JPS62188744A - Corrosion resistant hafnium alloy - Google Patents

Corrosion resistant hafnium alloy

Info

Publication number
JPS62188744A
JPS62188744A JP3154286A JP3154286A JPS62188744A JP S62188744 A JPS62188744 A JP S62188744A JP 3154286 A JP3154286 A JP 3154286A JP 3154286 A JP3154286 A JP 3154286A JP S62188744 A JPS62188744 A JP S62188744A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
water
corrosion resistant
hafnium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3154286A
Other languages
Japanese (ja)
Inventor
Takanari Okuda
奥田 隆成
Mitsuo Kanehara
金原 光男
Katsuhiro Abe
安部 勝洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3154286A priority Critical patent/JPS62188744A/en
Publication of JPS62188744A publication Critical patent/JPS62188744A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To manufacture an Hf alloy having satisfactory resistance to corrosion by water or steam at high temp. and pressure by adding a specified total amount of Fe and Nb to Hf. CONSTITUTION:An Hf alloy consisting of 0.02-7.0wt% in total of Fe and/or Nb and the balance essentially Hf is manufactured. The Hf alloy has superior resistance to corrosion by water or steam at high temp. and pressure without deteriorating the workability or neutron absorbing power. The alloy is used as a material for controlling a light-water reactor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温高圧の水若しくは水蒸気に対する耐食性
に優れた軽水炉制御材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light water reactor control material that has excellent corrosion resistance against high-temperature, high-pressure water or steam.

(従来の技術とその問題点) 軽水冷却型原子炉の制御材料は、核分裂反応に必要な熱
中性子を吸収して原子炉の出力を制御するものであり、 ・熱中性子吸収特性 ・高温高圧の水、水蒸気に対する耐食性が要求される。
(Conventional technology and its problems) Control materials for light water-cooled nuclear reactors control the output of the reactor by absorbing the thermal neutrons necessary for the nuclear fission reaction. Corrosion resistance against water and steam is required.

現在、軽水冷却型原子炉用制御材料としては、ボロンカ
ーバイド(84C)やAg−15% In−5% Cd
合金などが使用されている。これらのうち、後者は経済
的理由から漸減する方向にあり、前者が主流となってい
る。B4Cは、ステンレテ管中にパウダー状又はペレッ
ト状で詰められて制御材料として使用されており、その
平均寿命は4〜7年である。84Gの寿命制限因子とし
ては、BIGの減少とB4CのスウェリングによるSO
3304ステンレス鋼被覆の破損を挙げることができる
Currently, boron carbide (84C), Ag-15% In-5% Cd are used as control materials for light water-cooled nuclear reactors.
Alloys are used. Of these, the latter is gradually decreasing due to economic reasons, and the former has become the mainstream. B4C is used as a control material packed in stainless steel tubes in powder or pellet form and has an average lifespan of 4 to 7 years. The life-limiting factors of 84G are SO due to BIG decrease and B4C swelling.
Failure of the 3304 stainless steel coating can be mentioned.

最近の原子炉の運転方法は、制御棒の移動を最少にする
方向にあり、高密度の中性子束に長期間さらされるので
、中性子吸収能の劣化の少い長寿命の制御材料の開発が
要求されている。
Recent operating methods for nuclear reactors are aimed at minimizing the movement of control rods, and as they are exposed to high-density neutron flux for long periods of time, there is a need for the development of long-life control materials with less deterioration in neutron absorption capacity. has been done.

ハフニウム(Hf)は、その有望な材料の一つであり、
PWR環境(320℃、加圧水)では良好な特性を示し
ているがBWR環境(290℃、沸騰水)下では必ずし
も充分な耐食性を有していない。
Hafnium (Hf) is one of the promising materials,
Although it shows good properties in a PWR environment (320°C, pressurized water), it does not necessarily have sufficient corrosion resistance in a BWR environment (290°C, boiling water).

本発明は斯かる問題に鑑み、BWR環境下でも高温高圧
の水、水蒸気に対し充分な耐食性を有するハフニウム合
金を提供とすることを目的とする。
In view of such problems, the present invention aims to provide a hafnium alloy that has sufficient corrosion resistance against high temperature and high pressure water and steam even in a BWR environment.

(問題点を解決するための手段) 上記目的を達成するために、中性子吸収能の優れたIf
にその特性を害さない範囲でFeまたは/およびNbを
添加し、かつFe + Nb : 0.02〜7.0重
量%としてHfを合金化し、耐食性を著しく向上させた
(Means for solving the problem) In order to achieve the above purpose, If
The corrosion resistance was significantly improved by adding Fe or/and Nb to the alloy within a range that does not impair its properties, and by setting Fe + Nb: 0.02 to 7.0% by weight to form an alloy with Hf.

(実施例) 本発明に係るHf合金は、Feまたは/およびNbと残
部実質的にllfとからなり、Fe + Nb : 0
.02〜7.0重量%とじたものである。Fe + N
bの成分限定理由は下記の通りである。
(Example) The Hf alloy according to the present invention consists of Fe or/and Nb and the balance substantially Ilf, Fe + Nb: 0
.. 02 to 7.0% by weight. Fe+N
The reason for limiting the component b is as follows.

PeおよびNbは、)Ifの高温高圧の水、水蒸気に対
する耐食性を改善する作用をなす。耐食性の向上には、
黒色密着性を有する酸化被膜が寄与し、この被膜を形成
させるためには、(Fe + Nb)量を0゜02%以
上にする必要がある。
Pe and Nb serve to improve the corrosion resistance of )If against high-temperature, high-pressure water and steam. To improve corrosion resistance,
In order to contribute to the formation of an oxide film having black adhesion, the amount of (Fe + Nb) needs to be 0°02% or more.

(Fe + Nb)量が0.02%以上で耐食性は一定
となるが、(Fe + Nb)量の増加と共に加工性が
悪化し、8%以上では加工が困難になる。
When the amount of (Fe + Nb) is 0.02% or more, the corrosion resistance becomes constant, but as the amount of (Fe + Nb) increases, the workability deteriorates, and when the amount of (Fe + Nb) is more than 8%, it becomes difficult to work.

また、Fe、 Nbの熱中性子吸収断面積は、Hfと比
べて小さく、制御材料として中性子吸収能を著しく損な
わないためには、(pe+Nb) Iを7%以下に制服
する必要がある。
In addition, the thermal neutron absorption cross section of Fe and Nb is smaller than that of Hf, and in order to not significantly impair the neutron absorption ability as a control material, it is necessary to keep (pe+Nb)I at 7% or less.

尚、実質的なHfとは95%程度の高純度+1fを指称
するものである。他の主な不純物はZrである。
Note that "substantial Hf" refers to high purity +1f of about 95%. The other main impurity is Zr.

次に、本発明の具体的実施例を比較例と共に掲げて説明
する。
Next, specific examples of the present invention will be described together with comparative examples.

高純度IffにFe又は/およびNbを添加して種々の
(Fe + Nb)%を有するHf合金を熔製し、5鰭
厚のスラブに鋳造し、得られたスラブを冷間圧延して1
酊厚のHf合金板を製作した。
Hf alloys with various (Fe + Nb) percentages are melted by adding Fe or/and Nb to high-purity Iff, cast into slabs with a thickness of 5 fins, and the resulting slabs are cold-rolled into 1.
A thick Hf alloy plate was manufactured.

このllfHf合金板いて、静置式オートクレーブ試験
装置を使用して500°C,105気圧の高温高圧の水
蒸気中で24時間加圧して耐食性を調べた。その結果を
第1図に示す。第1図より、高純度11fの耐食性は良
くないが(Fe+Nb)%が0.02%以上で優れた耐
食性を示すことが判る。
This IlfHf alloy plate was pressurized in high-temperature, high-pressure water vapor at 500°C and 105 atm for 24 hours using a static autoclave tester to examine its corrosion resistance. The results are shown in FIG. From FIG. 1, it can be seen that although the corrosion resistance of high-purity 11f is not good, it exhibits excellent corrosion resistance when the (Fe+Nb)% is 0.02% or more.

また、Hf合金板の製作過程において、冷間加工性が観
察された。その結果を第2図に示す。高純度Hfは冷間
加工性に劣るが、(Fe+Nb)の添加と共に加工性は
改良され、(Fe + Nb)が0.1〜1%で優れた
加工性を示す。(Pe + Nb) 6度がさらに増加
すると、材料の硬化が生じる。8%を越えると加工性の
劣化が著しい。
In addition, cold workability was observed during the manufacturing process of the Hf alloy plate. The results are shown in FIG. Although high-purity Hf has poor cold workability, the workability is improved with the addition of (Fe + Nb), and exhibits excellent workability when (Fe + Nb) is 0.1 to 1%. Further increases in (Pe + Nb) 6 degrees result in hardening of the material. If it exceeds 8%, the deterioration of workability is significant.

第1図及び第2図より、本発明に係るFe+Nb:0.
02〜7.0%のハフニウム合金は、耐食性及び加工性
が共に優れていることが@認された。
From FIG. 1 and FIG. 2, Fe+Nb according to the present invention: 0.
It was found that the hafnium alloy containing 0.02% to 7.0% has excellent corrosion resistance and workability.

(発明の効果) 以上説明したように、本発明のハフニウム合金は、その
合金成分であるFeまたは/およびNbをFe+Nb 
: 0.02〜7.0重量%に特定したので、加工性及
び中性子吸収性を損なうことなく優れた耐食性を付与す
ることができた。このように本発明のハフニウム合金は
耐食性に極めて優れるのでBWR環境下でも充分使用で
き、実質的価値は著大である。
(Effects of the Invention) As explained above, the hafnium alloy of the present invention replaces its alloy components Fe and/or Nb with Fe+Nb.
: Since the content was specified at 0.02 to 7.0% by weight, excellent corrosion resistance could be imparted without impairing processability and neutron absorption. As described above, the hafnium alloy of the present invention has extremely excellent corrosion resistance, so it can be used satisfactorily even in a BWR environment, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は500℃における耐食性を示す図であって、(
Fe + Nb) ’ta度と腐食増量との関係を示す
グラフ図、第2図は(Fe + Nb)濃度と冷間加工
性との関係を示すグラフ図である。
FIG. 1 is a diagram showing corrosion resistance at 500°C, (
Fig. 2 is a graph showing the relationship between (Fe + Nb) concentration and cold workability.

Claims (1)

【特許請求の範囲】 1、化学組成が重量%で、Feまたは/およびNbがF
e+Nb:0.02〜7.0% であり、残部が実質的にHfであることを特徴とする耐
食ハフニウム合金。
[Claims] 1. Chemical composition is by weight %, Fe or/and Nb is F
A corrosion-resistant hafnium alloy characterized in that e+Nb: 0.02 to 7.0%, with the remainder being substantially Hf.
JP3154286A 1986-02-14 1986-02-14 Corrosion resistant hafnium alloy Pending JPS62188744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3154286A JPS62188744A (en) 1986-02-14 1986-02-14 Corrosion resistant hafnium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3154286A JPS62188744A (en) 1986-02-14 1986-02-14 Corrosion resistant hafnium alloy

Publications (1)

Publication Number Publication Date
JPS62188744A true JPS62188744A (en) 1987-08-18

Family

ID=12334076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3154286A Pending JPS62188744A (en) 1986-02-14 1986-02-14 Corrosion resistant hafnium alloy

Country Status (1)

Country Link
JP (1) JPS62188744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236453A (en) * 1990-02-13 1991-10-22 Sumitomo Metal Ind Ltd Seamless hafnium tube and its production
WO1994028185A1 (en) * 1993-05-25 1994-12-08 Electric Power Research Institute Hafnium alloys as neutron absorbers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236453A (en) * 1990-02-13 1991-10-22 Sumitomo Metal Ind Ltd Seamless hafnium tube and its production
WO1994028185A1 (en) * 1993-05-25 1994-12-08 Electric Power Research Institute Hafnium alloys as neutron absorbers

Similar Documents

Publication Publication Date Title
US5080861A (en) Corrosion resistant zirconium alloy
KR0178757B1 (en) Rod for a fuel assembly of a nuclear reactor resisting corrosion and wear
CN103898368B (en) Zirconium-based alloy for nuclear fuel assembly
JPH07224373A (en) Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy
US5892807A (en) Pressurized water reactor nuclear fuel assembly
JPH11202072A (en) Nuclear fuel particle for reactor, nuclear fuel pellet and element
JPS62188744A (en) Corrosion resistant hafnium alloy
CN106929706A (en) A kind of zirconium-base alloy in the hot environment for nuclear reactor
US5790623A (en) Composite cladding for nuclear fuel rods
Sridharan Understanding how materials corrode in nuclear reactors
JPH04224648A (en) High corrosion resistant and high strength zirconium alloy
US3431104A (en) Zirconium base alloy
JPS6333535A (en) Zirconium alloy for nuclear reactor
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
JPS60256084A (en) Composite type zirconium alloy coated pipe
US5772798A (en) High strength zirconium alloys containing bismuth
JPH01188643A (en) Zr alloy for covering tube of atomic reactor fuel having excellent corrosion resistance
Kim et al. Internal hydriding of defected Zircaloy cladding fuel rods: a review
Farina et al. Current status of Zirconium alloys for fission cladding
EP0964407B1 (en) High strength zirconium alloys containing bismuth, tin and niobium
EP0964406A1 (en) High strength zirconium alloys containing bismuth and niobium
JPH01242746A (en) Corrosion-resistant zirconium alloy
JPH07150275A (en) Highly corrosion resistant zirconium-base alloy
JPS6217146A (en) Corrosion-resistant zirconium alloy
JPS62207835A (en) Zr alloy having superior nodular corrosion resistance