JPH0625774B2 - Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe- - Google Patents

Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe-

Info

Publication number
JPH0625774B2
JPH0625774B2 JP1049264A JP4926489A JPH0625774B2 JP H0625774 B2 JPH0625774 B2 JP H0625774B2 JP 1049264 A JP1049264 A JP 1049264A JP 4926489 A JP4926489 A JP 4926489A JP H0625774 B2 JPH0625774 B2 JP H0625774B2
Authority
JP
Japan
Prior art keywords
concentration
optical fiber
photothermal effect
measurement method
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1049264A
Other languages
Japanese (ja)
Other versions
JPH02228566A (en
Inventor
登 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1049264A priority Critical patent/JPH0625774B2/en
Publication of JPH02228566A publication Critical patent/JPH02228566A/en
Publication of JPH0625774B2 publication Critical patent/JPH0625774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 これまで,流体の非接触測定に,空間分解能が高い,応
答が速い,較正の必要がないなどのすぐれた特色をもつ
レーザ・ドップラ流速計(LDV)が広く使用されてい
る。しかし,LDVは散乱粒子を流体中に含むか,含ま
ない場合には,混入分散させる必要があり,使用上,種
々の用途制限を受ける。最近,散乱粒子を必要としな
い,ガス速度や濃度を測定する方法として,光熱分光法
が注目されている。レーザ・ビームをガス中に照射し
て,そのエネルギーの1部または大部分が熱エネルギー
に変換されガスの温度上昇をもたらす。これによって生
じた屈折率変化(フォトサーマル効果)を別のプローブ
ビームの偏向から測定するphoto-thermal deflection s
pectroscopyが行われてきた。しかし,位相勾配を測定
するもので,簡便な方法ではあるが現象を直接解析し,
理解できない,精度が少し悪い等の問題があった。
DETAILED DESCRIPTION OF THE INVENTION Laser non-contact Doppler velocimeters (LDVs) have been widely used for non-contact measurement of fluids because of their excellent features such as high spatial resolution, fast response, and no need for calibration. ing. However, when the LDV contains or does not contain the scattering particles in the fluid, it is necessary to mix and disperse them, and there are various application restrictions in use. Recently, photothermal spectroscopy has been attracting attention as a method of measuring gas velocity and concentration that does not require scattering particles. Irradiation of a laser beam into a gas causes some or most of its energy to be converted to thermal energy, which causes a temperature rise in the gas. The change in refractive index (photothermal effect) caused by this is measured from the deflection of another probe beam.
pectroscopy has been done. However, it is a simple method to measure the phase gradient, but it directly analyzes the phenomenon,
There were problems such as incomprehension and a little inaccuracy.

本特許の方法では,フォトサーマル効果によって生じた
流体中の位相変化そのものを測定し,感度の向上をはか
るため,光ヘテロダイン干渉計をプローブに用いた。光
ヘテロダイン干渉法は,光干渉法のなかでも測定位相と
干渉計出力との間に線形関係が成立し,また高感度であ
るため,注目されている。しかし,ヘテロダイン干渉法
は高感度である反面,干渉計に共通することであるが,
参照光路を必要とし,測定光路と異なるため,外乱の影
響を受けやすい。この問題は,光ファイバを用いて,光
学系を簡単化しプローブ化する時に重大になる。光ファ
イバ光路は,温度変化や振動の影響を受け易いためであ
る。そこで,本特許では,外乱の影響を受けにくくする
ため,特殊マッハツエンダ型干渉計を2つ用いた光ファ
イバ共通光路干渉計を新しく開発し,光ファイバ中の外
乱の影響を除去した。
In the method of this patent, an optical heterodyne interferometer is used as a probe in order to measure the phase change itself in the fluid caused by the photothermal effect and to improve the sensitivity. The optical heterodyne interferometry is drawing attention because it has a linear relationship between the measurement phase and the interferometer output among the optical interferometry and has high sensitivity. However, while heterodyne interferometry is highly sensitive, it is common to interferometers.
Since it requires a reference light path and is different from the measurement light path, it is easily affected by disturbance. This problem becomes serious when an optical system is used to simplify and probe an optical system. This is because the optical fiber optical path is easily affected by temperature changes and vibrations. Therefore, in this patent, in order to reduce the influence of disturbance, a new optical fiber common optical path interferometer using two special Mach-Zehnder interferometers was newly developed to eliminate the influence of disturbance in the optical fiber.

本特許の測定光学系の略図を図1に示す。先ず,ヘテロ
ダイン干渉計プローブ部について記す。光源He−Ne
レーザla.HNから出射した周波数νの直線偏光はビーム
スプリッタPBSで,2ビームに分割され,2つの音響
光学素子(AOM1,AOM2)にそれぞれ入射する。AOM1からは4
0MHz+438kHz,AOM2からは,40MHz周波数偏移したν1
ν2のビームが出射される。外乱の影響を少くするため
それぞれのビームは偏波面保存光ファイバf1,f2の屈折
率主軸に偏光方向を合わせて,ファイバに入射させる。
f1,f2からの出力の際にも干渉出力を大きくするため,
各々のファイバの屈折率主軸を合わせた。検出器PD1の
受光面上で,f1を出射してビームスプリッタBS1→ミラ
ーm1→BS1→PD1と伝播してきた周波数ν1の光と,f2を
出射してビームスプリッタBS2→測定流体ce.→BS1→PD
1と伝播してきた周波数ν2の光との干渉ビートが検出さ
れる。同様に検出器PD2で干渉ビートが検出される。両
者の干渉ビートに,AOM1,2,f1,2,の位相が,同符号で含
まれ,BS1とm1との間の位相,BS2とm2の間の位相,測定
したいBS1とBS2との間の位相が,逆符号で含まれる。位
相計で両者の干渉ビートの位相差を検出すると,前者の
同符号部分の位相が,キャンセルされ,後者の測定した
い部分は,2倍に検出される。したがって光ファイバの
部分の外乱の影響を除去できる。
A schematic diagram of the measurement optics of this patent is shown in FIG. First, the heterodyne interferometer probe section will be described. Light source He-Ne
The linearly polarized light of the frequency ν emitted from the laser la.HN is split into two beams by the beam splitter PBS and is incident on the two acousto-optic elements (AOM1, AOM2) respectively. 4 from AOM1
0MHz + 438kHz, from AOM2, ν 1 , which is 40MHz frequency deviation,
A beam of ν 2 is emitted. In order to reduce the influence of disturbance, the respective beams are incident on the polarization-maintaining optical fibers f1 and f2 with their polarization directions aligned with the principal axes of the refractive indices.
In order to increase the interference output even when outputting from f1 and f2,
The principal axes of refractive index of each fiber were aligned. On the light receiving surface of the detector PD1, the light of the frequency ν 1 which is emitted from f1 and propagated through the beam splitter BS1 → mirror m1 → BS1 → PD1 and f2 is emitted from the beam splitter BS2 → measurement fluid ce. → BS1 → PD
An interference beat with light having a frequency of ν 2 propagating with 1 is detected. Similarly, an interference beat is detected by the detector PD2. The interference beats of both contain the phases of AOM1,2, f1,2, with the same sign, and the phase between BS1 and m1, the phase between BS2 and m2, and the phase between BS1 and BS2 to be measured. The phase is included with the opposite sign. When the phase difference between the two interference beats is detected by the phase meter, the phase of the former same-sign portion is canceled, and the latter portion to be measured is doubled. Therefore, it is possible to eliminate the influence of disturbance on the optical fiber portion.

励起用光源la.Cとしては,使用流体の吸収線に合わせた
連続光源をチヨッパでパルス化して用いるか,パルス光
源を用いる。濃度測定の場合には,フォトサーマル効果
によって生じた位相変化をその点に重ねて設置した前記
ヘテロダイン干渉プローブで検出し,その初期値からも
とめる。速度は,その位相変化の曲線の変化を解析し
て,求める。また,速度については,検出プローブの位
置を励起点から下流の位置に設定しタイム・フライト式
に求める。
As the excitation light source la.C, a continuous light source matched to the absorption line of the fluid used is pulsed with a chipper, or a pulsed light source is used. In the case of the concentration measurement, the phase change caused by the photothermal effect is detected by the heterodyne interference probe placed at the point and is found from its initial value. The velocity is obtained by analyzing the change in the curve of the phase change. Regarding the velocity, the position of the detection probe is set at a position downstream from the excitation point, and the velocity is calculated by the time flight formula.

【図面の簡単な説明】[Brief description of drawings]

図1は,外乱除去型ヘテロダイン干渉法光ファイバプロ
ーブを検出に用いた,フォトサーマル効果による流体の
速度と濃度の測定光学系。
Fig. 1 shows an optical system for measuring the velocity and concentration of a fluid by the photothermal effect, which uses a disturbance-removing heterodyne interferometry optical fiber probe for detection.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体の速度と濃度の測定のために,励起レ
ーザ焦点位置と重ねるか,後流に設置し,フォトサーマ
ル効果を検出する装置に関するもので,外乱除去を特長
とする差動型ヘテロダイン干渉計である。該干渉計は,
特殊マッハツエンダ型干渉計を2つ用いた共通光路型の
構成で,2つの周波数偏移したレーザ・ビームの干渉計
までの誘導路の位相をキャンセルするため,該レーザ・
ビームを流体中を反対向きに対向させて通過させるとと
もに,該測定ビームと参照ビームを干渉させることと,
測定ビームと参照ビームに分割する役目をする対称に配
置された2枚のビームスプリッタ,参照ビームを反射す
る対称に配置された2枚の全反射ミラーからなる装置。
Claim: What is claimed is: 1. A differential type device for detecting the photothermal effect, which is placed on the focal point of an excitation laser or is installed in a wake of the laser to measure the velocity and concentration of a fluid. It is a heterodyne interferometer. The interferometer is
With a common optical path type configuration using two special Mach-Zehnder interferometers, in order to cancel the phase of the guide path to the interferometer of two frequency-shifted laser beams, the laser
Allowing the beam to pass through the fluid in opposite directions and causing the measurement beam and the reference beam to interfere with each other;
A device consisting of two symmetrically arranged beam splitters that serve to split the measurement beam and the reference beam, and two symmetrically arranged total reflection mirrors that reflect the reference beam.
JP1049264A 1989-03-01 1989-03-01 Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe- Expired - Fee Related JPH0625774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049264A JPH0625774B2 (en) 1989-03-01 1989-03-01 Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe-

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049264A JPH0625774B2 (en) 1989-03-01 1989-03-01 Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe-

Publications (2)

Publication Number Publication Date
JPH02228566A JPH02228566A (en) 1990-09-11
JPH0625774B2 true JPH0625774B2 (en) 1994-04-06

Family

ID=12825970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049264A Expired - Fee Related JPH0625774B2 (en) 1989-03-01 1989-03-01 Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe-

Country Status (1)

Country Link
JP (1) JPH0625774B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182524A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd System for detecting change in light frequency

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182524A (en) * 1982-04-20 1983-10-25 Sumitomo Electric Ind Ltd System for detecting change in light frequency

Also Published As

Publication number Publication date
JPH02228566A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
EP0271188B1 (en) Laser doppler displacement measuring apparatus
US7259862B2 (en) Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer
US4948257A (en) Laser optical measuring device and method for stabilizing fringe pattern spacing
CN102564318B (en) High precision absolute displacement measurement system based on optical fiber composite interference
JPH051414B2 (en)
JPH09325005A (en) Device for measuring deflection
JP2755757B2 (en) Measuring method of displacement and angle
US8842291B2 (en) Interferometric quasi-autocollimator
Levin et al. Fiber optic velocity interferometer with very short coherence length light source
US3680963A (en) Apparatus for measuring changes in the optical refractive index of fluids
US6563593B2 (en) Dynamic angle measuring interferometer
JPH03180704A (en) Laser interference gauge
JP2996704B2 (en) Optical sensor with multimode interference
US4906095A (en) Apparatus and method for performing two-frequency interferometry
US4171915A (en) Laser interferometer probe
JPH0245138B2 (en)
JPH0625774B2 (en) Measurement Method of Fluid Velocity and Concentration Using Photothermal Effect-Disturbance Rejection Type Heterodyne Interferometry Optical Fiber Probe-
JP2006038765A (en) Absorption measurement apparatus
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP2760830B2 (en) Optical measuring device for displacement
US11815404B2 (en) High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell
JP2024056589A (en) Optical rangefinder
JP3491230B2 (en) Optical interferometer displacement sensor
RU2261449C2 (en) Device for measuring speed of motion of transportation vehicle
Wang Phase modulation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees