JPH06258225A - Calibration method for coaxial reflecting type measuring device and coaxial reflecting type measuring device - Google Patents

Calibration method for coaxial reflecting type measuring device and coaxial reflecting type measuring device

Info

Publication number
JPH06258225A
JPH06258225A JP4492293A JP4492293A JPH06258225A JP H06258225 A JPH06258225 A JP H06258225A JP 4492293 A JP4492293 A JP 4492293A JP 4492293 A JP4492293 A JP 4492293A JP H06258225 A JPH06258225 A JP H06258225A
Authority
JP
Japan
Prior art keywords
calibration
light
article
measuring device
type measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4492293A
Other languages
Japanese (ja)
Other versions
JP3243039B2 (en
Inventor
Motofumi Suzuki
鈴木基文
Katsuhiro Iida
飯田勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maki Manufacturing Co Ltd
Original Assignee
Maki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maki Manufacturing Co Ltd filed Critical Maki Manufacturing Co Ltd
Priority to JP4492293A priority Critical patent/JP3243039B2/en
Publication of JPH06258225A publication Critical patent/JPH06258225A/en
Application granted granted Critical
Publication of JP3243039B2 publication Critical patent/JP3243039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To carry out multiple calibration without any interruption of measuring work so as to improve operability by acquiring calibration data from a calibration reference reflecting plate via a clearance between articles transported by a conveyor. CONSTITUTION:A transporting conveyor 12 transports pans 14, on each of which an article S is mounted, one by one. The light from a light source 1 irradiates the surface of the article S via a condensing lens 2, a chopper 3, a lens 4, a beam splitter 5, and an objective lens 6. The reflected light is incident on a spectroscope 9 via the lens 6, the splitter 5, the condensing lens 7, and a slit 8. The spectroscope 9 takes out the light in the specific wave length range, and the light is converted into an electric signal by a detecting device 11 and is outputted to a control part, 20. When a calibration reference reflecting plate 13 and a light projecting/receiving port M face each other via the clearance between a preceding article S and a following article S, which are transported by the conveyor 12, calibration data is found on the basis of the reflected light from the reflecting plate 13 and is renewed and stored. Therefore, a measurement value is found on the basis of the latest calibration data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、搬送コンベアで移送
中の物品を計測する光学式計測装置の校正方法及び計測
装置に係わり、詳しくは照明光学系の光軸と受光光学系
の光軸の一部が同軸上に配置された同軸反射型計測装置
の校正方法及び同軸反射型計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a calibration method and a measuring device for an optical measuring device for measuring an article being transferred by a conveyor, and more specifically, it relates to an optical axis of an illumination optical system and an optical axis of a light receiving optical system. The present invention relates to a method for calibrating a coaxial reflection type measurement device and a coaxial reflection type measurement device, a part of which is arranged coaxially.

【0002】[0002]

【従来の技術】一般に、光学式計測装置は、温度、湿
度、塵埃等による環境変化またはランプ及び受光素子等
の特性の経時変化等によってその測定精度が低下するこ
とがあり、その装置を使用する環境においての校正を実
施した上で計測が行われている。一方、搬送コンベア上
で移送される物品を計測する光学式計測装置の校正は、
搬送コンベアの作動を停止するか又は搬送コンベア上へ
の物品の供給を停止する等して被計測物品の計測位置に
校正用基準反射板を設置し、この校正用基準反射板から
の反射光をとり込み行うものであった。
2. Description of the Related Art In general, an optical measuring device may be deteriorated in measurement accuracy due to environmental changes due to temperature, humidity, dust or the like or changes in characteristics of a lamp, a light receiving element and the like with time. The measurement is performed after calibrating in the environment. On the other hand, the calibration of the optical measuring device that measures the articles transferred on the conveyor is
A reference reflector for calibration is installed at the measurement position of the measured article by stopping the operation of the conveyor or stopping the supply of articles on the conveyor, and the reflected light from this reference reflector for calibration is set. It was something that was taken in.

【0003】[0003]

【発明が解決しようとする課題】上記従来の校正方法に
よると、校正するためには、搬送コンベアの運転を停止
するか又は搬送コンベアへの物品の供給を停止する等し
て搬送コンベア上の計測位置即ち、被計測物品の搬送路
上に校正用基準反射板を設置するため、物品の計測作業
を一時中断しなけれはならず作業能率があがらないとい
う問題があった。更に、光学式計測装置の精度を安定さ
せるためには、校正をより多く実施することが必要であ
るが、この従来の方法により校正作業を頻繁に行うとい
うことは、物品の計測作業が頻繁に中断されることでも
あるので、作業能率が著しく低下してしまうという問題
を抱えていた。
According to the above-mentioned conventional calibration method, in order to calibrate, the operation on the transport conveyor is stopped, or the supply of articles to the transport conveyor is stopped, and the measurement on the transport conveyor is performed. Since the calibration reference reflection plate is installed at the position, that is, on the conveyance path of the article to be measured, there is a problem that the measurement work of the article must be temporarily interrupted and the work efficiency does not increase. Furthermore, in order to stabilize the accuracy of the optical measuring device, it is necessary to carry out more calibrations. However, frequent calibration work by this conventional method means that the measurement work of articles is frequent. Since it is also interrupted, there was a problem that the work efficiency was significantly reduced.

【0004】この発明が解決しようとする課題は、物品
の計測作業を中断することなく校正を行い且つ校正を多
く実施することによって、作業能率を向上させることが
できると共に測定精度を高めることができる同軸反射型
計測装置の校正方法及び同軸反射型計測装置を提供する
ことにある。
The problem to be solved by the present invention is to improve the work efficiency and the measurement accuracy by performing the calibration without interrupting the measurement work of the article and by performing the calibration many times. An object of the present invention is to provide a method for calibrating a coaxial reflection type measurement device and a coaxial reflection type measurement device.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の同軸反射型計測装置の校正方法は、搬送コ
ンベアにより定間隔又は不定間隔で搬送される物品に向
けて光を照射し、その反射光を受光して校正データに基
づき反射強度又は反射率を求める同軸反射型計測装置の
校正方法であって、前記搬送コンベアを挟んで前記同軸
反射型計測装置の投受光口と校正用基準反射板とを対向
させて配置し、搬送コンベアにより搬送される先行の物
品と後行の物品との間隙を介して前記校正用基準反射板
と前記投受光口とが対向し且つ校正指示信号が出される
都度校正用基準反射板からの反射光より校正データを得
てこれを更新記憶することを特徴とするものである。
In order to solve the above-mentioned problems, a method for calibrating a coaxial reflection type measuring apparatus according to the present invention irradiates an article conveyed by a conveyer at regular intervals or irregular intervals with light. A method for calibrating a coaxial reflection type measurement device which receives the reflected light and obtains the reflection intensity or reflectance based on the calibration data, wherein the coaxial reflection type measurement device is provided with a light emitting / receiving port and a calibration port for sandwiching the conveyor. A reference reflector is disposed so as to face each other, and the calibration reference reflector and the light emitting / receiving port face each other through a gap between a preceding article and a subsequent article conveyed by a conveyer and a calibration instruction signal. The calibration data is obtained from the reflected light from the calibration reference reflector and updated and stored every time when is issued.

【0006】また本発明の同軸反射型計測装置は、搬送
コンベアにより定間隔又は不定間隔で搬送される物品に
向けて光を照射し、その反射光を受光して校正データに
基づき反射強度又は反射率を求める同軸反射型計測装置
であって、前記搬送コンベアを挟んで前記同軸反射型計
測装置の投受光口と対向するように配置された校正用基
準反射板と、搬送コンベアで搬送される先行の物品と後
行の物品との間隙を介して前記校正用基準反射板と前記
投受光口とが対向したとき校正用基準反射板からの反射
光より校正データを得てこれを更新記憶する手段とを備
えたことを特徴とするものである。
Further, the coaxial reflection type measuring apparatus of the present invention irradiates the articles conveyed by the conveyer at regular intervals or irregular intervals with light, receives the reflected light, and reflects intensity or reflection on the basis of the calibration data. A coaxial reflection type measuring device for obtaining a rate, wherein a calibration reference reflection plate arranged to face the light emitting / receiving port of the coaxial reflection type measuring device with the conveying conveyor interposed therebetween, and the preceding conveyed by the conveying conveyor. Means for obtaining the calibration data from the reflected light from the calibration reference reflector and updating and storing the calibration data when the calibration reference reflector and the light emitting / receiving port face each other through the gap between the article and the subsequent article. It is characterized by having and.

【0007】[0007]

【作用】上記のように構成された本発明によれば、搬送
コンベアにより搬送される先行の物品と後行の物品との
間隙を介して校正用基準反射板と同軸反射型計測装置の
投受光口とが対向したとき、校正用基準反射板からの反
射光より校正データを得てこれを更新記憶するので、物
品に光を照射したときの物品からの反射光の反射強度又
は反射率は、物品の搬送中に、更新記憶された最新の校
正データに基づいて求められる。
According to the present invention configured as described above, the calibration reference reflector and the light emitting / receiving unit of the coaxial reflection type measuring device are provided through the gap between the preceding article and the following article conveyed by the conveyor. When the mouth is opposed, calibration data is obtained from the reflected light from the calibration reference reflector and the data is updated and stored, so the reflection intensity or reflectance of the reflected light from the article when the article is irradiated with light is: It is obtained based on the latest calibration data that is updated and stored during the transportation of the article.

【0008】[0008]

【実施例】以下、本発明の好ましい実施例を図面に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0009】第1図は本発明に係る同軸反射型計測装置
の光学部Pを主として示す説明図である。尚、物品は実
施例ではりんご、桃等の青果物Sを用いる。
FIG. 1 is an explanatory view mainly showing the optical section P of the coaxial reflection type measuring apparatus according to the present invention. In the embodiment, fruits and vegetables S such as apples and peaches are used as the article.

【0010】図において、青果物Sに光を照射する照明
光学系は、光源装置1、集光レンズ2、チョッパー3、
レンズ4、ビームスプリッタ5、対物レンズ6を光軸に
沿って配置して構成している。一方、青果物Sからの反
射光をとり出す受光光学系は、対物レンズ6、ビームス
プリッタ5、集光レンズ7、スリット8、分光器9を光
軸に沿って配置して構成している。
In the drawing, an illumination optical system for irradiating the fruits and vegetables S with light is a light source device 1, a condenser lens 2, a chopper 3,
The lens 4, the beam splitter 5, and the objective lens 6 are arranged along the optical axis. On the other hand, the light receiving optical system for extracting the reflected light from the fruits and vegetables S is configured by arranging the objective lens 6, the beam splitter 5, the condenser lens 7, the slit 8 and the spectroscope 9 along the optical axis.

【0011】そして、この照明光学系の光軸と受光光学
系の光軸はその一部(物品Sへの照射光軸と物品Sから
の受光光軸)が同一光軸上に配置されている。
A part of the optical axis of the illumination optical system and the optical axis of the light receiving optical system (the optical axis of irradiation to the article S and the optical axis of received light from the article S) are arranged on the same optical axis. .

【0012】光源装置1は、可視光及び/又は近赤外
光、又はその他の波長領域の光を発するもので、好まし
くは近赤外光を少なくとも含む光を発するものがよく例
えばハロゲンランプや白熱電球等が用いられる。
The light source device 1 emits visible light and / or near-infrared light, or light in other wavelength regions, and preferably emits light containing at least near-infrared light, such as a halogen lamp or an incandescent lamp. A light bulb or the like is used.

【0013】ビームスプリッタ5は、光源装置1から入
射する光のうち約50%の光は直進するが、残りの約5
0%の光は90度方向に反射するようになっている。そ
して、90度方向に反射した光は青果物Sに向けて照射
するようになっている。尚、ビームスプリッタ5を直進
した約50%の光は光吸収部10へ導かれて消滅する。
In the beam splitter 5, about 50% of the light entering from the light source device 1 goes straight, but the remaining about 5%.
0% of the light is reflected in the direction of 90 degrees. The light reflected in the 90 degree direction is directed toward the fruits and vegetables S. About 50% of the light that travels straight through the beam splitter 5 is guided to the light absorbing portion 10 and disappears.

【0014】青果物Sで反射した光は、少なくともその
一部が対物レンズ6を介して再びビームスプリッタ5へ
入射してその入射光の約50%の光が集光レンズ7を介
してスリット8へ直進する。そして、残りの約50%の
光は90度方向に反射して光源装置1へ向い自然消滅す
る。
At least a part of the light reflected by the fruits and vegetables S enters the beam splitter 5 again through the objective lens 6, and about 50% of the incident light enters the slit 8 through the condenser lens 7. Go straight. The remaining about 50% of the light is reflected in the direction of 90 degrees, goes toward the light source device 1, and is naturally extinguished.

【0015】尚、この実施例ではビームスプリッタを用
いたが、これに限定するものではなく、例えばハーフミ
ラー又は偏光ビームスプリッタ等用いることができ、計
測対象物の特性に応じて適宜選択することが好ましい。
Although the beam splitter is used in this embodiment, the present invention is not limited to this. For example, a half mirror or a polarization beam splitter can be used, and the beam splitter can be appropriately selected according to the characteristics of the object to be measured. preferable.

【0016】分光器9は、ビームスプリッタ5を直進し
てスリット8から入射する光を分光して近赤外領域及び
/又は可視領域における特定波長範囲の光をとり出すよ
うになっている。この波長範囲は、狭い場合と比較的広
い場合とあり、分光器9としては狭い場合には干渉フィ
ルタ等を用いるのがよく、又比較的広い場合には回折格
子型の分光器又はプリズム型の分光器を用いるのがよ
い。
The spectroscope 9 is designed to go straight through the beam splitter 5 and split the light incident from the slit 8 to take out light in a specific wavelength range in the near infrared region and / or the visible region. This wavelength range may be narrow or relatively wide. If the spectroscope 9 is narrow, an interference filter or the like may be used. If it is relatively wide, a diffraction grating spectroscope or prism type may be used. It is better to use a spectroscope.

【0017】11は検出装置であり、分光器9からの光
を受光して受光量に応じた電気信号を出力するようにな
っている。尚、第1図において、分光器9はビームスプ
リッタ5と検出装置11との光路途中に設けていわゆる
後分光方式としたが、光源装置1とビームスプリッタ5
との光路途中に設けて前分光方式としてもよい。更に、
レンズ又は反射鏡は、光路途中の適所に必要に応じて適
宜な種類のものを用いることができる。
Reference numeral 11 is a detector, which receives the light from the spectroscope 9 and outputs an electric signal corresponding to the amount of received light. In FIG. 1, the spectroscope 9 is provided in the optical path between the beam splitter 5 and the detection device 11 to form a so-called post-spectroscopic system, but the light source device 1 and the beam splitter 5 are used.
A pre-spectroscopic system may be provided by providing it in the optical path of the above. Furthermore,
As the lens or the reflecting mirror, an appropriate type can be used at an appropriate place in the optical path as needed.

【0018】以上のように構成された同軸反射型計測装
置の光学部Pの作用について説明する。光源装置1から
照射された光が集光レンズ2、チョッパー3、レンズ4
を介してビームスプリッタ5へ入射すると、このビーム
スプリッタ5は入射した光のうち約50%の光を90度
方向に反射させ、残りの50%の光を直進させる。90
度方向に反射した約50%の光は、対物レンズ6を介し
て青果物Sの表面を照射する。また、残りの50%の光
は直進して光吸収部10で消滅される。
The operation of the optical section P of the coaxial reflection type measuring device configured as described above will be described. Light emitted from the light source device 1 is a condenser lens 2, a chopper 3, and a lens 4.
When incident on the beam splitter 5 via the beam splitter 5, about 50% of the incident light is reflected in the direction of 90 degrees, and the remaining 50% of the light is made to go straight. 90
About 50% of the light reflected in the degree direction illuminates the surface of the fruit S through the objective lens 6. The remaining 50% of the light travels straight and is extinguished in the light absorbing portion 10.

【0019】青果物Sからの反射光が対物レンズ6を介
して再びビームスプリッタ5へ入射すると、そのうち約
50%の光が90度方向に反射して光源装置1へ向かい
消滅する。残りの50%は直進して集光レンズ7、スリ
ット8を介して分光器9へ入射する。そして、分光器9
は入射した光を分光して特定波長範囲の光をとり出す。
この分光された特定波長範囲の光は検出装置11により
検出されて受光量に応じた電気信号に変換される。
When the reflected light from the fruits and vegetables S is incident on the beam splitter 5 again through the objective lens 6, about 50% of the reflected light is reflected in the direction of 90 degrees and goes to the light source device 1 to disappear. The remaining 50% goes straight and enters the spectroscope 9 through the condenser lens 7 and the slit 8. And the spectroscope 9
Disperses incident light and extracts light in a specific wavelength range.
The separated light in the specific wavelength range is detected by the detection device 11 and converted into an electric signal corresponding to the amount of received light.

【0020】以上述べたように、同軸反射型計測装置の
光学部Pは、照明光学系と受光光学系とにおいて、青果
物Sに光を照射する光軸と青果物Sからの反射光をとり
出す光軸とが同一光軸上に配置されているため、青果物
Sを搬送する搬送コンベア12を挟んで同軸反射型計測
装置の投受光口Mと校正用基準反射板13とを対向させ
て配置することができる。
As described above, the optical section P of the coaxial reflection type measuring apparatus has the optical axis for irradiating the fruits and vegetables S with light and the light for extracting reflected light from the fruits and vegetables S in the illumination optical system and the light receiving optical system. Since the axis is arranged on the same optical axis, the light emitting / receiving port M of the coaxial reflection type measuring device and the calibration reference reflecting plate 13 should be arranged so as to face each other with the conveyor 12 for conveying the fruits and vegetables S interposed therebetween. You can

【0021】即ち、同軸反射型の光学部Pを用いること
により、校正用基準反射板13は、同一光軸上であれば
物品の計測面よりも後方(搬送コンベア12の外方)に
配置することができる。これにより同一基準面(反射板
13)からの反射光に基づいて校正データを得ることが
できる。
That is, by using the coaxial reflection type optical section P, the calibration reference reflection plate 13 is arranged behind the measurement surface of the article (outside the conveyor 12) on the same optical axis. be able to. Thereby, the calibration data can be obtained based on the reflected light from the same reference surface (reflecting plate 13).

【0022】第2図は本発明の同軸反射型計測装置を青
果物の選別装置に用いた実施例の構成図である。尚、図
中Pは前記説明した光学部Pを示すものであり同一符号
をつけて説明を省略する。
FIG. 2 is a block diagram of an embodiment in which the coaxial reflection type measuring device of the present invention is used in a fruit and vegetable sorting device. In the figure, P indicates the optical unit P described above, and the same reference numerals are given and the description thereof is omitted.

【0023】12は搬送コンベアであり、青果物Sが載
せられた受皿14を一個ずつ一列に定間隔又は不定間隔
で搬送するもので、例えばチェンコンベア、又はベルト
コンベア等の搬送装置が用いられる。尚、図面による
と、青果物Sは受皿14に載せられて搬送するように構
成したが、これに限定するものではなく、青果物Sを直
接搬送面上で搬送するように構成することもできる。
A conveyer 12 conveys the trays 14 on which the fruits and vegetables S are placed one by one in a row at regular or irregular intervals. For example, a conveyer such as a chain conveyer or a belt conveyer is used. Although the fruits and vegetables S are placed on the tray 14 and transported according to the drawing, the present invention is not limited to this, and the fruits and vegetables S may be directly transported on the transport surface.

【0024】15a,15b,15cは排出作動装置で
あり、搬送コンベア12上で搬送される受皿14をコン
ベア12の搬送工程外へ仕分けするため、搬送中の受皿
14と係合して搬送コンベア12上から搬出コンベア1
6上へ排出するようになっている。この排出作動装置1
5は、例えば特開平2−62313号公報に記載されて
いる仕分排出装置を用いることができる。この排出作動
装置15は、後述する制御部20から出力される排出指
令信号により作動するようになっている。
Denoted at 15a, 15b and 15c are discharge actuating devices, which are engaged with the receiving tray 14 being conveyed in order to sort the receiving tray 14 conveyed on the conveying conveyor 12 out of the conveying step of the conveyer 12. Carry-out conveyor 1 from above
6 is to be discharged upward. This discharge actuating device 1
As the No. 5, for example, the assortment discharging device described in JP-A-2-62313 can be used. The discharge operating device 15 is operated by a discharge command signal output from the control unit 20 described later.

【0025】尚、この排出作動装置15の数は、図面で
は3つ配置するように構成したが、この3つに限定する
ものではなく青果物Sの選別クラス数に応じて決められ
る。17はエンコーダ装置であり、搬送コンベア12の
搬送面の所定移動量に対して所定の信号(パルス)を出
力するようになっている。
Although the number of the discharge actuating devices 15 is arranged to be three in the drawing, the number is not limited to this three and is determined according to the number of sorting classes of the fruits and vegetables S. Reference numeral 17 denotes an encoder device, which outputs a predetermined signal (pulse) with respect to a predetermined movement amount of the transfer surface of the transfer conveyor 12.

【0026】13は校正用基準反射板であり、該校正用
基準反射板13は、第3図によく示すように搬送コンベ
ア12の搬送路を挟んで同軸反射型計測装置の投受光口
Mと対向するように配置されており、その対向間におけ
る搬送路上に物品Sが無いときには、光源1からビーム
スプリッタ5等を介して照射された光がこの反射板13
で反射し、その反射光が投受光口Mへ入射するようにな
っている。
Reference numeral 13 is a calibration reference reflection plate, and the calibration reference reflection plate 13 is, as shown in FIG. 3, well arranged with the light emitting / receiving port M of the coaxial reflection type measuring device sandwiching the transportation path of the transportation conveyor 12. When the articles S are arranged so as to face each other and there is no article S on the conveyance path between the two facings, the light emitted from the light source 1 via the beam splitter 5 or the like is reflected by the reflecting plate 13.
The reflected light is incident on the light projecting / receiving port M.

【0027】18は物品センサであり、搬送コンベア1
2の搬送方向に関して投受光口Mよりも即ち、計測位置
よりも上流側で搬送コンベア12の搬送路に沿った位置
に設けられ、搬送コンベア12で搬送される青果物Sの
有無を検出し検出信号を制御部20に出力するようにな
っている。
Reference numeral 18 denotes an article sensor, which is the conveyor 1
The detection signal is provided in a position along the transport path of the transport conveyor 12 on the upstream side of the light emitting / receiving port M with respect to the transport direction of 2, that is, upstream of the measurement position, and detects the presence or absence of fruits and vegetables S transported by the transport conveyor 12. Is output to the control unit 20.

【0028】同軸反射型計測装置の制御部20は、前記
検出装置11からの信号と、前記物品センサ18からの
信号と、前記エンコーダ装置17からの信号とを入力し
て青果物Sの品質、特性を判定し、この判定結果に基づ
いて仕分けのための排出信号を該当する排出作動装置1
4へ出力するようになっている。この制御部20の回路
の概略を示すブロック図について説明する。
The control unit 20 of the coaxial reflection type measuring device inputs the signal from the detecting device 11, the signal from the article sensor 18, and the signal from the encoder device 17 to obtain the quality and characteristics of the fruits and vegetables S. The discharge actuation device 1 which determines the discharge signal for sorting based on the determination result.
It is designed to output to 4. A block diagram showing an outline of the circuit of the control unit 20 will be described.

【0029】21は入出力装置(I/O)、22は装置
全体を制御するための中央処理装置(CPU)、23は
ワーキングエリアとして用いられるランダムアクセスメ
モリ(RAM)、24はCPU22の処理手順(プログ
ラム)、設定値等が予め書き込まれた読み出し専用のメ
モリ(ROM)、25はバスラインであり前記それぞれ
の回路が連結されている。この制御部20の動作につい
て第4図を用いて説明する。
Reference numeral 21 is an input / output device (I / O), 22 is a central processing unit (CPU) for controlling the entire device, 23 is a random access memory (RAM) used as a working area, and 24 is a processing procedure of the CPU 22. A read-only memory (ROM) in which (program), set values, etc. are written in advance, 25 is a bus line to which the respective circuits are connected. The operation of the control unit 20 will be described with reference to FIG.

【0030】尚、第4図(a),(b),(c)は物品
センサ18による青果物Sの検出信号Aに対する計測指
示信号Bと校正指示信号Cとの出力タイミングを示すタ
イムチャート図である。即ち、第4図(a)は青果物S
の検出信号Aの出力波形、第4図(b)は計測指示信号
Bの出力波形、第4図(c)は校正指示信号Cの出力波
形である。
4 (a), (b) and (c) are time charts showing the output timings of the measurement instruction signal B and the calibration instruction signal C with respect to the detection signal A of the fruits and vegetables S by the article sensor 18. is there. That is, FIG. 4 (a) shows fruits and vegetables S
4B shows the output waveform of the detection instruction signal A, FIG. 4B shows the output waveform of the measurement instruction signal B, and FIG. 4C shows the output waveform of the calibration instruction signal C.

【0031】この制御部20は、物品センサ18からの
検出信号とエンコーダ装置17からの信号とをI/O2
1を介してCPU22に入力し、CPU22では、この
入力した信号に基づいて、青果物Sの搬送方向の長さ
(時間)及び先行の青果物Sと後行の青果物Sとの間隙
の長さ(時間)を演算して所定の計測位置での計測と校
正を行うタイミングを求め、求められたタイミングによ
る信号(計測指示信号B、校正指示信号C)により、I
/O21に検出装置11から送られてくる受光量に応じ
た電気信号からデータ(計測データ、校正データ)を得
るようになっている。
The control unit 20 receives the detection signal from the article sensor 18 and the signal from the encoder device 17 as I / O2.
1 to the CPU 22, and based on this input signal, the CPU 22 calculates the length (time) of the fruits and vegetables S in the conveyance direction and the length (time) of the preceding fruits and vegetables S and the fruits and vegetables S that follow. ) Is calculated to obtain the timing at which measurement and calibration are performed at a predetermined measurement position, and the signal (measurement instruction signal B, calibration instruction signal C) at the obtained timing is used to calculate I
Data (measurement data, calibration data) is obtained from an electric signal according to the amount of received light sent from the detection device 11 to / O21.

【0032】尚、計測指示信号Bは、第4図(b)に示
すように検出信号Aの時間方向の長さの中間で出力され
るようになっており、校正指示信号Cは、第4図(c)
に示すように先に出力された検出信号Aと後に出力され
た検出信号Aとの間(間隙)の所定位置で出力されるよ
うになっている。この校正指示信号Cは、好ましくは後
行の青果物Sが検出される直前で出力することが好まし
い。又、図に示すように検出信号A3とA4との間隙の
ようにその間隙が狭い場合には校正指示信号Cは出力し
ない。従って、この場合の校正データは検出信号A3の
直前の校正指示信号C3に基づいて得られたデータが用
いられる。
The measurement instruction signal B is output in the middle of the length of the detection signal A in the time direction as shown in FIG. 4 (b), and the calibration instruction signal C is output in the fourth direction. Figure (c)
As shown in (3), the signal is output at a predetermined position between (gap) between the previously output detection signal A and the later output detection signal A. It is preferable that the calibration instruction signal C be output immediately before the fruit or vegetables S in the subsequent row is detected. Further, as shown in the figure, when the gap is narrow, such as the gap between the detection signals A3 and A4, the calibration instruction signal C is not output. Therefore, as the calibration data in this case, the data obtained based on the calibration instruction signal C3 immediately before the detection signal A3 is used.

【0033】校正用基準反射板13からとり込んだ反射
光は、検出装置11により受光されて受光量に応じた電
気信号に変換されI/O21に送られてくるが、CPU
22は前記校正指示信号CによってI/O21から電気
信号をとり込み校正データを得る。そして、この校正デ
ータは制御部20のRAM23へ更新記憶される。
The reflected light taken in from the calibration reference reflector 13 is received by the detector 11 and converted into an electric signal according to the amount of received light, which is sent to the I / O 21.
22 receives the electric signal from the I / O 21 according to the calibration instruction signal C to obtain the calibration data. Then, the calibration data is updated and stored in the RAM 23 of the control unit 20.

【0034】一方、青果物Sからとり込んだ反射光は、
検出装置11により受光されて受光量に応じた電気信号
に変換され上記同様I/O21へ送られてくるが、CP
U22は、前記計測指示信号BによってI/O21から
電気信号をとり込み計測データを得ると共に、この計測
データと前記RAM23に更新記憶された校正データと
に基づいて特定波長における反射率又は反射強度を算出
する。
On the other hand, the reflected light taken from the fruits and vegetables S is
The detection device 11 receives the light, converts it into an electric signal according to the amount of light received, and sends it to the I / O 21 as described above.
The U22 takes in an electric signal from the I / O21 by the measurement instruction signal B to obtain measurement data, and based on the measurement data and the calibration data updated and stored in the RAM 23, the reflectance or the reflection intensity at a specific wavelength is obtained. calculate.

【0035】そして、更にCPU22は、この特定波長
の反射率又は反射強度の算出結果から、図示しない設定
回路又はRAM23に設定されている品質、特性に関す
るデータに基づき青果物Sの品質、特性を判定する。こ
の品質、特性に関するデータは、例えば、品質、特性の
判明している標準青果物についての熟度又は糖度或いは
硬度に関するデータ(モデル式等)とすることができ
る。
Further, the CPU 22 determines the quality and characteristics of the fruits and vegetables S from the calculation result of the reflectance or the reflection intensity of the specific wavelength based on the data relating to the quality and characteristics set in the setting circuit (not shown) or the RAM 23. . The data relating to the quality and characteristics can be, for example, data relating to the ripeness or sugar content or hardness (model formula etc.) of standard fruits and vegetables whose quality and characteristics are known.

【0036】更に、この制御部20の仕分制御回路(不
図示)は、前記品質、特性の判定結果に基づきこの判定
結果に対応する排出作動装置15に、その判定された青
果物Sが搬送されてきたとき当該排出作動装置15を作
動させる排出指令信号をI/O21を介して出力するよ
うになっている。これにより、搬送コンベア12上で移
送される青果物Sは該当する仕分け位置の排出作動装置
15が作動して青果物Sを受皿14とともに搬出コンベ
ア16上へ排出することができる。
Further, the sorting control circuit (not shown) of the control section 20 conveys the determined fruits and vegetables S to the discharge operation device 15 corresponding to the determination result of the quality and characteristics based on the determination result. At this time, a discharge command signal for operating the discharge operating device 15 is output via the I / O 21. As a result, the fruits and vegetables S transferred on the conveyor 12 can be ejected together with the tray 14 onto the carry-out conveyor 16 by operating the ejection operation device 15 at the corresponding sorting position.

【0037】第5図は前記物品センサ18を、搬送コン
ベア12の搬送方向に関して同軸反射型計測装置の投受
光口Mよりも所定の距離下流側に設けた例である。この
物品センサ18と同軸反射型計測装置の投受光口Mとの
位置関係は、図に示すように物品センサ18により青果
物Sの前端を検出すると同軸反射型計測装置がその青果
物Sの略中心部を計測するようになっている。この場合
は、エンコーダ装置17を省略することができる。
FIG. 5 shows an example in which the article sensor 18 is provided on the downstream side by a predetermined distance from the light projecting / receiving port M of the coaxial reflection type measuring device in the transport direction of the transport conveyor 12. The positional relationship between the article sensor 18 and the light projecting / receiving port M of the coaxial reflection type measuring device is such that, when the front end of the fruit or vegetable S is detected by the article sensor 18 as shown in the figure, the coaxial reflection type measuring device shows a substantially central portion of the fruit or vegetable S. Is designed to measure. In this case, the encoder device 17 can be omitted.

【0038】第6図(a),(b),(c),(d)
は、第5図における青果物Sの検出信号Aに対する計測
指示信号Bと校正指示信号Cの出力タイミングを示すタ
イムチャート図である。尚、第6図(a)は計測指示信
号Bが出力されたときの青果物Sの位置を示す図であ
る。第6図(b)は青果物Sの検出信号Aの出力波形で
ある。第6図(c)は計測指示信号Bの出力波形であ
る。第6図(d)は校正指示信号Cの出力波形である。
6 (a), (b), (c), (d)
FIG. 6 is a time chart diagram showing the output timings of the measurement instruction signal B and the calibration instruction signal C for the detection signal A of the fruits and vegetables S in FIG. Note that FIG. 6A is a diagram showing the position of the fruits and vegetables S when the measurement instruction signal B is output. FIG. 6B is an output waveform of the detection signal A of the fruits and vegetables S. FIG. 6C shows an output waveform of the measurement instruction signal B. FIG. 6 (d) shows the output waveform of the calibration instruction signal C.

【0039】図に示すように計測指示信号Bは、検出信
号Aの立ち上った都度所定時間出力する。即ち、物品セ
ンサ18により青果物Sの前端を検出した都度出力され
るようになっている。校正指示信号Cは、検出信号Aの
出力が無くなった直後に所定時間出力する。即ち、物品
センサ18を青果物Sが通過するとその直後で出力する
ようになっている。
As shown in the figure, the measurement instruction signal B is output for a predetermined time each time the detection signal A rises. That is, the article sensor 18 outputs each time the front end of the fruit or vegetable S is detected. The calibration instruction signal C is output for a predetermined time immediately after the detection signal A is no longer output. That is, when the fruits and vegetables S pass through the article sensor 18, they are output immediately after that.

【0040】尚、先行の青果物Sと後行の青果物Sとの
間隙が長い場合には、校正指示信号Cを一定時間毎に出
力することが好ましい。また、逆に検出信号A2とA3
との間隙のようにその間隙が狭い場合には校正指示信号
Cは出力されるが検出信号A3の信号入力により中断キ
ャンセルされるので、この場合の校正データは、検出信
号A2の直前の校正指示信号C2に基づいて得られたデ
ータが用いられる。
When the gap between the preceding fruits and vegetables S and the succeeding fruits and vegetables S is long, it is preferable to output the calibration instruction signal C at regular intervals. On the contrary, the detection signals A2 and A3
If the gap is narrow, such as the gap between and, the calibration instruction signal C is output, but since the interruption is canceled by the signal input of the detection signal A3, the calibration data in this case is the calibration instruction immediately before the detection signal A2. The data obtained based on the signal C2 is used.

【0041】第7図は青果物Sを一個ずつ定間隔で移送
するためのバケットコンベア30を用いた例の構成図で
ある。このバケットコンベア30には、バケットピッチ
毎及びバケット31とバケット31との中間毎に所定の
信号を出力するクロック信号発信器32が設けられてい
る。つまり、クロック信号発信器32はバケット31の
移送と同期してバケット31毎での計測指示信号Bと上
記中間毎での校正指示信号Cとを交互に制御部20に出
力するようになっている。これにより、青果物Sからの
反射光の反射率又は反射強度は常に直前の校正データに
基づいて算出することができる。
FIG. 7 is a block diagram of an example using a bucket conveyor 30 for transferring the fruits and vegetables S one by one at regular intervals. The bucket conveyor 30 is provided with a clock signal transmitter 32 that outputs a predetermined signal for each bucket pitch and for each intermediate position between the buckets 31 and the buckets 31. That is, the clock signal transmitter 32 alternately outputs the measurement instruction signal B for each bucket 31 and the calibration instruction signal C for each intermediate interval to the control unit 20 in synchronization with the transfer of the bucket 31. . Thereby, the reflectance or the reflection intensity of the reflected light from the fruits and vegetables S can always be calculated based on the immediately preceding calibration data.

【0042】[0042]

【発明の効果】本発明は、以上述べた如く、搬送コンベ
アを挟んで同軸反射型計測装置の投受光口と校正用基準
反射板とを対向させ、搬送コンベアにより搬送される先
行の物品と後行の物品との間隙で校正用基準反射板から
の反射光をとり込み、この反射光より校正データを得て
これを更新記憶し、この更新記憶された校正データに基
づき物品の反射率又は反射強度を求めるようにしたもの
であるから、校正のために搬送コンベアの運転を停止し
たり又は物品の供給を中断したりして物品の計測作業を
中断するということなく、物品の搬送中に校正を行な
い、しかも校正を頻繁に行ない得るので、物品の計測作
業の能率と測定精度とを大巾に向上し得るという効果が
ある。
As described above, according to the present invention, the light emitting / receiving port of the coaxial reflection type measuring device and the calibration reference reflecting plate are opposed to each other with the transport conveyor interposed therebetween, and the preceding article and the rear article transported by the transport conveyor are opposed to each other. The reflected light from the calibration reference reflector is taken in the gap between the row and the item, the calibration data is obtained from this reflected light, and this is updated and stored. Based on this updated and stored calibration data, the reflectance or reflection of the item Since the strength is calculated, calibration is performed during the transportation of the article without stopping the operation of the conveyor for calibration or interrupting the supply of the article to interrupt the measurement work of the article. Moreover, since the calibration can be performed frequently and the efficiency and measurement accuracy of the measurement work of the article can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は同軸反射型計測装置の光学部を示す説
明図である。
FIG. 1 is an explanatory view showing an optical section of a coaxial reflection type measuring device.

【図2】第2図は本発明を青果物の選別装置に用いた実
施例の説明図である。
FIG. 2 is an explanatory view of an embodiment in which the present invention is used in a vegetable and fruit sorting apparatus.

【図3】第3図は間隙を介して校正用基準反射板と投受
光口とが対向したところを示す説明図である。
FIG. 3 is an explanatory diagram showing a case where a calibration reference reflector and a light emitting / receiving port face each other with a gap in between.

【図4】第4図(a),(b),(c)は、検出信号A
に対する計測指示信号Bと校正指示信号Cとの出力タイ
ミングを示すタイムチャート図である。
4 (a), (b), and (c) are detection signals A. FIG.
FIG. 7 is a time chart showing the output timings of the measurement instruction signal B and the calibration instruction signal C with respect to FIG.

【図5】第5図は物品センサ18の取付け位置について
の他の例の説明図である。
FIG. 5 is an explanatory diagram of another example of the attachment position of the article sensor.

【図6】第6図(a),(b),(c),(d)は、第
5図における検出信号Aに対する計測指示信号Bと校正
指示信号Cとの出力タイミングを示すタイムチャート図
である。
6 (a), (b), (c) and (d) are time charts showing the output timings of the measurement instruction signal B and the calibration instruction signal C with respect to the detection signal A in FIG. Is.

【図7】搬送コンベアの他の例を示すバケットコンベア
の説明図である。
FIG. 7 is an explanatory diagram of a bucket conveyor showing another example of the transfer conveyor.

【符号の説明】[Explanation of symbols]

1:光源装置 2:集光レンズ 3:チョッパー 4:レンズ 5:ビームスプリッタ 6:対物レンズ 7:集光レンズ 8:スリット 9:分光器 10:光吸収部 11:検出装置 12:搬送コンベ
ア 13:校正用基準反射板 14:受皿 15:排出作動装置 16:搬出コンベ
ア 17:エンコーダ装置 18:物品センサ 20:制御回路 21:I/O 22:CPU 23:RAM 24:ROM 25:バスライン 30:バケットコンベア 31:バケット 32:クロック信号発信器 S:青果物 M:投受光口 P:光学部 A:検出信号 B:計測指示信号 C:校正指示信号
1: Light source device 2: Condensing lens 3: Chopper 4: Lens 5: Beam splitter 6: Objective lens 7: Condensing lens 8: Slit 9: Spectroscope 10: Light absorption part 11: Detection device 12: Conveyor conveyor 13: Reference reflector for calibration 14: Saucepan 15: Discharge operation device 16: Carry-out conveyor 17: Encoder device 18: Article sensor 20: Control circuit 21: I / O 22: CPU 23: RAM 24: ROM 25: Bus line 30: Bucket Conveyor 31: Bucket 32: Clock signal transmitter S: Fruits and vegetables M: Emitter / receiver port P: Optical part A: Detection signal B: Measurement instruction signal C: Calibration instruction signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 搬送コンベアにより定間隔又は不定間隔
で搬送される物品に向けて光を照射し、その反射光を受
光して校正データに基づき反射強度又は反射率を求める
同軸反射型計測装置の校正方法であって、前記搬送コン
ベアを挟んで前記同軸反射型計測装置の投受光口と校正
用基準反射板とを対向させて配置し、搬送コンベアによ
り搬送される先行の物品と後行の物品との間隙を介して
前記校正用基準反射板と前記投受光口とが対向し且つ校
正指示信号が出される都度校正用基準反射板からの反射
光より校正データを得てこれを更新記憶することを特徴
とする同軸反射型計測装置の校正方法。
1. A coaxial reflection type measuring device for irradiating an article conveyed at a constant interval or an irregular interval by a conveyer, receiving the reflected light, and obtaining the reflection intensity or the reflectance based on the calibration data. A calibration method, wherein the light projecting / receiving port of the coaxial reflection type measuring device and the calibration reference reflection plate are arranged so as to face each other with the transport conveyor interposed therebetween, and the preceding article and the subsequent article transported by the transport conveyor. Calibration data is obtained from the reflected light from the calibration reference reflector and the data is updated and stored each time the calibration reference reflector and the light emitting / receiving port face each other via a gap between the calibration reference signal and the calibration instruction signal. A method for calibrating a coaxial reflection type measuring device characterized by the above.
【請求項2】 搬送コンベアにより定間隔又は不定間隔
で搬送される物品に向けて光を照射し、その反射光を受
光して校正データに基づき反射強度又は反射率を求める
同軸反射型計測装置であって、前記搬送コンベアを挟ん
で前記同軸反射型計測装置の投受光口と対向するように
配置された校正用基準反射板と、搬送コンベアで搬送さ
れる先行の物品と後行の物品との間隙を介して前記校正
用基準反射板と前記投受光口とが対向したとき、校正用
基準反射板からの反射光より校正データを得てこれを更
新記憶する手段とを備えたことを特徴とする同軸反射型
計測装置。
2. A coaxial reflection type measuring device which irradiates an article conveyed at a constant interval or an irregular interval by a conveyer, receives the reflected light, and obtains a reflection intensity or a reflectance based on calibration data. There is a calibration reference reflection plate arranged to face the light emitting and receiving port of the coaxial reflection type measuring device with the transport conveyor sandwiched between the preceding article and the subsequent article transported by the transport conveyor. When the calibration reference reflection plate and the light projecting / receiving port face each other through a gap, there is provided means for obtaining calibration data from the reflected light from the calibration reference reflection plate and updating and storing the calibration data. A coaxial reflection type measuring device.
JP4492293A 1993-03-05 1993-03-05 Calibration method of coaxial reflection type measuring device and coaxial reflection type measuring device Expired - Fee Related JP3243039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4492293A JP3243039B2 (en) 1993-03-05 1993-03-05 Calibration method of coaxial reflection type measuring device and coaxial reflection type measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4492293A JP3243039B2 (en) 1993-03-05 1993-03-05 Calibration method of coaxial reflection type measuring device and coaxial reflection type measuring device

Publications (2)

Publication Number Publication Date
JPH06258225A true JPH06258225A (en) 1994-09-16
JP3243039B2 JP3243039B2 (en) 2002-01-07

Family

ID=12704969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4492293A Expired - Fee Related JP3243039B2 (en) 1993-03-05 1993-03-05 Calibration method of coaxial reflection type measuring device and coaxial reflection type measuring device

Country Status (1)

Country Link
JP (1) JP3243039B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094265A (en) * 1998-05-18 2000-07-25 Sumitomo Metal Mining Co., Ltd. Calibrator for non-destructive transmission optical measuring apparatus
US6504154B2 (en) 2000-04-24 2003-01-07 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
EP1498723A1 (en) * 2003-07-17 2005-01-19 Hauni Maschinbau AG Method for recognizing foreign bodies in a continuous stream of transported products and apparatus for carrying out the method
JP2005037398A (en) * 2003-07-17 2005-02-10 Hauni Maschinenbau Ag Method for recognizing foreign bodies in continuous stream of transported products, and apparatus for carrying out the method
WO2016063439A1 (en) * 2014-10-23 2016-04-28 株式会社プレックス Exterior inspection device
CN105954005A (en) * 2016-04-27 2016-09-21 朱彩玲 Gear adjusting type laser tube detecting apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094265A (en) * 1998-05-18 2000-07-25 Sumitomo Metal Mining Co., Ltd. Calibrator for non-destructive transmission optical measuring apparatus
AU745435B2 (en) * 1998-05-18 2002-03-21 Sumitomo Metal Mining Company Limited Calibrator for non-destructive transmission optical measuring apparatus
US6504154B2 (en) 2000-04-24 2003-01-07 Sumitomo Metal Mining Co., Ltd. Non-destructive sugar content measuring apparatus
EP1498723A1 (en) * 2003-07-17 2005-01-19 Hauni Maschinbau AG Method for recognizing foreign bodies in a continuous stream of transported products and apparatus for carrying out the method
JP2005037398A (en) * 2003-07-17 2005-02-10 Hauni Maschinenbau Ag Method for recognizing foreign bodies in continuous stream of transported products, and apparatus for carrying out the method
WO2016063439A1 (en) * 2014-10-23 2016-04-28 株式会社プレックス Exterior inspection device
JP2016085050A (en) * 2014-10-23 2016-05-19 株式会社プレックス Appearance inspection device
CN105954005A (en) * 2016-04-27 2016-09-21 朱彩玲 Gear adjusting type laser tube detecting apparatus

Also Published As

Publication number Publication date
JP3243039B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US4132314A (en) Electronic size and color sorter
TW315323B (en)
JP5271908B2 (en) Inspection system, blow molding system, method of inspecting plastic containers, and method of manufacturing plastic containers
US4259020A (en) Automatic calibration control for color grading apparatus
JPH0124550B2 (en)
KR100231373B1 (en) Method and apparatus for infrared moisture measurement
AU2002224369A1 (en) Apparatus and method for scanning products with a light beam to detect and remove impurities or irregularities in a conveyed stream of the products
EP0014301B1 (en) Level measurement device
JPH06258225A (en) Calibration method for coaxial reflecting type measuring device and coaxial reflecting type measuring device
US6743998B2 (en) Method and apparatus for inspection of hot glass containers
WO2013025320A1 (en) Imaging apparatus
GB2562602A (en) Tuber peeling apparatus and method
EP1716408A1 (en) Fibre optic measuring apparatus
JPH1082739A (en) Method and apparatus for inspecting internal quality of vegetables and fruits or the like
JP7375277B2 (en) Internal quality inspection equipment for fruits and vegetables
JP2002123811A (en) Detecting and counting method for moving object
JPH0515361A (en) Method for detecting position shift and defective shape of carried article
JP3574919B2 (en) Optical measuring device
JP2018165624A (en) Internal quality evaluation system and tray unit
GB2187277A (en) Automatic surface colour grading of eggs
NL2026483B1 (en) MEASURING DEVICE FOR MEASUREMENT OF FIRMNESS OF PRODUCTS, SUCH AS FRUIT AND VEGETABLES, SORTING SYSTEM PROVIDED WITH THEM, AND METHOD FOR THIS
JPH0599841A (en) On-line photometry measuring device
JP3217347B2 (en) Fruit and vegetable sorting equipment
JPH0423745B2 (en)
JP2018146439A (en) System and tray for evaluating internal quality

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees