fuel compound so that the oxygen potential has an appropriate value. I found that I could control it. That is, the manufacturing conditions of the dioxide-based nuclear fuel compound,
From the comparison of chemical behavior of fission products and thermodynamic data of various elements and compounds, fuel compounds with molybdenum metal uniformly dispersed in dioxide-based nuclear fuel compounds have the ability to self-control oxygen potential. I found a thing.

【0012】以下にウラン二酸化物を例にさらに詳しく
述べる。1モルのウラン二酸化物(UO2 、270グラ
ム/モル)が原子炉で核分裂すると0.01グラムアト
ム(0.16グラム)の化学結合しない酸素が生じる。
また、下記式(1)の化学反応により32グラムの酸素
(O2 )を捕集するためには、96グラムのモリブデン
(Mo)金属が必要となる。従って、1グラムのウラン
二酸化物の核分裂で生じる化学結合しない酸素を捕集す
るには、1.8×10-3グラムのモリブデン金属が必要
となる事がわかる。
Hereinafter, uranium dioxide will be described in more detail as an example. Fission of 1 mole of uranium dioxide (UO 2 , 270 grams / mole) in a nuclear reactor produces 0.01 grams atom (0.16 grams) of non-bonded oxygen.
Further, 96 grams of molybdenum (Mo) metal is required to capture 32 grams of oxygen (O 2 ) by the chemical reaction of the following formula (1). Therefore, it can be seen that 1.8 × 10 −3 g of molybdenum metal is required to collect oxygen that is not chemically bonded in 1 g of uranium dioxide fission.

【0013】 Mo+O2 =MoO2 ………………………………………(1) 以上から、二酸化物系核燃料化合物中の目的燃焼度
(%)を考慮し、下記式(2)で与えられる必要最低量
以上のモリブデン金属をウラン二酸化物に添加して得ら
れる核燃料化合物は、適切な酸素ポテンシャルに自己制
御する能力を持っている事を見出した。換言すると、ウ
ラン二酸化物(UO2 )とモリブデン(Mo)金属が熱
力学的に化学的平衡にある、いわゆる2相共存状態の核
燃料化合物が、適切な酸素ポテンシャルに自己制御する
能力を持っている事を見出した。
Mo + O 2 = MoO 2 …………………………………… (1) From the above, the following formula (2) It was found that the nuclear fuel compound obtained by adding molybdenum metal in excess of the required minimum amount given in (1) to uranium dioxide has the ability to self-control to an appropriate oxygen potential. In other words, a so-called two-phase coexisting nuclear fuel compound in which uranium dioxide (UO 2 ) and molybdenum (Mo) metal are in thermodynamic chemical equilibrium has the ability to self-regulate to an appropriate oxygen potential. I found a thing.

【0014】 必要最低モリブデン金属量=ウラン二酸化物重量× 目的燃焼度×10-2×1.8×10-3 ……………………………(2) 但し、ウラン二酸化物の初期ウラン量のうちパーセント
表示した核分裂割合を燃焼度と称し、予め計画された燃
焼度を目的燃焼度と定義する。例えば、1グラムのウラ
ン二酸化物に対し燃焼度が10%とすると、必要最低モ
リブデン金属量は0.18ミリグラムである。
Minimum required molybdenum metal amount = uranium dioxide weight × target burnup × 10 −2 × 1.8 × 10 −3 ……………………………… (2) However, the initial uranium dioxide The fission rate expressed as a percentage of the amount of uranium is called burnup, and the burnup planned in advance is defined as the target burnup. For example, if the burnup is 10% for 1 gram of uranium dioxide, the minimum required molybdenum metal amount is 0.18 milligram.

【0015】[0015]

【作用】ここではウラン二酸化物(UO2 )及びウラン
・プルトニウム混合二酸化物((U,Pu)O2 )を例
に検討した。核分裂前のウラン二酸化物(UO2 )はT
=1373K(1100℃)で酸素ポテンシャル=−3
20〜−390kJ/molO2 を持ち、またウラン・プル
トニウム混合二酸化物((U,Pu)O2 )は酸素ポテ
ンシャル=−270〜−380kJ/mol O2 を持ってい
る。一方、該2相共存状態の核燃料化合物では、酸素ポ
テンシャルは熱力学的に式(1)の化学反応により下記
式(3)によって温度(T)のみにより制御される。
[Function] Here, uranium dioxide (UO 2 ) and uranium-plutonium mixed dioxide ((U, Pu) O 2 ) were studied as examples. Uranium dioxide (UO 2 ) before fission is T
= 1373K (1100 ° C) at oxygen potential = -3
20~-390kJ / molO 2 has, also mixed uranium-plutonium dioxide ((U, Pu) O 2 ) has an oxygen potential = -270~-380kJ / mol O 2 . On the other hand, in the nuclear fuel compound in the two-phase coexisting state, the oxygen potential is thermodynamically controlled only by the temperature (T) according to the following equation (3) by the chemical reaction of the equation (1).

【0016】 酸素ポテンシャル(kJ/mol O2 )=−588 −0.0192Tlog T +0.233 T ……………(3) ここで、kJ/mol O2 は酸素ポテンシャルの単位であ
り、Tは絶対温度である。式(3)によりT=1373
K(1100℃)では燃焼度によらず酸素ポテンシャル
は−360kJ/mol O2 に制御できる。この値は、上記
の照射前のウラン二酸化物及びウラン・プルトニウム混
合二酸化物の酸素ポテンシャルの中位にある。これらの
事は、該2相共存状態の核燃料化合物が成立するなら
ば、燃焼度によらず酸素ポテンシャルを適切な値に自己
制御できる事を示している。
Oxygen potential (kJ / mol O 2 ) = − 588 −0.0192 Tlog T +0.233 T (3) where kJ / mol O 2 is a unit of oxygen potential, and T is an absolute value. Is the temperature. According to the equation (3), T = 1373
At K (1100 ° C.), the oxygen potential can be controlled to −360 kJ / mol O 2 regardless of the burnup. This value is in the middle of the oxygen potential of the uranium dioxide and the uranium-plutonium mixed dioxide before irradiation. These facts indicate that if the nuclear fuel compound in the two-phase coexisting state is established, the oxygen potential can be self-controlled to an appropriate value regardless of the burnup.

【0017】[0017]

【実施例】本発明のウラン二酸化物(UO2 )とモリブ
デン金属(Mo)の2相共存状態の核燃料化合物の成立
性を明らかにするため、現用の核燃料化合物の製造条件
による調製を試みた。以下に、詳細を述べる。
EXAMPLES In order to clarify the feasibility of the nuclear fuel compound of the present invention in the two-phase coexisting state of uranium dioxide (UO 2 ) and molybdenum metal (Mo), preparation of an existing nuclear fuel compound was attempted under the manufacturing conditions. The details will be described below.

【0018】目的燃焼度を10%とし、式(2)から算
出される必要最低モリブデン金属量の100倍及び30
0倍量を添加した試料を下記の要領で調製した。100
倍量のモリブデン金属を添加した試料はウラン二酸化物
4.4グラムとモリブデン金属79ミリグラムに相当す
るモリブデン酸アンモン〔(NH46 Mo724・4
2 O〕146ミリグラムを硝酸溶液に溶解し、また3
00倍量のモリブデン金属を添加した試料はウラン二酸
化物4.4グラムとモリブデン金属237ミリグラムに
相当するモリブデン酸アンモン439ミリグラムを硝酸
溶液に溶解し、各々加熱して蒸発乾固した。次に、これ
ら乾固物を約700℃のヘリウム気流中で熱分解した。
得られた生成物を500kg/cm2 の圧力で直径8mmのペ
レットに成型した。このペレットを現用の製造条件に倣
い1700℃の8%水素+92%ヘリウム気流中で還元
した。生成物は粉砕し、生成相の同定のためX線回折に
供した。また一部は鏡面に研磨し、顕微鏡観察に供し
た。
When the target burnup is set to 10%, the minimum required molybdenum metal amount calculated from equation (2) is 100 times and 30 times.
A sample added with 0 times the amount was prepared as follows. 100
Times the amount of sample added molybdenum metal ammonium molybdate corresponding to uranium dioxide 4.4 g and molybdenum metal 79 milligrams [(NH 4) 6 Mo 7 O 24 · 4
H 2 O] 146 mg was dissolved in nitric acid solution and
In the sample to which the molybdenum metal was added in an amount of 00 times, 4.4 g of uranium dioxide and 439 mg of ammonium molybdate corresponding to 237 mg of molybdenum metal were dissolved in a nitric acid solution, and each was heated and evaporated to dryness. Next, these dried solids were pyrolyzed in a helium stream at about 700 ° C.
The product obtained was molded into pellets with a diameter of 8 mm at a pressure of 500 kg / cm 2 . These pellets were reduced in an 8% hydrogen + 92% helium gas stream at 1700 ° C. according to the current manufacturing conditions. The product was ground and subjected to X-ray diffraction for identification of the product phase. Further, a part thereof was polished to a mirror surface and subjected to microscopic observation.

【0019】X線回折から、得られた試料の何れにも格
子定数5.470オングストロームの蛍石型構造のウラ
ン二酸化物と格子定数3.147オングストロームの体
心立方構造のモリブデン金属の2相のみの存在を確認し
た。顕微鏡観察から、ウラン二酸化物が主たる相であ
り、その結晶粒界及び粒内にモリブデン金属が分散・析
出している事を確認した。以上により、98.3〜9
4.9重量%範囲のウラン二酸化物と1.7〜5.1重
量%の範囲のモリブデン金属が化学平衡し2相共存状態
の核燃料化合物が成立する事は明らかであり、また現用
の製造条件で該核燃料化合物が製造できる事も明らかで
あり、上記の燃料条件−Iを満足する。
From the X-ray diffraction, in all of the obtained samples, only two phases of uranium dioxide having a fluorite structure with a lattice constant of 5.470 angstrom and molybdenum metal having a body constant cubic structure with a lattice constant of 3.147 angstrom were used. Confirmed the existence of. From a microscopic observation, it was confirmed that uranium dioxide was the main phase and that molybdenum metal was dispersed / precipitated in the crystal grain boundaries and grains. From the above, 98.3-9
It is clear that uranium dioxide in the range of 4.9% by weight and molybdenum metal in the range of 1.7 to 5.1% by weight are in chemical equilibrium to form a nuclear fuel compound in a two-phase coexisting state. It is also clear that the nuclear fuel compound can be produced by the above method, and satisfies the above fuel condition-I.

【0020】また、ウラン二酸化物とモリブデン金属の
2相が共存している事から、ウラン二酸化物は原子炉中
で従来通りの核燃料化合物として作用する事は明らかで
あり、さらにまた、モリブデン金属は式(1)の化学反
応によって酸素捕集剤として作用し、式(2)に従って
酸素ポテンシャルを制御する事は化学平衡から明らかで
あり、上記の燃料条件−IIを満足する。
Since the two phases of uranium dioxide and molybdenum metal coexist, it is clear that uranium dioxide acts as a conventional nuclear fuel compound in a nuclear reactor, and molybdenum metal is It is apparent from the chemical equilibrium that the chemical reaction of the formula (1) acts as an oxygen scavenger and the oxygen potential is controlled according to the formula (2), and the above fuel condition-II is satisfied.

【0021】さらにまた、モリブデン金属は核分裂生成
物の一部であり、その燃料化合物中における挙動は十分
知られており、特に新たな化合物の析出等の問題を生じ
ない事は、本発明者の研究からも明らかであり、上記の
燃料条件−III を満足する。本発明では、二酸化物系核
燃料化合物の酸素ポテンシャルを式(1)の化学平衡を
利用して制御している。この目的のために添加するモリ
ブデン金属量は、理論的には目的燃焼度に対して式
(3)から算出される必要量で十分であるが、通常の例
に倣い、実際には必要量の大過剰を添加し制御の有効性
を維持する事とする。実施例では燃焼度10%に必要な
モリブデン金属量の100〜300倍を添加し該2相共
存状態の核燃料化合物が生成する事を確認した。
Furthermore, molybdenum metal is a part of the fission product, its behavior in the fuel compound is well known, and the fact that it does not cause a problem such as precipitation of a new compound is not known by the present inventors. It is also clear from the study that the above fuel condition-III is satisfied. In the present invention, the oxygen potential of the dioxide-based nuclear fuel compound is controlled by utilizing the chemical equilibrium of formula (1). The amount of molybdenum metal to be added for this purpose is theoretically sufficient with respect to the target burnup, which is calculated from equation (3). A large excess is added to maintain the control effectiveness. In the examples, it was confirmed that 100 to 300 times the amount of molybdenum metal required for a burnup of 10% was added to produce the nuclear fuel compound in the two-phase coexisting state.

【0022】実施例ではモリブデン金属の添加による
2相共存状態の核燃料化合物の成立性を示したが、モリ
ブデンと同様な化学的性質及び熱力学的性質を有するタ
ングステン(W)を利用しても同様な効果が期待できる
事は当業者には明らかである。この際には、式(1),
(2),(3)は各々以下の式(1)a ,(2)a
(3)a に書換える。
In the examples, the feasibility of the nuclear fuel compound in the two-phase coexisting state by the addition of molybdenum metal was shown, but the same applies when tungsten (W) having the same chemical and thermodynamic properties as molybdenum is used. It is obvious to those skilled in the art that various effects can be expected. In this case, equation (1),
(2) and (3) are the following equations (1) a , (2) a ,
(3) rewritten in a.

【0023】 W+O2 =WO2 ……………………………………………(1)a 必要最低タングステン金属量=ウラン二酸化物重量 ×目的燃焼度/100× 3.4×10-3…(2)a 酸素ポテンシャル(kJ/mol O2 )=−548 +0.153 T …………(3)a 式(3)a より、例えば1100℃(1373K)で
は、酸素ポテンシャルは−340kJ/mol O2 に制御で
きる。この値は、燃料条件−IIを満足する。
[0023] W + O 2 = WO 2 ................................................... (1) a required minimum tungsten weight = uranium dioxide weight × purpose burnup / 100 × 3.4 × 10 - 3 (2) a Oxygen potential (kJ / mol O 2 ) =-548 +0.153 T ... (3) a Equation (3) From a , for example, at 1100 ° C (1373K), the oxygen potential is -340 kJ. / Mol O 2 can be controlled. This value satisfies Fuel Condition-II.

【0024】実施例では、核燃料化合物がウラン二酸
化物の場合の成立性を検討した。この結果がガドリニア
添加ウラン二酸化物、ウラン・プルトニウム混合二酸化
物等の核燃料化合物にも適用できる事は、当業者には明
らかである。
In the examples, the feasibility when the nuclear fuel compound is uranium dioxide was examined. It is obvious to those skilled in the art that this result can be applied to nuclear fuel compounds such as gadolinia-added uranium dioxide and uranium-plutonium mixed dioxide.

【0025】式(3)及び(3)a は、下記文献から
得た。
Equations (3) and (3) a were obtained from the following documents:

【0026】O. Kubaschewski and E. LL. Evans, [Met
allurgical Thermochemistry],Table E., Pergamon Pre
ss, London, 1958
O. Kubaschewski and E. LL. Evans, [Met
allurgical Thermochemistry], Table E., Pergamon Pre
ss, London, 1958

【0027】[0027]

【発明の効果】本発明の新しい核燃料化合物は、二酸化
物系核燃料化合物相とモリブデン金属相の2相共存状態
にあり、以下の効果がある。
The novel nuclear fuel compound of the present invention is in a two-phase coexisting state of a dioxide type nuclear fuel compound phase and a molybdenum metal phase, and has the following effects.

【0028】本発明の2相共存状態の核燃料化合物
は、酸素ポテンシャルを燃焼度によらず温度のみで制御
できる。
The nuclear fuel compound of the two-phase coexisting state of the present invention can control the oxygen potential only by the temperature regardless of the burnup.

【0029】制御された酸素ポテンシャルは、核分裂
前の核燃料化合物のそれとほぼ一致する。
The controlled oxygen potential closely matches that of the pre-fission nuclear fuel compound.

【0030】酸素ポテンシャルは燃焼度によらず一定
に制御されるので、核燃料の安定性を向上させる事がで
き、かつ燃焼度の向上が容易である。また、核燃料の安
定性評価は容易となる。
Since the oxygen potential is controlled to be constant regardless of the burnup, the stability of the nuclear fuel can be improved and the burnup can be easily improved. Also, the stability evaluation of nuclear fuel becomes easy.

【0031】熱伝導性の悪い酸化物に金属を添加する
事により、副次的に熱伝導の向上が期待できる。
By adding a metal to an oxide having poor thermal conductivity, it is possible to expect secondary improvement in thermal conductivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二谷 訓子 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriko Futani No.4 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Prefecture 4 Japan Atomic Energy Research Institute Tokai Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 98.3〜94.9重量%の二酸化物系
核燃料化合物に1.7〜5.1重量%のモリブデン金属
を分散焼結し、該二酸化物系核燃料化合物相とモリブデ
ン金属相の2相が化学平衡にある事を特徴とする核燃料
化合物。
1. A dispersion-sintered 1.7 to 5.1% by weight of molybdenum metal in 98.3 to 94.9% by weight of a dioxide-based nuclear fuel compound, and the sintering system of said dioxide-based nuclear fuel compound and molybdenum metal phase. Is a nuclear fuel compound characterized in that the two phases are in chemical equilibrium.
【請求項2】 該二酸化物系核燃料化合物は、ウラン二
酸化物(UO2 )、ガドリニア(Gd23 )添加ウラ
ン二酸化物及びウラン・プルトニウム混合二酸化物
((U,Pu)O2 )である請求項1に記載の核燃料化
合物。
2. The dioxide-based nuclear fuel compound is uranium dioxide (UO 2 ), gadolinia (Gd 2 O 3 ) added uranium dioxide and uranium-plutonium mixed dioxide ((U, Pu) O 2 ). The nuclear fuel compound according to claim 1.
JP5045300A 1993-03-05 1993-03-05 Oxygen potential self-control type nuclear fuel compound Pending JPH06258477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5045300A JPH06258477A (en) 1993-03-05 1993-03-05 Oxygen potential self-control type nuclear fuel compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5045300A JPH06258477A (en) 1993-03-05 1993-03-05 Oxygen potential self-control type nuclear fuel compound

Publications (1)

Publication Number Publication Date
JPH06258477A true JPH06258477A (en) 1994-09-16

Family

ID=12715468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5045300A Pending JPH06258477A (en) 1993-03-05 1993-03-05 Oxygen potential self-control type nuclear fuel compound

Country Status (1)

Country Link
JP (1) JPH06258477A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053156A (en) * 2007-08-29 2009-03-12 Japan Atomic Energy Agency Manufacturing method of nuclear fuel pellet and nuclear fuel pellet
FR2969660A1 (en) * 2010-12-28 2012-06-29 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A POWDER OF AN ALLOY BASED ON URANIUM AND MOLYBDEN
CN104838446A (en) * 2012-11-08 2015-08-12 原子能和能源替代品委员会 Oxide nuclear fuel which is a regulator of corrosive fission products, additivated with at least one oxidation-reduction system
CN105706177A (en) * 2013-11-26 2016-06-22 阿科姆工程合资(控股)公司 Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof
US9574257B2 (en) 2010-12-28 2017-02-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Powder of an alloy based on uranium and on molybdenum useful for manufacturing nuclear fuels and targets intended for producing radioisotopes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053156A (en) * 2007-08-29 2009-03-12 Japan Atomic Energy Agency Manufacturing method of nuclear fuel pellet and nuclear fuel pellet
FR2969660A1 (en) * 2010-12-28 2012-06-29 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A POWDER OF AN ALLOY BASED ON URANIUM AND MOLYBDEN
WO2012089687A2 (en) * 2010-12-28 2012-07-05 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a powder of an alloy based on uranium and molybdenum
WO2012089687A3 (en) * 2010-12-28 2013-02-21 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a powder of an alloy based on uranium and molybdenum
CN103561893A (en) * 2010-12-28 2014-02-05 法国原子能及替代能源委员会 Method for preparing powder of alloy based on uranium and molybdenum
JP2014508217A (en) * 2010-12-28 2014-04-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for preparing powders of alloys based on uranium and molybdenum
CN103561893B (en) * 2010-12-28 2015-09-23 法国原子能及替代能源委员会 Prepare the method for the alloy powder based on uranium and molybdenum
US9190180B2 (en) 2010-12-28 2015-11-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for preparing a powder of an alloy based on uranium and molybdenum
US9574257B2 (en) 2010-12-28 2017-02-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Powder of an alloy based on uranium and on molybdenum useful for manufacturing nuclear fuels and targets intended for producing radioisotopes
CN104838446A (en) * 2012-11-08 2015-08-12 原子能和能源替代品委员会 Oxide nuclear fuel which is a regulator of corrosive fission products, additivated with at least one oxidation-reduction system
JP2015534087A (en) * 2012-11-08 2015-11-26 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Oxide nuclear fuel as a regulator of corrosive fission products with at least one redox system added
CN105706177A (en) * 2013-11-26 2016-06-22 阿科姆工程合资(控股)公司 Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2408537C2 (en) Method for coprecipitation of actinides with different oxidation states and method of obtaining mixed actinide compounds
CN110828002B (en) High-value control rod neutron absorber material
JPH06258477A (en) Oxygen potential self-control type nuclear fuel compound
US4236943A (en) Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence
Hagemark et al. Equilibrium Oxygen Pressures Over Solid Solutions of Urania‐Yttria and Urania‐Lanthana at 1100° to 14OO° C
US4269637A (en) High-performance MHD solid gas generator
Westrum Jr et al. Low Temperature Heat Capacity and Thermodynamic Functions of Triuranium Octoxide1
Yamanaka et al. Study on the hydrogen solubility in zirconium alloys
Saha et al. Thermodynamic properties of ternary oxides of fission products from calorimetric measurements
US3117372A (en) Stabilized rare earth oxides for a control rod and method of preparation
Ugajin et al. Chemical form of the solid fission products in (Th, U) O2 simulating high burnup
Vara et al. Investigation the catalytic profile of Eu and Pr doped CeO2 nanoparticles for the thermal behavior of AP
Paul Europia as a nuclear control material
US3420640A (en) Process for depleting 17o and 18o in 238puo2
JPH1164560A (en) Rock type plutonium nuclear fuel
US3663218A (en) Burnable poison for nuclear reactor
JPH0727886A (en) Once-through type nuclear reactor fuel compound
Goncharov et al. Energetics of oxidation and formation of uranium monocarbide
WAGNER et al. Marvel Fuel System and Program Overview
Machlin Symposium on metallurgy and technology of refractory metal alloys—A state-of-the-art review
Wayne Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary
Yamanaka et al. Influence of interstitial oxygen on hydrogen solubility in vanadium
Engel et al. Development of Propellants Containing Ammonium Nitrate.
JPS62188744A (en) Corrosion resistant hafnium alloy
Zhukov et al. Calculated electronic structures and chemical bonding in Sc and Y carbides