JPH06258066A - Infinitesimal part force measuring apparatus - Google Patents

Infinitesimal part force measuring apparatus

Info

Publication number
JPH06258066A
JPH06258066A JP1841793A JP1841793A JPH06258066A JP H06258066 A JPH06258066 A JP H06258066A JP 1841793 A JP1841793 A JP 1841793A JP 1841793 A JP1841793 A JP 1841793A JP H06258066 A JPH06258066 A JP H06258066A
Authority
JP
Japan
Prior art keywords
sample
probe
displacement
beam member
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1841793A
Other languages
Japanese (ja)
Other versions
JPH0746051B2 (en
Inventor
Sumio Hosaka
純男 保坂
Shigeyuki Hosoki
茂行 細木
啓二 ▲高▼田
Keiji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1841793A priority Critical patent/JPH0746051B2/en
Publication of JPH06258066A publication Critical patent/JPH06258066A/en
Publication of JPH0746051B2 publication Critical patent/JPH0746051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To accurately detect an infinitesimal part by providing a non-contact displacement meter having a large measuring area at an opposite side to a probe through a beam. CONSTITUTION:When a sample 3 is made to approach a probe 1 by a roughly moving mechanism 11 up to several Angstrom , a force is operated between mostly approached atoms of both surface atoms, a beam 2 is displaced, and it is detected by non-contact displacement measuring means 4. A Z-axis piezo element 9 is so driven by a controller 12 as to hold the change constant, and a gap between the probe 1 and the sample 3 is maintained constant. When it is scanned in two dimensions by X-axis, Y-axis piezo elements 7, 8 while holding this state, the element 9 is varied based on a surface shape of the sample 3 to obtain a three-dimensional shape of the sample surface, and a fine structure can be displayed on a display unit 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微小領域の3次元断面形
状測定装置に係り、特に絶縁物表面の計測に好適な微小
領域の力を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a three-dimensional cross-sectional shape of a minute area, and more particularly to an apparatus for measuring a force in a minute area suitable for measuring an insulator surface.

【0002】[0002]

【従来の技術】従来、微小領域の力検出については、フ
ィジカル、レビュー、レータ56,(1986年)第9
30頁から第933頁(Phys. Rev, Lett, 56,(1
986)pp930−933)において論じられてい
る。
2. Description of the Related Art Conventionally, regarding the detection of force in a minute area, Physical, Review, Later 56, (1986) No. 9
Pages 30 to 933 (Phys. Rev, Lett, 56, (1
986) pp 930-933).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は図2に
示すごとく、はり支持具5により一端支点とされたはり
(板材)2の先端に鋭利な探針1を具備する。試料3の
接近に伴なって、原子間力によりはり2が変位し、該変
位を走査型トンネル顕微鏡(STM)のごとくトンネル
電流を一定に流し、はり2と探針14との間隙を一定に
保つことにより測定する。このような非接触間隙測定方
式を用いることで、力を変位に変換し、変位を測定する
ことによって微小領域の力検出が実行されていた。
As shown in FIG. 2, the above-mentioned prior art is provided with a sharp probe 1 at the tip of a beam (plate member) 2 which is a fulcrum at one end by a beam support 5. As the sample 3 approaches, the beam 2 is displaced by the atomic force, and the displacement causes a constant tunneling current to flow like a scanning tunneling microscope (STM) to make the gap between the beam 2 and the probe 14 constant. Measure by keeping. By using such a non-contact gap measuring method, a force is converted into a displacement, and the displacement is measured to detect the force in a minute region.

【0004】この技術は、力検出のための探針1の剛性
について配慮されていなかった。また、変位測定のため
の安定性、即ち、はり2の測定表面の表面粗さによる測
定誤差の点について配慮がされておらず、検出精度に問
題があった。
This technique does not consider the rigidity of the probe 1 for force detection. Further, the stability for displacement measurement, that is, the measurement error due to the surface roughness of the measurement surface of the beam 2 is not taken into consideration, and there is a problem in detection accuracy.

【0005】[0005]

【課題を解決するための手段】上記の目的は、2つの支
持部を有するはり部材と、はり部材に固定され2つの支
持部の間に位置する探針と、探針に対向して試料を配置
する試料台と、探針と試料の間隔を相対的に移動させる
第1の移動手段と、探針を試料表面に沿って2次元的に
相対的に移動させる第2の移動手段と、探針と試料との
間に働く力によるはり部材の変位を測定する測定手段と
を有することによって達成される。
The above object is to provide a beam member having two supporting portions, a probe fixed to the beam member and located between the two supporting portions, and a sample facing the probe. A sample table to be arranged, a first moving means for relatively moving the space between the probe and the sample, a second moving means for relatively moving the probe two-dimensionally along the sample surface, And a measuring means for measuring the displacement of the beam member due to the force acting between the needle and the sample.

【0006】好適にははり部材の変位を一定に保つよう
に第1の移動手段を制御しながら第2の移動手段を動作
させる制御装置を用いて3次元断面形状を測定する。
Preferably, the three-dimensional cross-sectional shape is measured using a control device that operates the second moving means while controlling the first moving means so as to keep the displacement of the beam member constant.

【0007】以上のように図2のはり2の剛性を向上す
るため、少なくともはり2の両端を固定し、中央部に探
針1を設置する。また、はり2の変位測定での表面凹凸
による微小変位測定誤差を防止するため、大面積で微小
変位を測定できる非接触変位測定手段を設けることも望
ましい。
In order to improve the rigidity of the beam 2 in FIG. 2 as described above, at least both ends of the beam 2 are fixed and the probe 1 is installed in the central portion. It is also desirable to provide a non-contact displacement measuring means capable of measuring a minute displacement in a large area in order to prevent a minute displacement measurement error due to surface unevenness in the displacement measurement of the beam 2.

【0008】[0008]

【作用】両端支持のはり2は、両端支持のため探針軸方
向に自由度を持ち、ねじれ等の運動を防止することがで
きる。このため、はり2の剛性が向上する。また、大面
積の変位検出部分を持つ非接触変位測定器ははり2表面
の凹凸や原子の配列の影響を受けることなく測定するこ
とができる。
The beam 2 which is supported at both ends has a degree of freedom in the axial direction of the probe because it is supported at both ends and can prevent movement such as twisting. Therefore, the rigidity of the beam 2 is improved. Further, the non-contact displacement measuring device having a large-area displacement detecting portion can perform measurement without being affected by the unevenness of the surface of the beam 2 and the arrangement of atoms.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1により説明す
る。図1は微小領域の3次元形状測定器に本発明を応用
した例を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows an example in which the present invention is applied to a three-dimensional shape measuring instrument for a minute area.

【0010】図1において、力の検出部ははり2の両端
を支持具5で支持し、その中央部にダイヤモンド製の先
端が非常に尖った探針1を設置し、はり2を介して探針
1と反対側に容量変位計のような非接触変位計4を設け
る構造とした。
In FIG. 1, the force detecting portion has both ends of a beam 2 supported by supports 5, and a diamond-made probe 1 having a very sharp tip is installed in the center of the beam 2, and a beam 2 is used to search. A non-contact displacement gauge 4 such as a capacitance displacement gauge is provided on the side opposite to the needle 1.

【0011】試料3は粗動機構11の上に設けた3次元
微動機構上の試料台6に搭載される。3次元微動機構は
X軸,Y軸,Z軸ピエゾ素子7,8,9を台座10に図
の様に設置してトライポット型の構成としている。さら
に、力による変位を検出して、その力を一定、即ち、変
位を一定にする様にZ軸ピエゾ素子9を制御するととも
に、2次元走査や探針1に試料3を近ずける粗動機構1
1を制御する制御装置12を有する。表示装置13は試
料の3次元構造を3次元表示する。
The sample 3 is mounted on a sample table 6 on a three-dimensional fine movement mechanism provided on the coarse movement mechanism 11. The three-dimensional fine movement mechanism has a tri-pot type configuration in which X-axis, Y-axis, and Z-axis piezo elements 7, 8 and 9 are installed on a pedestal 10 as shown in the figure. Further, the displacement due to the force is detected, the force is made constant, that is, the Z-axis piezo element 9 is controlled so as to make the displacement constant, and the two-dimensional scanning or the coarse movement to bring the sample 3 closer to the probe 1 is performed. Mechanism 1
1 has a control device 12 for controlling 1. The display device 13 three-dimensionally displays the three-dimensional structure of the sample.

【0012】はり2を厚さ10μm,幅0.5cm,長
さ5cmの銀等で構成すると、約10-12N(ニュート
ン)の力で約1Åの変化が生じる。一方、非接触変位測
定手段4には被測定部分が大面積である容量変位計、光
てこ式の光学変位測定器が使用される。また、粗動機構
11には尺取り虫機構やネジ式あるいは縮小変位機構を
使用したものを使用する。
If the beam 2 is made of silver having a thickness of 10 μm, a width of 0.5 cm, and a length of 5 cm, a force of about 10 −12 N (Newton) causes a change of about 1 Å. On the other hand, as the non-contact displacement measuring means 4, a capacitance displacement meter having a large area to be measured or an optical lever type optical displacement measuring device is used. Further, the coarse movement mechanism 11 uses a scale insect mechanism, a screw type or a reduction displacement mechanism.

【0013】上記の粗動機構11により探針1に試料3
を近接し、数Å程度までに接近すると、双方の表面原子
で最近接同士の原子間に力が働き、はり2の変位が起
り、非接触変位測定手段で検出される。この変化を一定
に保つ様に制御装置12でZ軸ピエゾ素子9を駆動し、
探針1と試料3との間隙を一定に保つ。この状態を保ち
つつ、X軸,Y軸ピエゾ素子7,8で2次元走査する
と、試料3の表面形状に基づいてZ軸ピエゾ素子が変化
して試料表面の3次元形状が得られ、表示装置13に微
細構造を表示することができる。実際の原子間力は10
-9〜10-10Nと言われており、上述のはり構造及び変
位計で十分、表面の原子構造を観察できる。
A sample 3 is attached to the probe 1 by the coarse movement mechanism 11 described above.
When approaching to each other and approaching to a few Å, a force acts between the atoms closest to each other on both surface atoms, and the beam 2 is displaced, which is detected by the non-contact displacement measuring means. The controller 12 drives the Z-axis piezo element 9 so as to keep this change constant,
The gap between the probe 1 and the sample 3 is kept constant. When two-dimensional scanning is performed with the X-axis and Y-axis piezo elements 7 and 8 while maintaining this state, the Z-axis piezo element changes based on the surface shape of the sample 3 to obtain the three-dimensional shape of the sample surface. A fine structure can be displayed at 13. Actual atomic force is 10
It is said to be -9 to 10 -10 N, and the beam structure and displacement meter described above are sufficient to observe the atomic structure of the surface.

【0014】尚、本実施例は構力の影響を受けるような
構成としたが、90゜回転し重力の影響を受けない構成
とすることもできる。また、微小機構や粗動機構を試料
側あるいは力測定部に設置しても良い。探針1はダイヤ
モンド以外に硬度の高いものが良く、先端を鋭く尖らせ
ることが重要であり、イオンエッチングや化学エッチン
グあるいは精密加工技術によって製作されることが望ま
しい。さらに、探針を絶縁物以外のものにすれば、走査
型トンネル顕微鏡としても利用できる。
Although the present embodiment is structured so as to be influenced by the construction force, it may be structured so that it is rotated by 90 ° and is not influenced by gravity. Further, a minute mechanism or a coarse movement mechanism may be installed on the sample side or the force measuring section. The probe 1 is preferably made of a material having a high hardness other than diamond, and it is important to make the tip sharp, and it is desirable to manufacture it by ion etching, chemical etching, or precision processing technology. Furthermore, if the probe is made of something other than an insulator, it can be used as a scanning tunneling microscope.

【0015】本システムは計算機と結合してデータ処理
を行なうことにより、より良い像を得ることができる。
This system can obtain a better image by being combined with a computer for data processing.

【0016】[0016]

【発明の効果】本発明によれば、探針の機械的剛性が増
加し、力の影響を正確に変位に変換する。また、測定面
積の大きい非接触変位測定手段を用いるため、はりの表
面の凹凸の影響を除くことができるので、高精度な微小
部分の微小を検出することができる。また、3次元形状
測定器に応用することにより、全ての材料が測定可能と
なる。また、上記の非接触変位測定手段は通常、大気中
で安定に動作するのでSTMのように真空中での動作の
必要がなくなる。
According to the present invention, the mechanical rigidity of the probe is increased, and the influence of force is accurately converted into displacement. Further, since the non-contact displacement measuring means having a large measuring area is used, it is possible to remove the influence of the unevenness on the surface of the beam, and therefore it is possible to detect the minute portion of the minute portion with high accuracy. Also, by applying it to a three-dimensional shape measuring instrument, all materials can be measured. Moreover, since the above-mentioned non-contact displacement measuring means normally operates stably in the atmosphere, it is not necessary to operate in a vacuum unlike the STM.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す要部構成図。FIG. 1 is a main part configuration diagram showing a configuration of an embodiment of the present invention.

【図2】従来の力測定装置の原理的構成を示す要部構成
図。
FIG. 2 is a main part configuration diagram showing a principle configuration of a conventional force measuring device.

【符号の説明】[Explanation of symbols]

1…探針、2…はり、3…試料、4…測定面積の大きい
非接触変位測定手段、5…はり支持具、6…試料台、7
…X軸ピエゾ素子、8…Y軸ピエゾ素子、9…Z軸ピエ
ゾ素子、10…台座、11…粗動機構、12…制御回
路、13…表示手段。
DESCRIPTION OF SYMBOLS 1 ... Probe, 2 ... Beam, 3 ... Sample, 4 ... Non-contact displacement measuring means with a large measurement area, 5 ... Beam support tool, 6 ... Sample stand, 7
... X-axis piezo element, 8 ... Y-axis piezo element, 9 ... Z-axis piezo element, 10 ... Pedestal, 11 ... Coarse movement mechanism, 12 ... Control circuit, 13 ... Display means.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】2つの支持部を有するはり部材と、該はり
部材に固定され上記2つの支持部の間に位置する探針
と、該探針に対向して試料を配置する試料台と、上記探
針と試料の間隔を相対的に移動させる第1の移動手段
と、上記探針を試料表面に沿って2次元的に相対的に移
動させる第2の移動手段と、上記探針と試料との間に働
く力による上記はり部材の変位を測定する測定手段とを
有する微小部力測定装置。
1. A beam member having two supporting parts, a probe fixed to the beam member and located between the two supporting parts, and a sample stand for arranging a sample facing the probe. First moving means for relatively moving the space between the probe and the sample, second moving means for relatively moving the probe two-dimensionally along the sample surface, the probe and the sample And a measuring means for measuring the displacement of the beam member due to the force acting between
【請求項2】前記はり部材の変位を一定に保つように上
記第1の移動手段を制御しながら前記第2の移動手段を
動作させる制御装置を有する請求項1記載の微小部力測
定装置。
2. The micro-part force measuring device according to claim 1, further comprising a control device for operating the second moving means while controlling the first moving means so as to keep the displacement of the beam member constant.
【請求項3】前記第1の移動手段の動作から前記試料表
面の形状情報を得る手段と、該形状情報を表示する表示
手段を有する請求項2記載の微小部力測定装置。
3. The micro force measuring device according to claim 2, further comprising means for obtaining shape information of the surface of the sample from the operation of the first moving means, and display means for displaying the shape information.
【請求項4】2つの支持部を有するはり部材と、該はり
部材に固定され上記2つの支持部の間に位置する探針と
を用い、該探針に対向して試料を配置し、上記探針と試
料との間に働く力による上記はり部材の変位を測定する
微小部力測定方法。
4. A beam member having two supporting portions and a probe fixed to the beam member and positioned between the two supporting portions are used, and a sample is arranged facing the probe, A minute force measuring method for measuring the displacement of the beam member due to the force acting between the probe and the sample.
【請求項5】上記はり部材の変位を一定に保つように制
御しながら、上記探針を試料表面に沿って2次元的に相
対的に移動させる請求項4記載の微小部力測定方法。
5. The minute force measuring method according to claim 4, wherein the probe is two-dimensionally moved along the surface of the sample while controlling the displacement of the beam member to be constant.
JP1841793A 1993-02-05 1993-02-05 Micro force measuring device Expired - Lifetime JPH0746051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1841793A JPH0746051B2 (en) 1993-02-05 1993-02-05 Micro force measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1841793A JPH0746051B2 (en) 1993-02-05 1993-02-05 Micro force measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62170942A Division JPH0752102B2 (en) 1987-07-10 1987-07-10 Micro-part force measuring method and device

Publications (2)

Publication Number Publication Date
JPH06258066A true JPH06258066A (en) 1994-09-16
JPH0746051B2 JPH0746051B2 (en) 1995-05-17

Family

ID=11971089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1841793A Expired - Lifetime JPH0746051B2 (en) 1993-02-05 1993-02-05 Micro force measuring device

Country Status (1)

Country Link
JP (1) JPH0746051B2 (en)

Also Published As

Publication number Publication date
JPH0746051B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
EP1189240B1 (en) Multi-probe measuring device and method of use
US7387035B2 (en) Method of making a force curve measurement on a sample
EP1829050B1 (en) Scanner for probe microscopy
KR101807186B1 (en) Low drift scanning probe microscope
Bhushan et al. Scanning probe microscopy–principle of operation, instrumentation, and probes
Fu et al. Long‐range scanning for scanning tunneling microscopy
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
JP2533728B2 (en) Measuring device and measuring method
JPH06258066A (en) Infinitesimal part force measuring apparatus
JP4714820B2 (en) Fine processing equipment
JP3272314B2 (en) measuring device
JPH0752102B2 (en) Micro-part force measuring method and device
JP2925114B2 (en) measuring device
JP2533728C (en)
JPH06258072A (en) Piezoelectric element thin film evaluating apparatus, interatomic force microscope
JPH0526662A (en) Scanning type interatomic force/magnetic force microscope and analogous device thereof
JPH079363B2 (en) Surface mechanical property measuring device
JP3892184B2 (en) Scanning probe microscope
Binggeli et al. Novel design for a compact fiber‐optic scanning force microscope
JP3597613B2 (en) Scanning probe microscope
JPH0989550A (en) High-accuracy surface configuration measuring method and device
JPH0526661A (en) Positioning device
JPH01259210A (en) Surface shape measuring instrument
JPH0835972A (en) Simplified spm apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080517