JPH0625809A - Production of copper alloy - Google Patents

Production of copper alloy

Info

Publication number
JPH0625809A
JPH0625809A JP12903992A JP12903992A JPH0625809A JP H0625809 A JPH0625809 A JP H0625809A JP 12903992 A JP12903992 A JP 12903992A JP 12903992 A JP12903992 A JP 12903992A JP H0625809 A JPH0625809 A JP H0625809A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy
hours
cast
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12903992A
Other languages
Japanese (ja)
Other versions
JP2618560B2 (en
Inventor
Wolfgang Hornig
ウォルフガング、ホルニヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of JPH0625809A publication Critical patent/JPH0625809A/en
Application granted granted Critical
Publication of JP2618560B2 publication Critical patent/JP2618560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To manufacture a precipitation hardening copper alloy in which high strength and excellent transformation property are provided by executing a prescribed solution treatment and aging after the copper alloy of a regular alloy composition consisting of Ni, Sn and Cu is cast.
CONSTITUTION: A starting raw material is a copper alloy containing 2-10% Ni, 2-12% Sn, wherein the composition ratio of Ni to Sn is preferably 0.3:1 to 1:1 or 2-9% Ni, 6-10% Sn, 0.05-0.6% Mn, the balance Cu and regular impurities. The copper alloy is cast into a block or after being cast in a strip, is cold-rolled. Then, after the copper alloy is solution-treated at 650-800°C for 3-24 hours, it is cooled, preferably, rapidly cooled. Thereafter, the copper alloy is aged at 260-380°C for 15 minutes to 14 days and then, cooled in air.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル2〜10%、
スズ2〜12%、残部が銅および通常の不純物を含有す
る非常に高い強度および非常に良好な変態性(transfor
mability)の銅合金の製造法に関する。
The present invention relates to nickel 2-10%,
2-12% tin, balance copper and usual impurities, very high strength and very good transforability
mability) copper alloy manufacturing method.

【0002】[0002]

【従来の技術】本発明は、一般に、析出硬化性合金、特
にいわゆるスピノーダル合金の分野に関する。スピノー
ダル合金の分野は、まだほとんど研究されていないため
スピノーダル合金系については多くは知られていない
が、スピノーダル合金が製造されているか否かを予測す
ることを可能とする基準を与える性質についてはまだほ
とんど明らかにされていない。スピノーダル合金は、普
通の析出硬化性合金と比較して構造が微細で数段秀れて
いるため強度が著しく高いことが特徴である。その構造
は、析出粒子が金属マトリックスにないがnmの範囲内で
拡散帯のみがあるので生ずる。銅−ニッケル−スズ合金
系の場合には、強度が普通の合金の2〜3倍に増大する
ことは、可能である。例えば、通常の方法によって製造
される市販の合金 CuNi9Sn2の場合には、強度
約600N/mm2 が予想できるが、本発明に従って製造
されるスピノーダル合金の場合には、1500N/mm2
までの強度が実現できる。
The present invention relates generally to the field of precipitation hardenable alloys, especially so-called spinodal alloys. Although the field of spinodal alloys is largely unknown for spinodal alloy systems as it is largely unstudied, it is not yet known for the properties that give it the basis for predicting whether spinodal alloys are being manufactured. Little has been revealed. Spinodal alloys are characterized by their extremely high strength because they have a finer structure and are superior to ordinary precipitation hardening alloys. The structure arises because the precipitated particles are not in the metal matrix but only in the nm range there is a diffusion band. In the case of the copper-nickel-tin alloy system, it is possible to increase the strength by a factor of 2 to 3 over conventional alloys. For example, in the case of the commercial alloy CuNi9Sn2 produced by the usual method, a strength of about 600 N / mm 2 can be expected, whereas in the case of the spinodal alloy produced according to the invention 1500 N / mm 2
Up to strength can be realized.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、通常
の合金組成から出発して、従来使用されている方法と比
較して、得られた合金が実質上大きい強度およびより良
い変態性を与えられる方法を提供することにある。
It is an object of the invention, starting from the usual alloy compositions, to obtain substantially higher strengths and better transformation properties of the resulting alloys compared to the methods used hitherto. To provide the way given.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
に、本発明は、以下の製造工程 a)合金をブロックに鋳造し、 b)650℃〜800℃で3〜24時間溶体化処理し、 c)冷却し、 d)260℃〜380℃で15分〜14日間時効し、 e)空気中で冷却するを有することを提案する。
In order to achieve this object, the present invention comprises the following manufacturing steps: a) casting an alloy into a block, and b) subjecting it to solution treatment at 650 ° C to 800 ° C for 3 to 24 hours. , C) cool, d) age at 260 ° C. to 380 ° C. for 15 minutes to 14 days, and e) cool in air.

【0005】前記方法に従って製造された合金は、普通
でない強度によるだけではなく、優秀な変態性、即ち、
非常に良好な深絞り性によっても区別される。これらの
性質を考慮して、新規の合金は、エレクトロニクス分
野、特にモジュールにおいて、または建設技術において
高度に使用されるばかりでなく、良好な耐食性並びに高
水準の強度が必要とされる自動車技術においても活用さ
れ、更に、高強度鋳造品の場合には航空機技術におい
て、または送信技術における用途の可能性もある。良好
な材料特性であるため、摩擦および摩耗が重要なアスペ
クトである用途についても、もくろむことができる。
The alloys produced according to the above method are not only due to their unusual strength, but also to their excellent transformation properties, namely:
It is also distinguished by a very good deep drawability. In view of these properties, the new alloys are not only highly used in the electronics field, especially in modules or in construction technology, but also in automotive technology where good corrosion resistance as well as high levels of strength are required. In addition, it has potential applications in aircraft technology in the case of high strength castings, or in transmission technology. The good material properties also allow for applications where friction and wear are important aspects.

【0006】ニッケルおよびスズの含有量の範囲は、実
際には広いが、ニッケルおよびスズのより高い含有量
は、それにも拘らず、特に有利であることが示された。
それゆえ、本発明によれば、ニッケル6〜9%およびス
ズ6〜10%および好ましくはマンガン0.05〜0.
6%の含量(残部は銅)が、特に好ましい。
The range of nickel and tin contents is actually wide, but higher nickel and tin contents have nevertheless been shown to be particularly advantageous.
Therefore, according to the invention, nickel 6-9% and tin 6-10% and preferably manganese 0.05-0.
A content of 6% (the balance being copper) is particularly preferred.

【0007】より詳細に説明すると、市販の合金 Cu
Ni9Sn2を本発明に係る方法に従って製造すると非
常に良好な強度が得られることが既に見出されていた。
しかしながら、ニッケル含有量を同じままにして、スズ
含有量を8〜10%の値に増大すれば、強度の水準は、
著しく上がる。同時に、スズ含有量の増加により、時効
時間を決定的に短縮することができる。
In more detail, the commercially available alloy Cu
It has already been found that very good strength is obtained when Ni9Sn2 is produced according to the method according to the invention.
However, if the nickel content remains the same and the tin content is increased to a value of 8-10%, the level of strength is
It goes up significantly. At the same time, the increased tin content can decisively reduce the aging time.

【0008】これらのことを考慮して、本発明の必須の
基本概念として、冷間加工を、合金の溶体化処理後に行
なっても何ら意味はないが、時効は好適な冷却後に行わ
なければならないことが強調されるべきである。時効時
間は特定の温度範囲内での温度が高くなる程短縮され、
また既述のように、亜鉛含有量が多くなる程短縮され
る。一方、強度および伝導率は、時効時間が増すにつれ
て増大する。
In consideration of these matters, as an essential basic concept of the present invention, it is meaningless to perform cold working after solution treatment of an alloy, but aging must be performed after suitable cooling. It should be emphasized. The aging time decreases as the temperature rises within a certain temperature range,
As described above, the higher the zinc content, the shorter the zinc content. On the other hand, strength and conductivity increase with increasing aging time.

【0009】ニッケル対スズの成分比率が0.3:1か
ら1:1では、本発明の場合特に有利であることが証明
された。
A nickel to tin component ratio of 0.3: 1 to 1: 1 has proved to be particularly advantageous for the present invention.

【0010】溶体化処理工程と時効工程との間の冷却操
作は、冷却速度に関して臨界的ではない。冷却工程は、
急冷によっても、また、中位の冷却速度、例えば、空気
を吹き込むことによっても行うことができる。
The cooling operation between the solution heat treatment step and the aging step is not critical with respect to the cooling rate. The cooling process is
It can be carried out by quenching or by a medium cooling rate, for example by blowing in air.

【0011】合金の鋳造は、ブロックだけでなく、スト
リップで行ってもよく、またストリップの場合には、冷
間圧延操作は溶体化処理工程前に行わなければならな
い。
The casting of the alloy may be carried out not only in blocks but also in strips, in which case the cold rolling operation has to be carried out before the solution treatment step.

【0012】前記低マンガン含有量は、本発明によれば
必須ではないが、無孔性鋳造品を製造するために有利で
ある。その意味で、マンガンの添加量は、マンガンが合
金成分とはならないように低いままにしなければならな
い。酸素に対するマンガンの高い親和度を考慮して、溶
融材料に存在する空気は、鋳造品が無孔性であるように
拘束される。
The low manganese content is not essential according to the invention, but is advantageous for producing non-porous castings. In that sense, the amount of manganese added must be kept low so that manganese does not become an alloying component. Considering the high affinity of manganese for oxygen, the air present in the molten material is constrained so that the casting is non-porous.

【0013】完成合金の更なる加工操作(一般に冷間加
工を意味する)は、合金の強度を一層増大するが、延性
は、減少する傾向を示し、また同様に伝導率(IACS
約35%までの値を意味する)は、本発明の方法に基づ
いて達成される。
Further processing operations on the finished alloy, which generally means cold working, further increase the strength of the alloy, but the ductility tends to decrease and also the conductivity (IACS).
A value of up to about 35%) is achieved according to the method of the invention.

【0014】[0014]

【実施例】本発明に係る合金の製造の一例を以下に詳細
に説明する。
EXAMPLES An example of the production of the alloy according to the present invention will be described in detail below.

【0015】合金は先ずブロックに鋳造され、次いで、
溶体化処理を750℃の温度で4時間行う。ブロックを
冷水中で急冷した後、320℃の温度で19.5時間時
効し、次いで、気流中で冷却する。
The alloy is first cast into blocks and then
Solution treatment is carried out at a temperature of 750 ° C. for 4 hours. The blocks are quenched in cold water, then aged at a temperature of 320 ° C. for 19.5 hours and then cooled in a stream of air.

【0016】1300N/mm2 を超える特に高い強度値
を達成すべきならば、使用する出発物を鋳造ストリップ
とし、次いで、この鋳造ストリップを冷間圧延すること
が望ましい。次いで、溶体化処理を750℃の温度で1
時間行う。冷水中で急冷した後、時効を320℃で1
9.5時間再度行う。両方の実施例において、合金の組
成は、9%Ni、11%Sn、0.14%Mnであり、
残部はCuおよび不純物であった。
If particularly high strength values of more than 1300 N / mm 2 are to be achieved, it is desirable to use the starting strip used as a casting strip and then to cold roll this casting strip. Then, the solution heat treatment is performed at a temperature of 750 ° C. for 1 hour.
Do on time. After quenching in cold water, aging at 320 ℃ 1
Repeat for 9.5 hours. In both examples, the composition of the alloy was 9% Ni, 11% Sn, 0.14% Mn,
The balance was Cu and impurities.

【0017】より高いスズ含有量の使用によって時効時
間を短縮することに関しては、下記の試験結果が得られ
た。出発物を750℃で30分間の溶体化処理後、冷間
圧延されたストリップを320℃で時効した場合、平均
強度値600N/mm2 を達成するための所用時間は次の
通りであった。
With respect to reducing the aging time by using a higher tin content, the following test results were obtained. After solution heat treatment of the starting material for 30 minutes at 750 ° C., when cold-rolled strip was aged at 320 ° C., the time required to reach an average strength value of 600 N / mm 2 was as follows:

【0018】CuNi9Sn2 6日 CuNi9Sn5 4時間 CuNi9Sn7 30分 以上のことから、スズ含有量の増大は、時効時間の実質
的な短縮、およびそれに伴う生産コストの実質的な減少
を与えることがわかる。より高い強度値および/または
伝導率水準が必要とされるならば、時効時間は、それに
対応して増大されなければならない。
CuNi9Sn2 6 days CuNi9Sn5 4 hours CuNi9Sn7 30 minutes From the above, it can be seen that an increase in tin content causes a substantial reduction in aging time and a consequent reduction in production cost. If higher strength values and / or conductivity levels are required, the aging time must be correspondingly increased.

【0019】本発明に係る上述した製造方法によれば、
有利なコストで製造できる優れた強度、と高い変態性お
よび平均伝導率を有する銅合金が得られる。
According to the above-mentioned manufacturing method of the present invention,
A copper alloy is obtained that has excellent strength that can be produced at an advantageous cost, as well as high transformability and average conductivity.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Ni 2〜10%、Sn 2〜12%、残
部Cuおよび通常の不純物を含有する銅合金を、次の製
造工程によって製造することを特徴とする銅合金の製造
法。 (a)合金をブロックに鋳造し、 (b)650℃〜800℃で3〜24時間溶体化処理
し、 (c)冷却し、 (d)260℃〜380℃で15分〜14日間時効し、 (e)空気中で冷却することを特徴とする銅合金の製造
法。
1. A method for producing a copper alloy, which comprises producing a copper alloy containing Ni 2 to 10%, Sn 2 to 12%, the balance Cu and usual impurities by the following production steps. (A) Cast alloy into a block, (b) Solution heat treatment at 650 ° C to 800 ° C for 3 to 24 hours, (c) Cool, (d) Aging at 260 ° C to 380 ° C for 15 minutes to 14 days (E) A method for producing a copper alloy, which comprises cooling in air.
【請求項2】Ni 2〜9%、Sn 6〜10%、Mn
0.05〜0.6%、残部がCuおよび通常の不純物
を含有する銅合金に前記製造工程を適用した請求項1に
記載の方法。
2. Ni 2-9%, Sn 6-10%, Mn
The method according to claim 1, wherein the manufacturing step is applied to a copper alloy containing 0.05 to 0.6% and the balance of Cu and usual impurities.
【請求項3】ニッケル対スズの成分比率が、0.3:1
から1:1である、請求項1に記載の方法。
3. The ratio of nickel to tin is 0.3: 1.
The method of claim 1, wherein the ratio is from 1: 1.
【請求項4】製造工程(b)を750℃の温度で4時間
行う、請求項1に記載の方法。
4. The method according to claim 1, wherein the production step (b) is carried out at a temperature of 750 ° C. for 4 hours.
【請求項5】製造工程(c)における冷却操作を急冷に
よって行う、請求項1に記載の方法。
5. The method according to claim 1, wherein the cooling operation in the manufacturing step (c) is performed by quenching.
【請求項6】製造工程(a)の代わりに、ストリップを
鋳造した後に冷間圧延する、請求項1に記載の方法。
6. The method according to claim 1, wherein instead of the production step (a), the strip is cast and then cold-rolled.
【請求項7】Ni 9%、Sn 11%、Mn 0.1
4%、残部Cuおよび通常の不純物を含有する合金を、
次の製造工程によって製造することを特徴とする請求項
1ないし6のいずれか1項に記載の方法。 a)合金をブロックに鋳造し、 b)750℃で4時間溶体化処理し、 c)冷却し、 d)320℃で19.5時間時効し、 d)空気中で冷却する
7. Ni 9%, Sn 11%, Mn 0.1
Alloy containing 4%, balance Cu and normal impurities,
The method according to any one of claims 1 to 6, which is manufactured by the following manufacturing process. a) casting the alloy into blocks, b) solution heat treating at 750 ° C for 4 hours, c) cooling, d) aging at 320 ° C for 19.5 hours, d) cooling in air.
【請求項8】製造工程(b)において溶体化処理を75
0℃で1時間行う、請求項6または7に記載の方法。
8. The solution treatment is applied in the manufacturing step (b) to 75.
The method according to claim 6 or 7, which is performed at 0 ° C for 1 hour.
JP4129039A 1991-06-01 1992-05-21 Production method of copper alloy Expired - Lifetime JP2618560B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4118037 1991-06-01
DE4118037.2 1991-06-01

Publications (2)

Publication Number Publication Date
JPH0625809A true JPH0625809A (en) 1994-02-01
JP2618560B2 JP2618560B2 (en) 1997-06-11

Family

ID=6433001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129039A Expired - Lifetime JP2618560B2 (en) 1991-06-01 1992-05-21 Production method of copper alloy

Country Status (3)

Country Link
JP (1) JP2618560B2 (en)
AU (1) AU649536B2 (en)
CA (1) CA2069023A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2223839C (en) * 1995-06-07 2004-11-09 Castech, Inc. Unwrought continuous cast copper-nickel-tin spinodal alloy
US6716292B2 (en) * 1995-06-07 2004-04-06 Castech, Inc. Unwrought continuous cast copper-nickel-tin spinodal alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331437A (en) * 1989-06-27 1991-02-12 Furukawa Electric Co Ltd:The Copper alloy for sliding and electrification excellent in heat resistance and wear resistance and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260432A (en) * 1979-01-10 1981-04-07 Bell Telephone Laboratories, Incorporated Method for producing copper based spinodal alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331437A (en) * 1989-06-27 1991-02-12 Furukawa Electric Co Ltd:The Copper alloy for sliding and electrification excellent in heat resistance and wear resistance and its production

Also Published As

Publication number Publication date
AU649536B2 (en) 1994-05-26
JP2618560B2 (en) 1997-06-11
CA2069023A1 (en) 1992-12-02
AU1637692A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
US3923558A (en) Copper base alloy
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JPS60215734A (en) Al-base alloy and production of product therefrom
JP2002518598A (en) Tin brass modified by iron
CA1119920A (en) Copper based spinodal alloys
US4525325A (en) Copper-nickel-tin-cobalt spinodal alloy
US4732625A (en) Copper-nickel-tin-cobalt spinodal alloy
JP2618560B2 (en) Production method of copper alloy
US4715910A (en) Low cost connector alloy
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
US3017268A (en) Copper base alloys
JPS62133050A (en) Manufacture of high strength and high conductivity copper-base alloy
JPH0285330A (en) Copper alloy having good press bendability and its manufacture
JPS6299430A (en) Copper alloy for terminal or connector and its manufacture
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS6142772B2 (en)
JPH1053824A (en) Copper alloy for contact material, and its production
JPH0355532B2 (en)
CA1270381A (en) Copper-nickel-tin-cobalt spinodal alloy
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPH01127637A (en) Copper alloy for semiconductor apparatus and production thereof