JPH06258232A - Defect inspection device for glass substrate - Google Patents
Defect inspection device for glass substrateInfo
- Publication number
- JPH06258232A JPH06258232A JP7517693A JP7517693A JPH06258232A JP H06258232 A JPH06258232 A JP H06258232A JP 7517693 A JP7517693 A JP 7517693A JP 7517693 A JP7517693 A JP 7517693A JP H06258232 A JPH06258232 A JP H06258232A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- light
- back surface
- optical system
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラス基板の表裏に存
在する微粒子(塵)やキズ等(以下、必要に応じ、これ
らをまとめて異物という)による欠陥を検出するための
ガラス基板用欠陥検査装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass substrate defect for detecting defects due to fine particles (dust), scratches, etc. (hereinafter, collectively referred to as foreign matter) existing on the front and back of the glass substrate. Regarding inspection equipment.
【0002】[0002]
【従来の技術】発明者は、先に特願平4−312866
号としてこの種のガラス基板用欠陥検査装置を提案し
た。この検査装置は、第1の光源からガラス基板の表面
に検出光を照射し、基板の表裏面に存在する微粒子によ
る散乱光を、基板の表面側において基板の全反射の臨界
角近傍以内の範囲に配置された第1の検出用光学系によ
り検出して基板の表裏面の微粒子を欠陥として検出する
第1の発明、及び、第2の光源から、ガラス基板の表面
に基板を透過しない波長の短波長検出光を照射し、基板
の表面に存在する微粒子による散乱光を、基板の表面側
に配置された第2の検出用光学系により検出して基板表
面の微粒子を欠陥として検出する第2の発明等からなる
ものである。2. Description of the Related Art The inventor has previously proposed Japanese Patent Application No. 4-313866.
We have proposed this type of defect inspection system for glass substrates. This inspection apparatus irradiates the surface of the glass substrate with detection light from the first light source, and scatters the light scattered by the fine particles on the front and back surfaces of the substrate within the vicinity of the critical angle of the total reflection of the substrate on the front surface side of the substrate. The first invention in which the fine particles on the front and back surfaces of the substrate are detected as defects by detecting with the first detection optical system arranged in Second irradiation of short-wavelength detection light and detection of scattered light by fine particles existing on the surface of the substrate by a second detection optical system arranged on the front surface side of the substrate to detect fine particles on the surface of the substrate as a defect Of the invention, etc.
【0003】上記検査装置において、理論的には、第1
の発明により基板の表裏面に存在する微粒子の数が、ま
た、第2の発明により基板の表面に存在する微粒子の数
が検出されるため、両者の差をとることにより、基板の
裏面のみに存在する微粒子の数を求めることができる。In the above inspection device, theoretically, the first
The number of the fine particles present on the front and back surfaces of the substrate is detected by the invention of the above, and the number of the fine particles present on the front surface of the substrate is detected by the second invention. The number of fine particles present can be determined.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、前記第
1の発明では裏面に存在する微粒子からの散乱光が空気
の屈折率等の影響により臨界角の外部に出射してしま
い、光学系によって検出できない場合がある。また、前
記第2の発明では、短波長検出光の強度が比較的低いた
め、検出感度の点で問題があり、検出感度を上げようと
すれば光源や検出用光学系が高コスト化、大型化すると
いう問題があった。従って、基板の表裏面または表面に
存在する微粒子数の検出精度が必ずしも高いとはいえ
ず、必然的に基板の裏面に存在する微粒子数についても
正確には検出できなかった。However, in the first invention, the scattered light from the fine particles present on the back surface is emitted to the outside of the critical angle due to the influence of the refractive index of air, etc., and cannot be detected by the optical system. There are cases. Further, in the second aspect of the invention, since the intensity of the short wavelength detection light is relatively low, there is a problem in terms of detection sensitivity. If it is attempted to increase the detection sensitivity, the cost of the light source and the detection optical system becomes large, and the size is large. There was a problem of becoming. Therefore, it cannot be said that the detection accuracy of the number of fine particles existing on the front and back surfaces or the front surface of the substrate is necessarily high, and the number of fine particles existing on the back surface of the substrate cannot necessarily be detected accurately.
【0005】本発明は上記問題点を解決するためになさ
れたもので、その目的とするところは、基板の表面及び
裏面に存在する微粒子等の異物を各々個別に直接検出可
能として、検出精度を大幅に向上させたガラス基板用欠
陥検査装置を提供することにある。The present invention has been made in order to solve the above problems, and an object thereof is to make it possible to directly detect foreign matters such as fine particles existing on the front surface and the back surface of a substrate, respectively, and to improve the detection accuracy. It is to provide a significantly improved glass substrate defect inspection apparatus.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、検出光をガラス基板に照射しながら
走査し、ガラス基板の表面または裏面の異物による散乱
光を光学系により検出して前記異物の数や大きさを検出
するガラス基板用欠陥検査装置において、前記検出光
が、ガラス基板の表面または裏面上の一点で交叉する第
1及び第2のレーザビームからなり、前記光学系による
受光パルスの振幅の相違、及び、ほぼ一定の時間間隔で
ほぼ同一振幅の2つの受光パルスが発生したことを検出
してガラス基板の表面及び裏面に存在する異物を各々検
出するものである。In order to achieve the above object, the first invention is to scan the glass substrate while irradiating the glass with the detection light, and detect the scattered light due to the foreign matter on the front surface or the back surface of the glass substrate by the optical system. In the defect inspection apparatus for a glass substrate for detecting the number and size of the foreign matter, the detection light is composed of first and second laser beams intersecting at one point on the front surface or the back surface of the glass substrate. The difference between the amplitudes of the received light pulses due to the system and the occurrence of two received light pulses having substantially the same amplitude at substantially constant time intervals are detected to detect the foreign substances present on the front and back surfaces of the glass substrate, respectively. .
【0007】第2の発明は、検出光をガラス基板に照射
しながら走査し、ガラス基板の表面または裏面の異物に
よる散乱光を光学系により検出して前記異物の数や大き
さを検出するガラス基板用欠陥検査装置において、前記
検出光が、ガラス基板の表面または裏面上の一点に集束
するほぼ逆円錐状の検出光束からなり、前記光学系によ
る受光パルスの振幅の相違、及び、ほぼ一定のパルス幅
を有する受光パルスが発生したことを検出してガラス基
板の表面及び裏面に存在する異物を各々検出するもので
ある。A second invention is a glass for scanning while irradiating a glass substrate with detection light and detecting scattered light due to foreign matter on the front or back surface of the glass substrate by an optical system to detect the number and size of the foreign matter. In the defect inspection apparatus for a substrate, the detection light is a detection light beam having a substantially inverted conical shape that converges at one point on the front surface or the back surface of the glass substrate, and the difference in the amplitude of the light reception pulse by the optical system, and a substantially constant light flux. This is to detect the occurrence of a light receiving pulse having a pulse width and detect the foreign substances existing on the front surface and the back surface of the glass substrate, respectively.
【0008】第3の発明は、検出光をガラス基板に照射
しながら走査し、ガラス基板の表面または裏面の異物に
よる散乱光を光学系により検出して前記異物の数や大き
さを検出するガラス基板用欠陥検査装置において、前記
検出光が、ガラス基板の表面または裏面上の一点で交叉
する第1及び第2のレーザビームからなり、これらのレ
ーザビームのうち一方のみを用いて前記光学系により得
た受光パルスの数と、前記レーザビームの双方を用いて
前記光学系により得た受光パルスの数とに基づき、ガラ
ス基板の表面及び裏面に存在する異物を各々検出するも
のである。A third invention is a glass for scanning while irradiating a glass substrate with detection light, and detecting scattered light by foreign matter on the front or back surface of the glass substrate by an optical system to detect the number and size of the foreign matter. In the defect inspection apparatus for a substrate, the detection light is composed of first and second laser beams intersecting at a point on the front surface or the back surface of the glass substrate, and the optical system uses only one of these laser beams. Based on the number of the received light pulses and the number of the received light pulses obtained by the optical system using both the laser beams, the foreign substances existing on the front surface and the back surface of the glass substrate are respectively detected.
【0009】[0009]
【作用】第1の発明において、例えばガラス基板の表面
側から第1、第2のレーザビームを照射してこれらのビ
ームを表面上の一点で交叉させた場合、表面に存在する
微粒子等の異物により検出される受光パルスの振幅は大
きくなる。また、裏面に存在する異物による受光パルス
は、表面の異物による受光パルスよりも振幅が小さく、
しかもビームの交叉角度や走査速度に起因するほぼ一定
の時間間隔で2つ検出される。これらの受光パルスを弁
別することにより、表面のみに存在する異物と裏面のみ
に存在する異物とを個別に検出することができる。In the first invention, when the first and second laser beams are irradiated from the surface side of the glass substrate and these beams are crossed at one point on the surface, foreign matter such as fine particles existing on the surface The amplitude of the received light pulse detected by is increased. Further, the light receiving pulse due to the foreign matter present on the back surface has a smaller amplitude than the light receiving pulse due to the foreign matter on the front surface,
Moreover, two beams are detected at almost constant time intervals due to the beam crossing angle and the scanning speed. By discriminating these light receiving pulses, it is possible to individually detect a foreign substance existing only on the front surface and a foreign substance existing only on the back surface.
【0010】第2の発明においては、例えばガラス基板
の表面側から検出光束を照射して表面上の一点に集束さ
せた場合、表面に存在する微粒子等の異物により検出さ
れる受光パルスの振幅は大きくなる。また、裏面に存在
する異物による受光パルスは、表面の異物による受光パ
ルスよりも振幅が小さく、しかもビームの交叉角度や走
査速度に起因するほぼ一定のパルス幅を有するものとな
る。これらの受光パルスを弁別することにより、表面の
みに存在する異物と裏面のみに存在する異物とを個別に
検出することができる。In the second invention, for example, when the detection light beam is irradiated from the surface side of the glass substrate and focused on one point on the surface, the amplitude of the light receiving pulse detected by the foreign matter such as fine particles existing on the surface is growing. Further, the light receiving pulse due to the foreign matter on the back surface has a smaller amplitude than the light receiving pulse due to the foreign matter on the front surface, and has a substantially constant pulse width due to the beam crossing angle and the scanning speed. By discriminating these light receiving pulses, it is possible to individually detect a foreign substance existing only on the front surface and a foreign substance existing only on the back surface.
【0011】第3の発明においては、例えばガラス基板
の裏面側から第1、第2のレーザビームを照射してこれ
らのビームを表面上の一点で交叉させた場合、第1及び
第2のレーザビームのうち一方のみを用いて得た受光パ
ルスの数は表面及び裏面に存在するすべての異物の数を
示し、第1、第2のレーザビーム双方を用いて得た受光
パルスの数は表面に存在する異物の数と裏面に存在する
異物の数を2倍したものとの和になる。この関係を用い
ることにより、裏面のみに存在する異物と表面のみに存
在する異物とを個別に検出することができる。In the third invention, for example, when the first and second laser beams are irradiated from the back surface side of the glass substrate and these beams are crossed at one point on the front surface, the first and second laser beams are provided. The number of light-receiving pulses obtained using only one of the beams indicates the number of all foreign substances existing on the front surface and the back surface, and the number of light-receiving pulses obtained using both the first and second laser beams is It is the sum of the number of foreign matter present and the number of foreign matter present on the back surface doubled. By using this relationship, it is possible to individually detect the foreign substance existing only on the back surface and the foreign substance existing only on the front surface.
【0012】[0012]
【実施例】以下、図に沿って本発明の実施例を説明す
る。図1は第1の発明の実施例の構成及び動作を概略的
に示したもので、まず、(a)において、L1,L2は第
1、第2のレーザビームであり、これらのビームがガラ
ス基板Gの表面上の一点で交叉するように各レーザ光源
(図示せず)が配置されている。なお、レーザビームL
1,L2の強度は同一とする。また、ガラス基板Gの厚さ
は便宜上、誇張して描かれている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows the configuration and operation of an embodiment of the first invention. First, in (a), L 1 and L 2 are the first and second laser beams, respectively. The laser light sources (not shown) are arranged so that the points intersect at one point on the surface of the glass substrate G. The laser beam L
The strengths of 1 and L 2 are the same. Moreover, the thickness of the glass substrate G is exaggerated and drawn for convenience.
【0013】また、基板Gの上方には、光軸が基板Gに
直交する方向にレンズ11,12及びホトデテクタ13
からなる検出用光学系14が配置される。この光学系1
4は、周知のように微粒子を介したレーザビームの散乱
光を検出してパルス信号に変換し、この信号の数及び振
幅により微粒子の個数や大きさ(粒径)を検出するもの
である。Above the substrate G, the lenses 11, 12 and the photodetector 13 are arranged in the direction in which the optical axis is orthogonal to the substrate G.
A detection optical system 14 is arranged. This optical system 1
As is well known, 4 is for detecting scattered light of a laser beam passing through fine particles and converting it into a pulse signal, and detecting the number and size (particle diameter) of fine particles by the number and amplitude of this signal.
【0014】ここで、前記レーザ光源及び検出用光学系
14は一体となってガラス基板Gの上方を二次元的に走
査し、それによってガラス基板Gの表裏に存在する微粒
子等の異物を検出するものであるが、ここでは、説明の
便宜上、レーザ光源及び検出用光学系14が固定され、
ガラス基板Gが図示するように速度vにて相対的に移動
するものとして、この実施例の動作を以下に説明する。Here, the laser light source and the detection optical system 14 integrally scan two-dimensionally over the glass substrate G, thereby detecting foreign matters such as fine particles existing on the front and back of the glass substrate G. However, here, for convenience of description, the laser light source and the detection optical system 14 are fixed,
The operation of this embodiment will be described below on the assumption that the glass substrate G moves relatively at the speed v as shown in the drawing.
【0015】まず、図1(a)に示すように、ガラス基
板Gの表面に微粒子D1,D3があり、裏面に微粒子
D2,D4があるとする。始めに図1(a)の状態では、
表面の微粒子D1がビームL1,L2の交点にあるため、
その散乱光が光学系14により検出されて図2のPaで
示すような受光パルスを生じる。次に、ガラス基板Gが
相対的に移動して図1(b)の状態になると、裏面にあ
る微粒子D2がビームL2のみによって検出され、図2の
Pbのように前記受光パルスPaよりは振幅の小さい受光
パルスが検出される。First, as shown in FIG. 1A, it is assumed that fine particles D 1 and D 3 are on the front surface of the glass substrate G and fine particles D 2 and D 4 are on the back surface. First, in the state of FIG.
Since the fine particles D 1 on the surface are at the intersections of the beams L 1 and L 2 ,
The scattered light is detected by the optical system 14 to generate a light receiving pulse as indicated by P a in FIG. Next, when the glass substrate G moves relatively to the state shown in FIG. 1B, the fine particles D 2 on the back surface are detected only by the beam L 2 and the light receiving pulse P as shown by P b in FIG. A received light pulse whose amplitude is smaller than a is detected.
【0016】その後、図1(c)の状態になると、裏面
の微粒子D2が今度は他方のビームL1のみによって検出
され、図2のPcのように前記受光パルスPbとほぼ同一
の振幅を持つ受光パルスが検出される。このとき、受光
パルスPb,Pcの時間間隔Δtは、ビームL1,L2の交
叉角度と走査速度(ガラス基板Gの相対的な移動速度)
とによって決まり、システムに固有の値である。Thereafter, in the state of FIG. 1C, the fine particles D 2 on the back surface are detected only by the other beam L 1 this time, and are substantially the same as the light receiving pulse P b as indicated by P c in FIG. A light receiving pulse having an amplitude is detected. At this time, the time interval Δt between the light receiving pulses P b and P c is determined by the crossing angle of the beams L 1 and L 2 and the scanning speed (relative moving speed of the glass substrate G).
It is determined by and and is a value unique to the system.
【0017】更に、図1(d)の状態では裏面の微粒子
D4がビームL2により検出されて受光パルスPdを生
じ、その直後の図1(e)の状態では表面の微粒子D3
がビームL1,L2により検出されて受光パルスPeを生
じ、図1(f)の状態では裏面の微粒子D4がビームL1
により検出されて受光パルスPfを生じる。ここで、図
2に示すごとく受光パルスPd,Pfの時間間隔も前記同
様にΔtであり、これらのパルスPd,Pfの振幅も前記
受光パルスPb,Pcとほぼ同一であることが明らかであ
る。Further, in the state of FIG. 1D, the fine particles D 4 on the back surface are detected by the beam L 2 to generate a light receiving pulse P d , and immediately after that, in the state of FIG. 1E, the fine particles D 3 on the front surface.
There beam L 1, is detected by the L 2 caused a light pulse P e, 1 particles D 4 beam L 1 backside of the state of (f)
To generate a light receiving pulse P f . Here, as shown in FIG. 2, the time interval between the light receiving pulses P d and P f is Δt as described above, and the amplitudes of these pulses P d and P f are almost the same as the light receiving pulses P b and P c. It is clear.
【0018】従って、図2から明らかなように、ガラス
基板Gの表面にある微粒子による受光パルスは振幅が大
きく、しかも一つ一つがランダムに発生するのに対し、
ガラス基板Gの裏面にある微粒子による受光パルスは振
幅が小さく、しかも一対のパルスを構成する2つのパル
スは振幅がほぼ同一でその時間間隔Δtはほぼ一定とな
る。このため、光学系14以後の信号処理回路におい
て、例えば図2に示すような第1の弁別レベルVr1を設
定しておき、受光パルスの信号レベルをこの弁別レベル
Vr1により弁別することで表面の微粒子による受光パル
スの数、すなわち表面の微粒子数を検出することがで
き、また、振幅の大きさによって微粒子の大きさを検出
することができる。Therefore, as is apparent from FIG. 2, the received light pulse due to the fine particles on the surface of the glass substrate G has a large amplitude, and each pulse is randomly generated.
The light receiving pulse due to the fine particles on the back surface of the glass substrate G has a small amplitude, and the two pulses forming the pair of pulses have substantially the same amplitude, and the time interval Δt is substantially constant. Therefore, in the signal processing circuit after the optical system 14, for example, a first discrimination level V r1 as shown in FIG. 2 is set, and the signal level of the received light pulse is discriminated by this discrimination level V r1 to thereby determine the surface. It is possible to detect the number of light receiving pulses by the fine particles, that is, the number of fine particles on the surface, and it is possible to detect the size of the fine particles by the magnitude of the amplitude.
【0019】更に、弁別レベルVr1よりも低い第2の弁
別レベルVr2を設定しておき、振幅がこのレベル以上か
つ第1の弁別レベルVr1以下の受光パルスであって時間
間隔Δtをおいて一対(2つ)の受光パルスが検出され
た場合には、これら一対の受光パルスが裏面の1個の微
粒子によるものと判断することができるから、第2の弁
別レベルVr2及び時間間隔Δtを用いてこのような一対
の受光パルスの数(受光パルス2つで微粒子1個に対応
する)を検出することにより、裏面の微粒子数を検出す
ることができる。更に、微粒子の大きさもある程度検出
可能である。Further, a second discrimination level V r2 lower than the discrimination level V r1 is set, and the received light pulse whose amplitude is higher than this level and lower than the first discrimination level V r1 has a time interval Δt. When a pair of (two) received light pulses is detected, it can be determined that the pair of received light pulses is due to one particle on the back surface, and therefore the second discrimination level V r2 and the time interval Δt. The number of fine particles on the back surface can be detected by detecting the number of such a pair of light-receiving pulses (two light-receiving pulses correspond to one fine particle) using. Further, the size of the fine particles can be detected to some extent.
【0020】なお、本発明は、図3に示す他の実施例の
ように、ガラス基板Gの裏面の一点でレーザビーム
L1,L2が交叉するように各レーザ光源(図示せず)を
配置した場合にも同様に適用可能であり、この場合に
は、表面にある1個の微粒子(例えばD1)による受光
パルスが振幅が小さく、しかも時間間隔Δtをおいて一
対検出され、裏面にある1個の微粒子(例えばD2)に
よる受光パルスは大きな振幅で1個検出される。この場
合の受光パルスの波形図及び弁別レベル等の設定は容易
に想像できるため、詳述を省略する。According to the present invention, as in the other embodiment shown in FIG. 3, each laser light source (not shown) is arranged so that the laser beams L 1 and L 2 intersect at one point on the back surface of the glass substrate G. The same can be applied to the case in which they are arranged. In this case, the light receiving pulse by one fine particle (for example, D 1 ) on the front surface has a small amplitude, and a pair of them are detected at a time interval Δt, and the light is received on the back surface. One received light pulse by one certain fine particle (for example, D 2 ) is detected with a large amplitude. In this case, the setting of the waveform diagram of the light receiving pulse and the discrimination level and the like can be easily imagined, and thus detailed description thereof will be omitted.
【0021】次に、第2の発明の実施例を説明する。図
4はこの実施例の概略的な構成を示すもので、本実施例
は、光源16からの検出光束を集光レンズ15によりほ
ぼ逆円錐状の検出光束L3とし、この光束L3をガラス基
板Gの表面上の一点で集束するように照射して微粒子か
らの散乱光を光学系14により検出するようにしたもの
である。なお、集光レンズ15としては、その直径が大
きく、焦点距離の短いものが用いられる。Next, an embodiment of the second invention will be described. FIG. 4 shows a schematic configuration of this embodiment. In this embodiment, the detection light beam from the light source 16 is converted into a substantially inverted conical detection light beam L 3 by the condenser lens 15, and this light beam L 3 is made into glass. The optical system 14 detects scattered light from the fine particles by irradiating the surface of the substrate G so that the light is focused at one point. As the condenser lens 15, one having a large diameter and a short focal length is used.
【0022】この実施例においては、例えば図4に示す
ように基板表面に微粒子D1があり、基板裏面に微粒子
D2がある場合、図5に示すごとく、表面の微粒子D1に
よる受光パルスP1は振幅が大きく、裏面の微粒子D2に
よる受光パルスP2は検出光束L3の減衰によって振幅が
小さくなる。しかも、裏面の微粒子D2による受光パル
スP2は、ガラス基板Gの相対的な移動によって微粒子
D2がガラス基板Gの裏側の検出光束L3内を通過してい
る期間Δtにわたり、そのレベルが“High”とな
る。つまり、パルス幅が期間Δtである受光パルスP2
が得られる。[0022] In this embodiment, for example, there are fine particles D 1 on the surface of the substrate as shown in FIG. 4, if the back surface of the substrate has fine D 2, as shown in FIG. 5, the light receiving pulse P by the fine particles D 1 of the surface 1 has a large amplitude, and the received light pulse P 2 due to the fine particles D 2 on the back surface has a small amplitude due to the attenuation of the detected light beam L 3 . Moreover, the light receiving pulse P 2 by the rear surface of the fine particle D 2 is for a period Δt which fine particles D 2 by the relative movement of the glass substrate G is flowing through the detection light beam L 3 on the back of the glass substrate G, is that level It becomes "High". That is, the light receiving pulse P 2 having a pulse width of the period Δt
Is obtained.
【0023】従って、図5のように第1及び第2の弁別
レベルVr1,Vr2を設定し、受光パルスの信号レベルを
第1の弁別レベルVr1により弁別することで表面の微粒
子による受光パルスの数、すなわち表面の微粒子数を検
出することができ、また、振幅の大きさによって微粒子
の大きさを検出することができる。Therefore, as shown in FIG. 5, the first and second discrimination levels V r1 and V r2 are set, and the signal level of the light receiving pulse is discriminated by the first discrimination level V r1 to detect the light received by the fine particles on the surface. The number of pulses, that is, the number of particles on the surface can be detected, and the size of the particles can be detected by the magnitude of the amplitude.
【0024】更に、弁別レベルVr1よりも低い第2の弁
別レベルVr2を設定しておき、振幅がこのレベル以上か
つ第1の弁別レベルVr1以下の受光パルスであってパル
ス幅がほぼΔtである受光パルスが検出された場合に
は、この受光パルスが裏面の1個の微粒子によるものと
判断することができるから、第2の弁別レベルVr2及び
期間Δtを用いてこのような受光パルスの数を検出する
ことにより、裏面の微粒子数を検出することができる。
同時に、微粒子の大きさもある程度検出可能である。こ
の実施例においても、図3に示したごとくガラス基板G
の裏面の一点においてほぼ逆円錐状の検出光束L3が収
束するようにし、検出パルスの相違により表裏の微粒子
を判別することが可能である。Further, a second discrimination level V r2 lower than the discrimination level V r1 is set, and the received light pulse whose amplitude is above this level and below the first discrimination level V r1 and whose pulse width is approximately Δt. When the light receiving pulse is detected, it can be judged that this light receiving pulse is due to one particle on the back surface. Therefore, such a light receiving pulse is obtained using the second discrimination level V r2 and the period Δt. The number of fine particles on the back surface can be detected by detecting the number of particles.
At the same time, the size of the particles can be detected to some extent. Also in this embodiment, the glass substrate G as shown in FIG.
It is possible to make the substantially inverted conical detection light beam L 3 converge at one point on the back surface of the above, and to distinguish the fine particles on the front and back sides by the difference in the detection pulse.
【0025】図6は第3の発明の実施例を概略的に示し
たものである。図において、17は第1のレーザ光源、
18は第2のレーザ光源、19はこれらのレーザ光源1
7,18及び検出用光学系14を備えたセンサ部であ
る。このセンサ部19は、図のa,b両方向に走査可能
である。この実施例では、これまでの実施例と異なって
センサ部19自体が移動するものとして説明するが、前
記同様にガラス基板Gが移動するように構成してもよ
い。また、第1、第2のレーザビームL1,L2は、ガラ
ス基板Gの表面上の一点において交叉するようにレーザ
光源17,18が配置される。FIG. 6 schematically shows an embodiment of the third invention. In the figure, 17 is a first laser light source,
18 is a second laser light source, 19 is these laser light sources 1
This is a sensor unit provided with 7, 18 and a detection optical system 14. The sensor unit 19 can scan in both directions a and b in the figure. In this embodiment, unlike the previous embodiments, the sensor unit 19 itself moves, but the glass substrate G may move in the same manner as described above. Further, the laser light sources 17 and 18 are arranged so that the first and second laser beams L 1 and L 2 intersect at one point on the surface of the glass substrate G.
【0026】以下、この実施例の動作を説明する。この
実施例でも、レーザ光源17,18を点灯して第1、第
2のレーザビームL1,L2を照射すれば、実質上、第1
の発明と同様になるため、ガラス基板Gの表裏の微粒子
を個別に検出することができる。The operation of this embodiment will be described below. Also in this embodiment, if the laser light sources 17 and 18 are turned on to irradiate the first and second laser beams L 1 and L 2 , then the first and second laser beams are substantially emitted.
Since it is the same as that of the invention described above, the fine particles on the front and back of the glass substrate G can be individually detected.
【0027】また、他の検出方法として、以下の方法が
ある。すなわち、まず始めにレーザ光源17を点灯して
第1のレーザビームL1のみを照射した状態でセンサ部
19をa方向に走査する。これにより、ガラス基板Gの
表裏面双方に存在する微粒子による散乱光を光学系14
が検出し、その受光パルスから表裏に存在する微粒子の
総数を検出する。The following methods are also available as other detection methods. That is, first, the laser light source 17 is turned on, and the sensor unit 19 is scanned in the a direction in a state where only the first laser beam L 1 is irradiated. Thereby, the scattered light due to the fine particles existing on both the front surface and the back surface of the glass substrate G is generated by the optical system 14.
And the total number of fine particles existing on the front and back sides is detected from the received light pulse.
【0028】次いで、レーザ光源17,18を点灯して
第1、第2のレーザビームL1,L2を照射した状態でセ
ンサ部19をb方向に走査する。すると、図2において
説明したように、受光パルスの数だけに着目すれば、そ
のパルス数は(表面の微粒子数+裏面の微粒子数×2)
となる。このため、b方向の走査時における検出パルス
数からa方向の走査時における検出パルス数を差し引け
ば、裏面に存在する微粒子数を検出することができる。
更に、この微粒子数をa方向の走査時における検出パル
ス数から差し引けば、表面に存在する微粒子数も検出可
能である。Then, the laser light sources 17 and 18 are turned on, and the sensor unit 19 is scanned in the direction b while the first and second laser beams L 1 and L 2 are being emitted. Then, as described with reference to FIG. 2, if attention is paid only to the number of light receiving pulses, the pulse number is (the number of fine particles on the front surface + the number of fine particles on the back surface × 2).
Becomes Therefore, the number of fine particles present on the back surface can be detected by subtracting the number of detection pulses during scanning in the a direction from the number of detection pulses during scanning in the b direction.
Furthermore, by subtracting this number of fine particles from the number of detection pulses during scanning in the a direction, the number of fine particles present on the surface can also be detected.
【0029】なお、本実施例ではセンサ部19をa,b
両方向に往復動させるようにしたが、第1のレーザ光源
のみを備えたセンサ部と第1及び第2のレーザ光源を備
えたセンサ部とを用意し、これらを同時に一方向にのみ
走査するようにしても同様の効果が得られる。この場合
には、センサ部の駆動装置の簡略化及び測定時間の高速
化を図ることができる。In this embodiment, the sensor unit 19 is set to a, b.
Although it is configured to reciprocate in both directions, a sensor unit having only the first laser light source and a sensor unit having the first and second laser light sources are prepared, and these are simultaneously scanned in only one direction. However, the same effect can be obtained. In this case, it is possible to simplify the drive unit for the sensor unit and shorten the measurement time.
【0030】上記実施例では、ガラス基板の欠陥として
もっぱら微粒子が存在する場合についてのみ説明した
が、本発明は表裏面のキズ等の検出に対しても適用可能
である。In the above embodiment, the case where the fine particles are exclusively present as the defects of the glass substrate has been described, but the present invention is also applicable to the detection of scratches on the front and back surfaces.
【0031】[0031]
【発明の効果】以上のように第1ないし第3の発明は、
ガラス基板の表面または裏面の異物による受光パルスの
振幅の相違や同一振幅パルスの時間間隔、パルス幅等に
着目して異物を検出するものであるから、表面のみに存
在する異物と裏面にのみに存在する異物とを個別に検出
でき、それらの個数や大きさを正確に測定することがで
きる。従って、従来の検査装置と比べて、検出精度の向
上が可能である。特に、第1または第2の発明では一方
向の走査のみによって表裏の異物を同時に検出できるた
め、検査の高速化が可能であると共に、装置構成が簡単
であるため小形軽量化、低コスト化を図ることができ
る。As described above, the first to third inventions are
Since the foreign matter is detected by focusing on the difference in the amplitude of the received light pulse due to the foreign matter on the front surface or the back surface of the glass substrate, the time interval of the same amplitude pulse, the pulse width, etc., the foreign matter existing only on the front surface and the back surface are detected. The existing foreign substances can be detected individually, and the number and size of them can be accurately measured. Therefore, the detection accuracy can be improved as compared with the conventional inspection apparatus. In particular, in the first or second invention, since foreign matter on the front and back can be detected simultaneously by only scanning in one direction, the inspection can be speeded up, and since the device configuration is simple, the size and weight can be reduced and the cost can be reduced. Can be planned.
【図1】第1の発明の実施例を示す概略的な説明図であ
る。FIG. 1 is a schematic explanatory view showing an embodiment of the first invention.
【図2】図1の実施例の動作を示す受光パルスの波形図
である。FIG. 2 is a waveform diagram of a light receiving pulse showing the operation of the embodiment of FIG.
【図3】第1の発明の他の実施例を示す概略的な説明図
である。FIG. 3 is a schematic explanatory view showing another embodiment of the first invention.
【図4】第2の発明の実施例を示す概略的な説明図であ
る。FIG. 4 is a schematic explanatory view showing an embodiment of the second invention.
【図5】図4の実施例の動作を示す受光パルスの波形図
である。5 is a waveform diagram of a light receiving pulse showing the operation of the embodiment of FIG.
【図6】第3の発明の実施例を示す概略的な説明図であ
る。FIG. 6 is a schematic explanatory view showing an embodiment of the third invention.
11,12 レンズ 13 ホトデテクタ 14 検出用光学系 15 集光レンズ 16 光源 17 第1のレーザ光源 18 第2のレーザ光源 19 センサ部 L1 第1のレーザビーム L2 第2のレーザビーム L3 検出光束 D1〜D4 微粒子 G ガラス基板11, 12 Lens 13 Photodetector 14 Detection Optical System 15 Condenser Lens 16 Light Source 17 First Laser Light Source 18 Second Laser Light Source 19 Sensor Part L 1 First Laser Beam L 2 Second Laser Beam L 3 Detected Luminous Flux D 1 to D 4 fine particles G glass substrate
Claims (3)
し、ガラス基板の表面または裏面の異物による散乱光を
光学系により検出して前記異物の数や大きさを検出する
ガラス基板用欠陥検査装置において、 前記検出光が、ガラス基板の表面または裏面上の一点で
交叉する第1及び第2のレーザビームからなり、 前記光学系による受光パルスの振幅の相違、及び、ほぼ
一定の時間間隔でほぼ同一振幅の2つの受光パルスが発
生したことを検出してガラス基板の表面及び裏面に存在
する異物を各々検出することを特徴とするガラス基板用
欠陥検査装置。1. A defect inspection for a glass substrate, wherein scanning is performed while irradiating the glass substrate with detection light, and scattered light due to foreign matter on the front or back surface of the glass substrate is detected by an optical system to detect the number and size of the foreign matter. In the device, the detection light is composed of first and second laser beams intersecting at one point on the front surface or the back surface of the glass substrate, and the difference in the amplitude of the light receiving pulse by the optical system, and at a substantially constant time interval. A defect inspection apparatus for a glass substrate, characterized in that it detects the occurrence of two light-receiving pulses of substantially the same amplitude to detect foreign substances present on the front and back surfaces of the glass substrate, respectively.
し、ガラス基板の表面または裏面の異物による散乱光を
光学系により検出して前記異物の数や大きさを検出する
ガラス基板用欠陥検査装置において、 前記検出光が、ガラス基板の表面または裏面上の一点に
集束するほぼ逆円錐状の検出光束からなり、 前記光学系による受光パルスの振幅の相違、及び、ほぼ
一定のパルス幅を有する受光パルスが発生したことを検
出してガラス基板の表面及び裏面に存在する異物を各々
検出することを特徴とするガラス基板用欠陥検査装置。2. A defect inspection for a glass substrate, wherein scanning is performed while irradiating the glass substrate with detection light, and scattered light due to foreign matter on the front or back surface of the glass substrate is detected by an optical system to detect the number and size of the foreign matter. In the device, the detection light is composed of a detection light flux having a substantially inverted conical shape that converges at one point on the front surface or the back surface of the glass substrate, and has a difference in amplitude of light receiving pulses by the optical system, and a substantially constant pulse width. A defect inspection apparatus for a glass substrate, which detects the occurrence of a light reception pulse to detect foreign substances existing on the front surface and the back surface of the glass substrate, respectively.
し、ガラス基板の表面または裏面の異物による散乱光を
光学系により検出して前記異物の数や大きさを検出する
ガラス基板用欠陥検査装置において、 前記検出光が、ガラス基板の表面または裏面上の一点で
交叉する第1及び第2のレーザビームからなり、 これらのレーザビームのうち一方のみを用いて前記光学
系により得た受光パルスの数と、前記レーザビームの双
方を用いて前記光学系により得た受光パルスの数とに基
づき、ガラス基板の表面及び裏面に存在する異物を各々
検出することを特徴とするガラス基板用欠陥検査装置。3. A defect inspection for a glass substrate, wherein scanning is performed while irradiating the glass substrate with detection light, and light scattered by foreign matter on the front or back surface of the glass substrate is detected by an optical system to detect the number and size of the foreign matter. In the device, the detection light is composed of first and second laser beams intersecting at a point on the front surface or the back surface of the glass substrate, and a light reception pulse obtained by the optical system using only one of these laser beams. And the number of received light pulses obtained by the optical system using both of the laser beams and foreign matter existing on the front surface and the back surface of the glass substrate, respectively. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07517693A JP3280742B2 (en) | 1993-03-09 | 1993-03-09 | Defect inspection equipment for glass substrates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07517693A JP3280742B2 (en) | 1993-03-09 | 1993-03-09 | Defect inspection equipment for glass substrates |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06258232A true JPH06258232A (en) | 1994-09-16 |
JP3280742B2 JP3280742B2 (en) | 2002-05-13 |
Family
ID=13568641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07517693A Expired - Fee Related JP3280742B2 (en) | 1993-03-09 | 1993-03-09 | Defect inspection equipment for glass substrates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3280742B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010169453A (en) * | 2009-01-20 | 2010-08-05 | Yamanashi Gijutsu Kobo:Kk | Device and method for inspecting foreign matter |
KR20110097182A (en) | 2010-02-25 | 2011-08-31 | 가부시끼가이샤 야마나시 기쥬쯔 고오보오 | Alien substance inspection apparatus and inspection method |
JP2013539026A (en) * | 2010-09-24 | 2013-10-17 | グレンツェバッハ・マシーネンバウ・ゲーエムベーハー | Apparatus and method for detecting defects in float glass produced without breaks |
KR101408673B1 (en) * | 2013-04-11 | 2014-07-02 | 주식회사 나노프로텍 | Method and apparatus for detecting foreign materials on transparent substrates using image processing |
TWI485392B (en) * | 2010-02-08 | 2015-05-21 | Ygk Corp | Foreign body inspection device and inspection method |
-
1993
- 1993-03-09 JP JP07517693A patent/JP3280742B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010169453A (en) * | 2009-01-20 | 2010-08-05 | Yamanashi Gijutsu Kobo:Kk | Device and method for inspecting foreign matter |
TWI485392B (en) * | 2010-02-08 | 2015-05-21 | Ygk Corp | Foreign body inspection device and inspection method |
KR20110097182A (en) | 2010-02-25 | 2011-08-31 | 가부시끼가이샤 야마나시 기쥬쯔 고오보오 | Alien substance inspection apparatus and inspection method |
JP2013539026A (en) * | 2010-09-24 | 2013-10-17 | グレンツェバッハ・マシーネンバウ・ゲーエムベーハー | Apparatus and method for detecting defects in float glass produced without breaks |
KR101408673B1 (en) * | 2013-04-11 | 2014-07-02 | 주식회사 나노프로텍 | Method and apparatus for detecting foreign materials on transparent substrates using image processing |
Also Published As
Publication number | Publication date |
---|---|
JP3280742B2 (en) | 2002-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4423331A (en) | Method and apparatus for inspecting specimen surface | |
US4402607A (en) | Automatic detector for microscopic dust on large-area, optically unpolished surfaces | |
JP5268061B2 (en) | Board inspection equipment | |
US4099051A (en) | Inspection apparatus employing a circular scan | |
JP3280742B2 (en) | Defect inspection equipment for glass substrates | |
JPH07218419A (en) | Light scattering type instrument and method for measuring particles in wide area | |
JPH0833354B2 (en) | Defect inspection equipment | |
JPH06317533A (en) | Method and device for inspecting foreign matter | |
US4908517A (en) | Apparatus for examining the surface of a substrate | |
JPH0758167B2 (en) | Laser pin outer diameter measurement method | |
JPH03115844A (en) | Detection of surface defect | |
JPS58169008A (en) | Optical position measuring device | |
JPH07225195A (en) | Flaw measuring method for minute pattern | |
JPH0431748A (en) | Defect inspecting method for transparent plate-shaped body | |
JP3336392B2 (en) | Foreign matter inspection apparatus and method | |
JP2683039B2 (en) | Optical disc inspection device | |
JPH05332946A (en) | Surface inspection instrument | |
CN106645173A (en) | Efficient collection device and collection method of scattered light for detecting surface detect | |
JP2970235B2 (en) | Surface condition inspection device | |
JP2808123B2 (en) | Foreign object detection device | |
JPS61186806A (en) | Fault detecting device for transparent body | |
JPH0427841A (en) | Particle measuring apparatus | |
JPH03173452A (en) | Wafer surface plate pit defects detection optical system | |
JPH0579994A (en) | Transparent body defect inspecting device | |
JPH07103904A (en) | Detecting method for defect inside light-transmitting object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020212 |
|
LAPS | Cancellation because of no payment of annual fees |