JPH06258299A - Measurement of crystal particle size - Google Patents

Measurement of crystal particle size

Info

Publication number
JPH06258299A
JPH06258299A JP5043127A JP4312793A JPH06258299A JP H06258299 A JPH06258299 A JP H06258299A JP 5043127 A JP5043127 A JP 5043127A JP 4312793 A JP4312793 A JP 4312793A JP H06258299 A JPH06258299 A JP H06258299A
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic
ultrasonic wave
grain size
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5043127A
Other languages
Japanese (ja)
Other versions
JP3140244B2 (en
Inventor
Makoto Okuno
眞 奥野
Fumihiko Ichikawa
文彦 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP05043127A priority Critical patent/JP3140244B2/en
Publication of JPH06258299A publication Critical patent/JPH06258299A/en
Application granted granted Critical
Publication of JP3140244B2 publication Critical patent/JP3140244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a crystal particle size measuring method for a steel sheet or the like. CONSTITUTION:A wide band ultrasonic wave pulse from and ultrasonic wave transmitter 4 is propagated inside of a steel sheet 1 being a measurement object through an ultrasonic wave probe 2, and the reflected pulse is inputted to an operation device 7 through an A/D converter 6 after being detected/amplified by an ultrasonic wave receiver 5, and an ultrasonic wave attenuation constant (alpha) to a wide range frequency (f) is found by alayzing a frequency in the operation device 7, and when the crystal particle size D is calculated from an expression (alpha= a.D<3>.f<4>) by using (alpha) when a value of [d (log)/d (logf)] becomes 3.5 to 4.5 and a proper constant (a) for the measurement object, the highly accurate crystal particle size can be found by a nondestructive means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板等の結晶粒度を非
破壊で測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for nondestructively measuring the grain size of steel sheets and the like.

【0002】[0002]

【従来の技術】鋼材などの結晶粒度は、その強度や靱性
などの機械的性質と密接な関係があるため、これを測定
することにより製品の品質保証および品質向上に役立て
ることが重要である。一般に鋼材などの結晶粒度の測定
は、製品の一部を抜き取り、これを研摩仕上げして腐食
させて試験片を作製し、腐食面に現れた結晶粒を顕微鏡
で観察して行われている。しかし、この方法では破壊測
定となるため、製品の全長にわたる測定ができないばか
りか、試験片の作製に多大な時間を要し、また顕微鏡観
察時に測定者の主観が入るため、信頼性に欠けるという
問題がある。
2. Description of the Related Art The grain size of steel or the like has a close relationship with mechanical properties such as strength and toughness, and it is important to measure the grain size for use in quality assurance and quality improvement of products. Generally, the grain size of steel or the like is measured by extracting a part of a product, polishing and finishing the product to corrode a test piece, and observing the crystal grain appearing on the corroded surface with a microscope. However, since this method is destructive measurement, it is not possible to measure over the entire length of the product, it takes a lot of time to manufacture the test piece, and the subjectivity of the measurer during microscopic observation makes it unreliable. There's a problem.

【0003】このため、被測定体内に伝播する超音波の
減衰量が結晶粒度によって変化することを利用した結晶
粒度の非破壊測定方法が、たとえば特公昭58− 31867号
公報や特開昭60− 35253号公報などに提案されている。
ここで、超音波減衰量を利用した結晶粒度の測定法の原
理について説明する。周波数fの超音波を鋼材などの被
測定体内に伝播させたとき、超音波音圧はその進行とと
もに減衰する。このとき単位進行距離当たりの減衰量を
減衰定数という。超音波の減衰する形態は、超音波の波
長をλ(=V/f;ここで、Vは被測定体内の超音波音
速)、被測定体の結晶粒度をDとしたとき、両者の比λ
/Dの大小により異なる。すなわち、減衰定数αは、レ
イリー散乱領域であるλ/D≫1のときf4 に、またス
トカスティック散乱領域であるλ/D≒1のときにf3
に、さらに拡散散乱領域であるλ/D<1のときf
2 に、それぞれ比例する関係にある。このうち、レイリ
ー散乱領域では、減衰定数αと周波数f、結晶粒度Dと
の間に、 α=a・D3 ・f4 ……………(1) なる関係が成立する。ここで、aは被測定体に固有の定
数である。したがって、周波数fの超音波により減衰定
数αを測定すれば、 D=3 √{α/(a・f4 )} ……………(2) により結晶粒度が求められる。このとき、λ/D(=V
/(f・D))≫1なるレイリー散乱領域を充たす超音
波周波数fで測定する必要があるが、被測定体の結晶粒
度Dは予めわからないので、何らかの工夫が必要であ
る。
Therefore, a non-destructive measurement method of crystal grain size, which utilizes that the attenuation amount of ultrasonic waves propagating in the object to be measured changes depending on the crystal grain size, is disclosed in, for example, Japanese Patent Publication No. 58-31867. It is proposed in Japanese Patent No. 35253.
Here, the principle of the crystal grain size measuring method using the ultrasonic attenuation will be described. When an ultrasonic wave of frequency f is propagated in the body to be measured such as steel material, the ultrasonic sound pressure is attenuated as it progresses. At this time, the amount of attenuation per unit traveling distance is called the attenuation constant. The form of attenuation of ultrasonic waves is λ (= V / f; where V is the ultrasonic velocity in the measured object) and D is the crystal grain size of the measured object.
Depends on the size of / D. That is, the attenuation constant α is f 4 when the Rayleigh scattering region λ / D >> 1 and f 3 when the stochastic scattering region λ / D≈1.
In addition, when λ / D <1, which is the diffuse scattering region, f
The two are in proportion to each other. Of these, in the Rayleigh scattering region, the relationship α = a · D 3 · f 4 (1) holds between the attenuation constant α, the frequency f, and the crystal grain size D. Here, a is a constant unique to the object to be measured. Thus, by measuring the attenuation constant alpha by ultrasonic frequency f, grain size is determined by D = 3 √ {α / ( a · f 4)} ............... (2). At this time, λ / D (= V
/ (F · D) >> 1 is required to be measured at the ultrasonic frequency f that fills the Rayleigh scattering region, but the crystal grain size D of the measured object is not known in advance, so some kind of ingenuity is required.

【0004】ところで、前記した特公昭58− 31867号の
方法は、超音波の周波数fを変化させて各周波数におけ
る減衰定数αを測定し、このαが2.0 dB/cm 以上になっ
たときの値を用いて、 α=0.6 ×D3 ・f4 ……………(3) なる関係式から結晶粒度Dを求めるものである。
By the way, in the method of Japanese Patent Publication No. 58-31867, the attenuation constant α at each frequency is measured by changing the frequency f of the ultrasonic wave, and the value when this α becomes 2.0 dB / cm or more is obtained. Is used to obtain the crystal grain size D from the relational expression α = 0.6 × D 3 · f 4 (3).

【0005】また、特開昭60− 35253号の方法は、レイ
リー散乱領域外でも結晶粒度Dを求めることができるよ
うに、周波数fの超音波により減衰定数αを測定した
後、f/αの大きさによりDを算出する式を選択する方
法をとっている。すなわち、Dを求める関係式を下記
(4) 式 α=ai ・Dn ・fn+1 ……………(4) とし、この冪指数nおよび係数ai の値をf/αの大き
さにより採択して結晶粒度Dを算出するものである。
Further, in the method of JP-A-60-35253, the attenuation constant α is measured by ultrasonic waves of frequency f so that the crystal grain size D can be obtained even outside the Rayleigh scattering region, and then f / α The method of selecting the formula for calculating D according to the size is adopted. That is, the relational expression for obtaining D is
(4) The formula α = a i · D n · f n + 1 (4) is adopted, and the values of the power exponent n and the coefficient a i are adopted according to the magnitude of f / α to obtain the grain size D. Is calculated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記特
公昭58− 31867号の方法は、超音波減衰定数αがα≧2.
0 (dB/cm) となる領域がレイリー散乱領域と一致するこ
とを前提としているが、本発明者らの実験によれば、α
の大きさは超音波測定機器などに依存することもあっ
て、上記範囲すなわちα≧2.0 (dB/cm) となる領域は必
ずしもレイリー散乱領域を充たさず、したがって結晶粒
度測定精度が悪いことがわかった。
However, in the method of Japanese Patent Publication No. 31867/1983, the ultrasonic attenuation constant α is α ≧ 2.
It is premised that the region of 0 (dB / cm) coincides with the Rayleigh scattering region, but according to the experiments by the inventors, α
Since the size of γ depends on the ultrasonic measurement equipment, etc., the above range, that is, the region where α ≧ 2.0 (dB / cm) does not necessarily fill the Rayleigh scattering region, and therefore it is clear that the grain size measurement accuracy is poor. It was

【0007】また、特開昭60− 35253号の方法では、被
測定体の結晶粒度により相異なる近似式を適用すること
になり、測定精度が大幅に劣化する場合があるという問
題があった。本発明は、上記のような従来技術の有する
課題を解決すべく、超音波を利用した非破壊での高精度
な結晶粒度測定方法を提供することを目的とする。
Further, in the method of Japanese Patent Laid-Open No. 60-35253, different approximation formulas are applied depending on the crystal grain size of the object to be measured, and there is a problem that the measurement accuracy may be significantly deteriorated. SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-destructive and highly accurate method of measuring grain size using ultrasonic waves, in order to solve the problems of the above-mentioned conventional techniques.

【0008】[0008]

【課題を解決するための手段】本発明は、被測定体内に
広帯域超音波パルスを伝播させ、その反射パルスを周波
数解析して広範な周波数fに対する超音波減衰定数αを
求め、d(log α) /d(log f) の値が3.5 以上でか
つ4.5 以下になるときのαと、被測定体に固有の定数a
を用いて、下記式 α=a・D3 ・f4 から結晶粒度Dを算出することを特徴とする結晶粒度測
定方法である。
According to the present invention, a broadband ultrasonic pulse is propagated in a body to be measured, the reflected pulse is frequency analyzed to obtain an ultrasonic attenuation constant α for a wide range of frequencies f, and d (log α ) / D (log f) is 3.5 or more and 4.5 or less, and α is a constant peculiar to the measured object.
Is used to calculate the crystal grain size D from the following formula α = a · D 3 · f 4 .

【0009】[0009]

【作 用】本発明者らが、上記課題を解決するために鋭
意実験を重ねて調査したところ、超音波の減衰定数αは
超音波周波数fの整数乗に比例するとは限らず、被測定
体によりあるいは測定周波数範囲により、たとえばf
3.1 に比例したり、f4.4 に比例したりすることを見出
した。
[Working] The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned problems. As a result, the attenuation constant α of ultrasonic waves is not always proportional to the integer power of the ultrasonic frequency f. Or by the measuring frequency range, for example f
It was found to be proportional to 3.1 and proportional to f 4.4 .

【0010】さらに、本発明者らが鋭意検討したとこ
ろ、結晶粒度の測定精度はレイリー散乱領域を充たす
α、すなわち周波数fのほぼ4乗に比例するαだけを用
いて、前出(1) 式すなわちα=a・D3 ・f4 により求
めることにより、格段に向上することがわかった。ま
た、被測定体あるいは測定条件によっては、αがfの4
乗に比例する領域がない場合も生じるが、この場合でも
αがfの3.5 乗以上4.5 乗以下に比例するような値を用
いて(1) 式により計算するようにすれば、高精度で結晶
粒度Dが求められることを確認した。
Furthermore, the inventors of the present invention have made earnest studies and found that the measurement accuracy of the crystal grain size can be calculated by using only α that fills the Rayleigh scattering region, that is, α that is proportional to the fourth power of the frequency f. That is, it was found that the improvement can be remarkably improved by obtaining α = a · D 3 · f 4 . Depending on the object to be measured or the measurement conditions, α is 4 of f.
There may be a case where there is no region proportional to the power, but even in this case, if calculation is performed with Eq. It was confirmed that the particle size D was required.

【0011】本発明は、上記の知見に基づいてなされた
ものであり、まず広帯域超音波パルスを用いてその反射
エコーを周波数解析することにより、細かいピッチで広
範な周波数fにおける減衰定数αのデータを得る。つぎ
に、αがfの何乗に比例するかを判断するために、冪指
数Nが N=d(log α) /d(log f) ……………(5) なる値を各周波数fに対して計算する。ここで、Nの値
はα=K・fN としたときに、 log α=log K+N・log f ……………(6) となることからわかるように、αがfの何乗に比例する
かを表している。
The present invention has been made on the basis of the above findings. First, frequency analysis is performed on the reflection echo of a wideband ultrasonic pulse to obtain data on the attenuation constant α over a wide range of frequencies f at a fine pitch. To get Next, in order to determine the power of α to the power of f, the power exponent N is set to N = d (log α) / d (log f) .... Calculate against. Here, when the value of N is α = K · f N , log α = log K + N · log f ……… (6) As can be seen, α is proportional to the power of f. Indicates whether to do.

【0012】1つあるいは狭い範囲の周波数fに対して
αを測定しただけでは、冪指数Nの取り得る範囲 3.5 ≦N≦4.5 ……………(7) を充たすαが存在しない可能性があるので、広帯域超音
波パルスを用いてその反射エコーを周波数解析し、広範
な周波数fにおける減衰定数αを求めるのが有効であ
る。
It is possible that there is no α satisfying the range 3.5 ≤ N ≤ 4.5 (7) that the power exponent N can take, if only α is measured for one or a narrow range of frequency f. Therefore, it is effective to analyze the frequency of the reflected echo using a broadband ultrasonic pulse and obtain the attenuation constant α in a wide range of frequencies f.

【0013】[0013]

【実施例】以下に、本発明に係る方法を種々の結晶粒度
を有する鋼板に適用した実施例について、図面を参照し
て説明する。図1は、本発明に用いられる測定装置の一
例を示した模式図である。図において、1は測定される
鋼板、2は広帯域超音波探触子、3は広帯域超音波探触
子2に取付けた水柱ノズル、4は超音波送信器、5は超
音波受信器、6はA/D変換器、7はコンピュータなど
の演算装置である。
EXAMPLES Examples in which the method according to the present invention is applied to steel sheets having various grain sizes will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a measuring device used in the present invention. In the figure, 1 is a steel plate to be measured, 2 is a broadband ultrasonic probe, 3 is a water column nozzle attached to the broadband ultrasonic probe 2, 4 is an ultrasonic transmitter, 5 is an ultrasonic receiver, and 6 is The A / D converter, 7 is an arithmetic unit such as a computer.

【0014】超音波送信器4で励起されたパルスを広帯
域超音波探触子2から水柱ノズル3の水柱3aを介して
鋼板1内に入射し、鋼板1からの多重底面エコーを広帯
域超音波探触子2を介して超音波受信器5で受信・増幅
し、A/D変換器6でデジタル値に変換した後、演算装
置7に入力する。この演算装置7において、入力された
多重底面エコーを、図2に示すような手順で演算処理を
行って、結晶粒度Dを求める。 鋼板1の多重底面エコーの周波数スペクトルを計算
する。 各底面エコーの周波数スペクトル差からα(f)を
計算する。超音波周波数fと減衰定数αとの関係の一例
を図3に示した。 各周波数fにおいて、(5) 式を用いて冪指数Nを計
算する。 (7) 式を充たす周波数fの範囲(f1 , f2 )を求
める。超音波周波数fと冪指数Nとの関係の一例を図4
に示した。 区間(f1 , f2 )内のαを、fの4次式 α=K・f4 ……………(8) を用いて最小自乗近似する。ここで、Kは係数である。
The pulse excited by the ultrasonic transmitter 4 is made to enter the steel plate 1 from the wide band ultrasonic probe 2 through the water column 3a of the water column nozzle 3, and the multiple bottom surface echoes from the steel plate 1 are detected by the wide band ultrasonic probe. The ultrasonic wave is received and amplified by the ultrasonic wave receiver 5 via the probe 2, converted into a digital value by the A / D converter 6, and then input to the arithmetic unit 7. In this arithmetic unit 7, the input multiple bottom surface echo is arithmetically processed in the procedure as shown in FIG. 2 to obtain the crystal grain size D. The frequency spectrum of the multiple bottom surface echo of the steel plate 1 is calculated. Calculate α (f) from the frequency spectrum difference of each bottom echo. An example of the relationship between the ultrasonic frequency f and the attenuation constant α is shown in FIG. At each frequency f, the power exponent N is calculated using the equation (5). The range (f 1 , f 2 ) of the frequency f that satisfies the equation (7) is obtained. An example of the relationship between the ultrasonic frequency f and the power exponent N is shown in FIG.
It was shown to. The α in the interval (f 1 , f 2 ) is approximated to the least squares by using the quartic expression of f α = K · f 4 (8). Here, K is a coefficient.

【0015】なお、減衰定数αを求める際、必要に応じ
て超音波の拡散損失および透過反射損失の影響を補正す
るのが望ましい。 で求まったKを用いて、前出(1) 式の関係から得
られた下記(9) 式によって結晶粒度Dを求める。 D=3 √(K/a) ……………(9) なお、被測定体に固有の定数aとして、ここでは1.61×
10-9〔(dB/cm)(MHz ) -4 (μm)-3〕なる値を用いた。
When obtaining the damping constant α, if necessary,
To correct the effects of ultrasonic diffusion loss and transmission reflection loss.
Is desirable. By using K obtained in
The crystal grain size D is obtained by the following equation (9). D =3√ (K / a) ………… (9) As a constant a peculiar to the object to be measured, 1.61 ×
Ten-9[(DB / cm) (MHz) -Four (μm)-3] Value was used.

【0016】本発明法を用いて10枚の鋼板の結晶粒度を
測定した結果を表1に示した。なお、比較のために、破
壊検査によるものを破壊測定値とし、また(3) 式を利用
した従来法を従来例として、さらに本発明法と同様の方
法ではあるが、冪指数Nの範囲を3.0 〜5.0 とした領域
のデータを用いた場合を比較例としてそれぞれ表1に併
せて示した。
Table 1 shows the results of measuring the grain size of 10 steel sheets using the method of the present invention. For comparison, a destructive inspection value is used as a destructive measurement value, and a conventional method using equation (3) is used as a conventional example. The case where the data in the region of 3.0 to 5.0 is used is also shown in Table 1 as a comparative example.

【0017】[0017]

【表1】 [Table 1]

【0018】この表から明らかなように、本発明例は、
破壊試験による破壊測定値の結果とよく一致しているこ
とがわかる。一方、従来例および比較例はいずれも誤差
が大きくなることが実証されている。なお、上記した実
施例における超音波探触子は鋼板に非接触とした非接触
方式について説明したが、本発明はこれに限るものでは
なく、超音波探触子を鋼板に接触させる方式、あるいは
超音波探触子と鋼板との間に水を充満させる方式であっ
ても差し支えない。また、超音波探触子の型式としては
送受信兼用したものでなくともよく、送信用と受信用と
を別個にしたものを用いてもよい。
As is apparent from this table, the examples of the present invention are
It can be seen that the results agree well with the results of the destructive measurement values obtained by the destructive test. On the other hand, it has been proved that both the conventional example and the comparative example have large errors. Although the ultrasonic probe in the above-described embodiment has been described as a non-contact method in which the steel plate is not in contact with the steel plate, the present invention is not limited to this, a method of contacting the ultrasonic probe with the steel plate, or A method of filling water between the ultrasonic probe and the steel plate may be used. Further, the type of the ultrasonic probe does not have to be the one for both transmission and reception, and may be one for transmission and reception separately.

【0019】さらに、反射パルスの周波数解析処理を行
う手段は、コンピュータで計算する方法以外に周波数解
析器を用いるようにしてもよい。また、上記実施例は鋼
板の結晶粒度測定を対象にして説明したが、本発明はこ
れに限るものではなく、たとえばアルミやチタンなどの
他の金属、あるいはセラミックなどの非金属材料にも適
用し得ることはいうまでもない。
Further, as the means for performing the frequency analysis processing of the reflected pulse, a frequency analyzer may be used instead of the computer calculation method. Further, although the above-mentioned examples have been described for the measurement of the grain size of the steel sheet, the present invention is not limited to this, and is also applicable to other metals such as aluminum and titanium, or non-metallic materials such as ceramics. It goes without saying that you will get it.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
広帯域超音波パルスの反射波を周波数解析することによ
り、広範な周波数fに対する超音波減衰定数αを得るこ
とができ、周波数fの3.5 乗以上でかつ4.5 乗以下に比
例するαのみを対象にして、α=a・D3 ・f4 によ
り、結晶粒径Dを算出するようにしたので、自動的にレ
イリー散乱領域を充たす周波数領域で測定をしたことと
等価になり、これによって結晶粒度を非破壊の手段で高
精度に求めることが可能である。
As described above, according to the present invention,
By performing frequency analysis on the reflected wave of the broadband ultrasonic pulse, the ultrasonic attenuation constant α for a wide range of frequencies f can be obtained, and only α that is proportional to the power of 3.5 to 4.5 of the frequency f is targeted. , Α = a · D 3 · f 4 , the crystal grain size D is calculated, which is equivalent to automatically measuring in the frequency region that fills the Rayleigh scattering region. It is possible to obtain with high precision by means of destruction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる測定装置の一例を示した模
式図である。
FIG. 1 is a schematic diagram showing an example of a measuring apparatus used in the present invention.

【図2】本発明に演算装置における演算処理の手順を示
すフローチャートである。
FIG. 2 is a flowchart showing a procedure of arithmetic processing in the arithmetic device according to the present invention.

【図3】超音波周波数fと減衰定数αとの関係を示す特
性図である。
FIG. 3 is a characteristic diagram showing a relationship between an ultrasonic frequency f and an attenuation constant α.

【図4】超音波周波数fと指数Nとの関係を示す特性図
である。
FIG. 4 is a characteristic diagram showing a relationship between an ultrasonic frequency f and an index N.

【符号の説明】[Explanation of symbols]

1 鋼板 2 広帯域超音波探触子 3 水柱ノズル 4 超音波送信器 5 超音波受信器 6 A/D変換器 7 演算装置 1 Steel Plate 2 Broadband Ultrasonic Probe 3 Water Column Nozzle 4 Ultrasonic Transmitter 5 Ultrasonic Receiver 6 A / D Converter 7 Computing Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定体内に広帯域超音波パルスを伝
播させ、その反射パルスを周波数解析して広範な周波数
fに対する超音波減衰定数αを求め、d(log α) /d
(log f) の値が3.5 以上でかつ4.5 以下になるときの
αと、被測定体に固有の定数aを用いて、下記式 α=a・D3 ・f4 から結晶粒度Dを算出することを特徴とする結晶粒度測
定方法。
1. An ultrasonic wave attenuation pulse α for a wide range of frequencies f is obtained by propagating a broadband ultrasonic wave pulse in a body to be measured and analyzing the reflected pulse by frequency, and d (log α) / d
The crystal grain size D is calculated from the following formula α = a · D 3 · f 4 using α when the value of (log f) is 3.5 or more and 4.5 or less and the constant a unique to the measured object. A method for measuring grain size, which is characterized in that:
JP05043127A 1993-03-04 1993-03-04 Grain size measurement method Expired - Fee Related JP3140244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05043127A JP3140244B2 (en) 1993-03-04 1993-03-04 Grain size measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05043127A JP3140244B2 (en) 1993-03-04 1993-03-04 Grain size measurement method

Publications (2)

Publication Number Publication Date
JPH06258299A true JPH06258299A (en) 1994-09-16
JP3140244B2 JP3140244B2 (en) 2001-03-05

Family

ID=12655184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05043127A Expired - Fee Related JP3140244B2 (en) 1993-03-04 1993-03-04 Grain size measurement method

Country Status (1)

Country Link
JP (1) JP3140244B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797281B1 (en) * 1999-12-28 2008-01-23 주식회사 포스코 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method
JP2008545123A (en) * 2005-07-06 2008-12-11 ナショナル・リサーチ・カウンシル・オブ・カナダ Method and system for determining material properties using ultrasonic attenuation
CN103645248A (en) * 2013-12-18 2014-03-19 中南大学 High-temperature alloy grain size evaluation method based on ultrasonic phase velocity
JP2019184432A (en) * 2018-04-11 2019-10-24 株式会社アーステクニカ Nondestructive inspection method for high manganese cast steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218014B2 (en) * 2003-03-10 2009-02-04 学校法人日本大学 Fine particle concentration measuring device
RU2650713C1 (en) * 2017-02-06 2018-04-17 Алексей Викторович Пигарев Method of measuring small factors of optical absorption of nonlinear optic crystals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797281B1 (en) * 1999-12-28 2008-01-23 주식회사 포스코 A Nondestructive Measurement Method for Grain Size of Ferrite Crystal by Ultrasonic Method
JP2008545123A (en) * 2005-07-06 2008-12-11 ナショナル・リサーチ・カウンシル・オブ・カナダ Method and system for determining material properties using ultrasonic attenuation
KR101281273B1 (en) * 2005-07-06 2013-07-03 내셔날 리서치 카운실 오브 캐나다 Method and system for determining material properties using ultrasonic attenuation
CN103645248A (en) * 2013-12-18 2014-03-19 中南大学 High-temperature alloy grain size evaluation method based on ultrasonic phase velocity
JP2019184432A (en) * 2018-04-11 2019-10-24 株式会社アーステクニカ Nondestructive inspection method for high manganese cast steel

Also Published As

Publication number Publication date
JP3140244B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US7389693B2 (en) Methods and apparatus for porosity measurement
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
Jenot et al. Corrosion thickness gauging in plates using Lamb wave group velocity measurements
US5965818A (en) Ultrasonic Lamb wave technique for measurement of pipe wall thickness at pipe supports
Nagy et al. Surface roughness and the ultrasonic detection of subsurface scatterers
WO2007003058A1 (en) Method and system for determining material properties using ultrasonic attenuation
Willems et al. Characterization of microstructure by backscattered ultrasonic waves
US7086285B2 (en) Nondestructive inspection method and system therefor
JP3140244B2 (en) Grain size measurement method
Mihara et al. Elastic constant measurement by using line-focus-beam acoustic microscope
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2005106792A (en) Sonic distribution measuring method inside material
Kumar et al. Evaluation of ultrasonic attenuation without invoking the diffraction correction separately
Fonseca et al. The use of the ultrasound measurement technique for the evaluation of mechanical properties of the ASTM A36 steels
Aleksandrovas et al. Ultrasound-based density estimation of composites using water-air interface
RU2405140C1 (en) Method of determining graininess characteristics of flat metal articles using ultrasound
JPH0843363A (en) Ultrasonic method and device for measuring crystal grain diameter
Duong et al. Determination of acoustic attenuation in composites by the time frequency method
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
JP2799824B2 (en) Cavity generation evaluation method by hydrogen erosion
Liu et al. Diffraction correction in the measurement of ultrasonic attenuation
JP2001004599A (en) Method for detecting surface fault and flaw detector
Mihara et al. Relations between crack opening behavior and crack tip diffraction of longitudinal wave
Goueygou et al. Measurement of ultrasonic attenuation and Rayleigh wave dispersion for testing concrete with subsurface damage
CN116626167A (en) Ultrasonic transverse wave attenuation coefficient measuring device and working method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees