JPH06257430A - Cooling system for engine - Google Patents

Cooling system for engine

Info

Publication number
JPH06257430A
JPH06257430A JP6759693A JP6759693A JPH06257430A JP H06257430 A JPH06257430 A JP H06257430A JP 6759693 A JP6759693 A JP 6759693A JP 6759693 A JP6759693 A JP 6759693A JP H06257430 A JPH06257430 A JP H06257430A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
path
water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6759693A
Other languages
Japanese (ja)
Other versions
JP3389279B2 (en
Inventor
Shigeki Nakatani
茂樹 中谷
Yasushi Akatsuka
靖 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP06759693A priority Critical patent/JP3389279B2/en
Publication of JPH06257430A publication Critical patent/JPH06257430A/en
Application granted granted Critical
Publication of JP3389279B2 publication Critical patent/JP3389279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve fuel consumption by reconciling the promotion of temperature-up and the restrain of overheating of lubricating oil in an engine having an oil cooler, etc., for performing heat exchange with cooling water. CONSTITUTION:This device is provided with a first cooling water path, which is set in low temperature and in which cooling water, supplied to a cylinder head 1 from a water pump 4, is returned to a water pump 4 via a radiator 7 or detouring around the radiator 7; and a second cooling water path, which is set in high temperature and in which cooling water supplied to a cylinder block 2 from the water pump 4, is returned to the water pump 4 via the radiator 7 or a heater 10 and detoured the radiator 7. Also an oil cooler 3 is arranged in a path, in which cooling water is returned from the cylinder head 1 while detouring the radiator 7. An electromagnetic valve 16 is arranged on the oil cooler 3 upstream of the path. Cooling water from the cylinder heat 1 side and that from the cylinder block 2 side are selectively introduced according to water temperature and an engine load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリンダヘッドとシリン
ダブロックとを別々の経路によって冷却する液冷2系統
式のエンジンの冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid cooling two-system engine cooling device for cooling a cylinder head and a cylinder block by separate paths.

【0002】[0002]

【従来の技術】シリンダヘッドをシリンダブロックに対
しより強力に冷却するようエンジンの冷却液経路を2系
統に構成することが従来から行われている。特開昭60
ー43119号公報に示された冷却装置はその一例であ
って、シリンダヘッドの冷却はラジエータを含む通常の
冷却水経路によって行い、一方、シリンダブロックの冷
却は、潤滑油の循環によって行い、その潤滑油循環の経
路を冷却水との間で熱交換を行う経路と熱交換を行わな
い経路とに油温に応じて切り換え、それによって、油温
の上昇を速めて暖機を促進するとともに、暖機後はシリ
ンダブロックを冷却する潤滑油の温度に対しシリンダヘ
ッドを冷却する冷却水の温度を低くしてシリンダヘッド
側をより強力に冷却するようにしている。
2. Description of the Related Art Conventionally, it has been practiced to construct a cooling liquid passage of an engine into two systems so as to cool a cylinder head more strongly than a cylinder block. JP-A-60
The cooling device disclosed in Japanese Patent Laid-Open No. 43119 is an example, and the cylinder head is cooled by a normal cooling water path including a radiator, while the cylinder block is cooled by circulating lubricating oil. Depending on the oil temperature, the oil circulation path is switched between heat exchange with the cooling water and heat exchange with the cooling water, thereby speeding up the oil temperature and promoting warm-up. After the machine, the temperature of the cooling water for cooling the cylinder head is made lower than the temperature of the lubricating oil for cooling the cylinder block, so that the cylinder head side is cooled more strongly.

【0003】また、それとは別に、エンジンの潤滑油を
エンジン冷却水との熱交換によって冷却するオイルクー
ラを装備したエンジンが従来から知られている。
Separately from the above, an engine equipped with an oil cooler for cooling the lubricating oil of the engine by heat exchange with the engine cooling water has been conventionally known.

【0004】[0004]

【発明が解決しようとする課題】一般に、上記のように
潤滑油をエンジン冷却水との熱交換によって冷却するオ
イルクーラを装備したエンジンにおいては、冷却水の温
度上昇が緩慢であるため潤滑油の温度が適温まで上昇す
るのに時間がかかり、そのために暖機が遅くなり、ま
た、潤滑油の粘度が高い状態が長く続くため、エンジン
各部やオイルクーラ内部での摩擦抵抗が増大し燃費性能
が悪化するという問題があった。
Generally, in an engine equipped with an oil cooler for cooling the lubricating oil by heat exchange with the engine cooling water as described above, the temperature of the cooling water rises slowly, so It takes time for the temperature to rise to the optimum temperature, which slows warm-up, and because the viscosity of the lubricating oil continues to be high for a long time, friction resistance inside the engine parts and the oil cooler increases and fuel consumption performance increases. There was a problem of getting worse.

【0005】シリンダヘッドを冷却水によって冷却する
とともにシリンダブロックを潤滑油によって冷却するよ
うにしたエンジンの場合には、上記特開昭60−431
19号公報記載の装置のように循環油経路を冷却水との
間で熱交換を行う経路と熱交換を行わない経路とに切り
換える手段を設けることにより、暖機過程ではシリンダ
ヘッド側の比較的温度の高い冷却水との熱交換によって
油温上昇を促進し、暖機後は冷却水との熱交換を停止す
ることによって水温以上に油温を上昇させ、また、油温
が一定温度以上になると再び冷却水と熱交換させて潤滑
油の過加熱を抑えるようにすることもできる。しかし、
シリンダブロックを含めたエンジン各部の冷却を専ら冷
却水によって行い、かつ、冷却水によって潤滑油を冷却
するオイルクーラを装備したエンジンでは、上記公報記
載のような手段は適用できず、油温上昇の促進と過加熱
の抑制を両立させることが困難であった。
In the case of an engine in which the cylinder head is cooled by cooling water and the cylinder block is cooled by lubricating oil, the above-mentioned JP-A-60-431 is used.
By providing a means for switching the circulating oil path between a path for exchanging heat with the cooling water and a path for not exchanging heat with the cooling water as in the apparatus described in Japanese Patent Publication No. 19 publication, in the warming-up process, the cylinder head side relatively The oil temperature is accelerated by heat exchange with high-temperature cooling water, and after warming up, the heat exchange with cooling water is stopped to raise the oil temperature above the water temperature, and when the oil temperature rises above a certain temperature. Then, heat exchange with the cooling water can be performed again to suppress overheating of the lubricating oil. But,
In an engine equipped with an oil cooler that exclusively cools each part of the engine including the cylinder block with cooling water, and also cools the lubricating oil with the cooling water, the means described in the above publication cannot be applied, and the oil temperature rise It was difficult to achieve both acceleration and suppression of overheating.

【0006】また、同様の問題はオイルクーラに限らず
エンジン冷却水との間で熱交換を行う他の受熱部材につ
いても発生し得る。
The same problem may occur not only in the oil cooler but also in other heat receiving members that exchange heat with the engine cooling water.

【0007】本発明は上記問題点に鑑みてなされたもの
であって、冷却水との間で熱交換を行うエンジン潤滑油
等の温度上昇の促進と過加熱の抑制を両立させ燃費性能
を高めることを目的とする。
The present invention has been made in view of the above problems, and enhances fuel efficiency by promoting both the temperature rise of engine lubricating oil that exchanges heat with cooling water and the suppression of overheating. The purpose is to

【0008】[0008]

【課題を解決するための手段】本発明は、シリンダヘッ
ドをシリンダブロックに対しより強力に冷却するよう冷
却水経路を2系統に構成する場合にシリンダヘッド側へ
供給する冷却水の温度をシリンダブロック側への冷却水
の温度より低い温度に設定することに着目し、この2系
統式の冷却装置を利用することによってオイルクーラ等
受熱部材を流れる潤滑油等の温度上昇の促進と過加熱の
抑制の両立が可能となることを見いだしたものである。
そして、その構成は、シリンダヘッドへ冷却水を供給す
る第1の冷却水経路と、シリンダブロックへ冷却水を供
給する第2の冷却水経路と、エンジン始動後第1の冷却
水経路の水温を第1の設定温度まで上昇させ第1の設定
温度に保持する第1の水温調整手段と、エンジン始動後
前記第2の冷却水経路の水温を第1の設定温度より高温
側の第2の設定温度まで上昇させ第2の設定温度に保持
する第2の水温調整手段とからなる2系統式のエンジン
の冷却装置において、切換手段を介しシリンダヘッド通
過後の第1の冷却水経路からの冷却水とシリンダブロッ
ク通過後の第2の冷却水経路からの冷却水を受熱部材へ
選択的に導入する受熱経路を設けたことを特徴とする。
According to the present invention, the temperature of the cooling water supplied to the cylinder head side is set to the cylinder block side when the cooling water path is constituted by two systems so as to cool the cylinder head more strongly to the cylinder block. Focusing on setting the temperature lower than the temperature of the cooling water to the side, by utilizing this two-system type cooling device, promotion of temperature rise of the lubricating oil flowing through the heat receiving member such as the oil cooler and suppression of overheating It has been found that it is possible to achieve both.
Then, the configuration is such that the water temperature of the first cooling water path for supplying the cooling water to the cylinder head, the second cooling water path for supplying the cooling water to the cylinder block, and the water temperature of the first cooling water path after the engine is started. First water temperature adjusting means for raising the temperature to a first set temperature and maintaining the first set temperature, and a second setting for setting the water temperature of the second cooling water path after engine start is higher than the first set temperature. In a two-system engine cooling device comprising a second water temperature adjusting means for raising the temperature to a second set temperature and maintaining the second set temperature, the cooling water from the first cooling water passage after passing through the cylinder head via the switching means. And a heat receiving path for selectively introducing cooling water from the second cooling water path after passing through the cylinder block to the heat receiving member.

【0009】前記切換手段は、シリンダヘッド通過後の
第1の冷却水経路の水温およびシリンダブロック通過後
の第2の冷却水経路の水温が所定温度以下の冷間時には
第1の冷却水経路からの冷却水を受熱部材へ導入し、前
記シリンダヘッド通過後の第1の冷却水経路の水温およ
びシリンダブロック通過後の第2の冷却水経路の水温が
所定温度を越えた温間時には第2冷却水経路からの冷却
水を受熱部材へ導入するよう水温に応じて作動するもの
とし、それによって受熱部材を流れる潤滑油等の温度上
昇を促進し燃費向上を図ることができる。
[0009] The switching means, when the water temperature of the first cooling water passage after passing through the cylinder head and the water temperature of the second cooling water passage after passing through the cylinder block are equal to or lower than a predetermined temperature, are from the first cooling water passage. Second cooling water is introduced into the heat receiving member, and when the water temperature of the first cooling water passage after passing through the cylinder head and the water temperature of the second cooling water passage after passing through the cylinder block exceed a predetermined temperature, the second cooling is performed. The cooling water from the water passage is operated according to the water temperature so as to be introduced into the heat receiving member, whereby the temperature rise of the lubricating oil or the like flowing through the heat receiving member can be promoted and fuel efficiency can be improved.

【0010】また、前記切換手段はシリンダヘッド通過
後の第1の冷却水経路の水温およびシリンダブロック通
過後の第2の冷却水経路の水温が所定温度以下の冷間時
には第1の冷却水経路からの冷却水を受熱部材へ導入
し、シリンダヘッド通過後の第1の冷却水経路の水温お
よびシリンダブロック通過後の第2の冷却水経路の水温
が所定温度を越えるとともにエンジンの負荷が所定負荷
以下の温間低負荷時には第2冷却水経路からの冷却水を
受熱部材へ導入し、また、シリンダヘッド通過後の第1
の冷却水経路の水温およびシリンダブロック通過後の第
2の冷却水経路の水温が所定温度を越えるとともにエン
ジンの負荷が所定負荷を越える温間高負荷時には第1冷
却水経路からの冷却水を受熱部材へ導入するよう水温お
よび負荷に応じて作動するものとし、それによって受熱
部材を流れる潤滑油等の過加熱を抑制しつつ該潤滑油等
を高温に保持する緻密な制御を実現して一層の燃費向上
を図ることができる。
Further, the switching means is configured such that, when the water temperature of the first cooling water passage after passing through the cylinder head and the water temperature of the second cooling water passage after passing through the cylinder block are equal to or lower than a predetermined temperature, the first cooling water passage is cold. Cooling water from the first cooling water path after passing through the cylinder head and the water temperature of the second cooling water path after passing through the cylinder block exceed a predetermined temperature, and the engine load reaches a predetermined load. During the following warm low load, the cooling water from the second cooling water path is introduced into the heat receiving member, and the first cooling water is passed through the first head.
The cooling water from the first cooling water passage receives heat when the temperature of the cooling water passage and the water temperature of the second cooling water passage after passing through the cylinder block exceed a predetermined temperature and the engine load exceeds a predetermined load during a warm high load. It should be operated according to the water temperature and load so as to be introduced into the member, thereby realizing precise control that keeps the lubricating oil or the like at a high temperature while suppressing overheating of the lubricating oil or the like flowing through the heat receiving member. It is possible to improve fuel efficiency.

【0011】ここで、第1の水温調整手段は、例えば、
ラジエータと、水温に応じて作動し第1の設定温度以下
のときは第1の冷却水経路をラジエータを迂回する経路
に切り換え、第1の設定温度を越えたときはラジエータ
を通る経路に切り換えるサーモスタットバルブ等で構成
する。また、前記第2の水温調整手段は、例えば、ラジ
エータと、電気式のヒータと、第2の設定温度以下のと
きは第2の冷却水経路をラジエータを迂回しヒータを通
る経路に切り換え、第2の設定温度を越えたときはヒー
タを迂回しラジエータを通る経路に切り換える他のサー
モスタットバルブ等で構成する。
Here, the first water temperature adjusting means is, for example,
A thermostat that operates according to the radiator and the water temperature and switches the first cooling water path to a path that bypasses the radiator when the temperature is below the first set temperature, and switches to the path that passes through the radiator when the first set temperature is exceeded. Consists of a valve, etc. Further, the second water temperature adjusting means switches, for example, a radiator, an electric heater, and a second cooling water path to a path that bypasses the radiator and passes through the heater when the temperature is equal to or lower than the second set temperature. When the set temperature of 2 is exceeded, it is composed of another thermostat valve or the like that bypasses the heater and switches to a path that passes through the radiator.

【0012】[0012]

【作用】第1の水温調整手段は、エンジン始動後、シリ
ンダヘッドへ冷却水を供給する第1の冷却水経路の水温
を暖機進行に伴うエンジンからの受熱によりシリンダヘ
ッド冷却に適した第1の設定温度まで上昇させ、水温の
それ以上の上昇を抑えて第1の設定温度に保持する。ま
た、第2の水温調整手段は、エンジン始動後、シリンダ
ブロックへ冷却水を供給する第2の冷却水経路の水温を
暖機進行に伴うエンジンからの受熱により前記第1の設
定温度より高温側でシリンダブロックの冷却に適した第
2の設定温度まで上昇させ、それ以上の水温上昇を抑え
て第2の設定温度に保持する。その際、第1の冷却水経
路の冷却水はシリンダブロックより高温のシリンダヘッ
ドから受熱することによって水温が比較的速く上昇し、
低温側の上記第1の設定温度で安定する。これに対し、
第2の冷却水経路シリンダヘッドほど温度の高くないシ
リンダブロックから受熱することによって水温が比較的
緩やかに上昇するが、第2の水温調整手段により高温側
の第2の設定温度で安定する。
The first water temperature adjusting means is suitable for cooling the cylinder head because the water temperature of the first cooling water passage for supplying the cooling water to the cylinder head after the engine is started is received by the engine as the warming-up process proceeds. To the first set temperature by suppressing further increase in the water temperature. In addition, the second water temperature adjusting means receives the water temperature of the second cooling water path for supplying the cooling water to the cylinder block after the engine is started, by the heat received from the engine accompanying the warming-up process, at a temperature higher than the first set temperature. Then, the temperature is raised to the second set temperature suitable for cooling the cylinder block, and further increase of the water temperature is suppressed to maintain the second set temperature. At this time, the cooling water in the first cooling water path receives heat from the cylinder head, which is hotter than the cylinder block, so that the water temperature rises relatively quickly,
It stabilizes at the first set temperature on the low temperature side. In contrast,
The water temperature rises relatively gently by receiving heat from the cylinder block whose temperature is not higher than that of the second cooling water passage cylinder head, but is stabilized at the second set temperature on the high temperature side by the second water temperature adjusting means.

【0013】オイルクーラ等の受熱部材に冷却水を導入
する受熱経路は、シリンダヘッド通過後の第1の冷却経
路からの冷却水を導入する経路とシリンダブロック通過
後の第2の冷却水経路からの冷却水を導入する経路とに
切り換え可能であり、それによって、受熱部材を流れる
潤滑油等の昇温速度の調整と過加熱の抑制が可能とな
る。そして、切換手段が水温に応じて作動する場合に、
冷間時には温度上昇の早い第1の冷却水経路からの冷却
水が受熱部材へ導入されることによって受熱部材を流れ
る潤滑油等の温度上昇が促進され、また、温間時には高
温で安定した第2冷却水経路からの冷却水が受熱部材へ
導入されることによって潤滑油等が高温に保持される。
また、切換手段が水温および負荷に応じて作動する場合
に、冷間時には温度上昇の早い第1の冷却水経路からの
冷却水が受熱部材へ導入されることによって潤滑油等の
温度上昇が促進され、温間低負荷時には高温安定の第2
冷却水経路からの冷却水が受熱部材へ導入されることに
よって潤滑油等が高温に保持され、また、温間高負荷時
には低温安定の第1の冷却水経路からの冷却水が受熱経
路に導入されることによって受熱部材を流れる潤滑油等
の過加熱が抑制される。特にこの場合は、温間時でも過
加熱の心配のない低負荷時に限って第2の冷却水経路か
ら高温の冷却水を導入するため、シリンダブロック側の
設定温度を高くすることが可能で、潤滑油等の温度設定
を一層高くでき、一層の燃費向上を実現できる。
The heat receiving path for introducing the cooling water to the heat receiving member such as an oil cooler is provided from a path for introducing the cooling water from the first cooling path after passing through the cylinder head and a second cooling water path after passing through the cylinder block. It is possible to switch to the path for introducing the cooling water, which makes it possible to adjust the rate of temperature rise of the lubricating oil or the like flowing through the heat receiving member and suppress overheating. When the switching means operates according to the water temperature,
By introducing the cooling water from the first cooling water passage, which has a rapid temperature rise during cold, to the heat receiving member, the temperature rise of the lubricating oil and the like flowing through the heat receiving member is promoted, and at the time of warming, the temperature is stable at a high temperature. (2) By introducing the cooling water from the cooling water path to the heat receiving member, the lubricating oil and the like are kept at a high temperature.
Further, when the switching means operates in accordance with the water temperature and the load, the cooling water from the first cooling water path, which has a rapid temperature rise during cold, is introduced into the heat receiving member, so that the temperature rise of the lubricating oil or the like is promoted. The second, which is stable at high temperature when the load is warm and low
Lubricating oil is kept at a high temperature by introducing cooling water from the cooling water path to the heat receiving member, and cooling water from the first cooling water path that is stable at low temperature is introduced to the heat receiving path during warm high load. As a result, overheating of the lubricating oil or the like flowing through the heat receiving member is suppressed. Especially in this case, since the high-temperature cooling water is introduced from the second cooling water path only when the load is low and there is no fear of overheating even during warming, it is possible to increase the set temperature on the cylinder block side. It is possible to further increase the temperature setting of lubricating oil and the like, and to realize further improvement in fuel consumption.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の一実施例であるエンジンの
冷却装置の全体図である。図において、1はエンジンの
シリンダヘッドを示し、2は同シリンダブロックを示
す。また、3はエンジン潤滑油を冷却するオイルクーラ
を示す。
FIG. 1 is an overall view of an engine cooling device according to an embodiment of the present invention. In the figure, 1 indicates an engine cylinder head, and 2 indicates the same cylinder block. Further, 3 indicates an oil cooler for cooling the engine lubricating oil.

【0016】この実施例のエンジンの冷却装置は、ウォ
ータポンプ4の吐出口とシリンダブロック2内の冷却水
通路とを接続する第1の導管5と、該第1の導管5から
分岐してウォータポンプ4の吐出口をシリンダヘッド1
内の冷却水通路に接続する第2の導管6と、シリンダヘ
ッド1内の冷却水通路の出口をラジエータ7を介してウ
ォータポンプ4の吸込口に接続する第3の導管8と、シ
リンダブロック2内の冷却水通路の出口をラジエータ7
より上流で前記第3の導管8に接続する第4の導管9
と、この第4の導管9から分岐しシリンダブロック2の
吐出口を電気式のヒータ10を介してラジエータ7より
下流で前記第3の導管8に接続する第5の導管11と、
この第5の導管11と前記第3の導管8との接続部に配
置された第1のサーモスタットバルブ12と、第5の導
管11と前記第4の導管9との分岐部に配置された第2
のサーモスタットバルブ13と、前記第3の導管8の前
記第4の導管9との接続部より上流から分岐してオイル
クーラ3を通りラジエータ7および前記第1のサーモス
タットバルブ12を迂回してウォータポンプ4の吸込口
手前で再び第3の導管8に合流する第6の導管14と、
前記第5の導管11の前記第2のサーモスタットバルブ
13より上流から分岐してオイルクーラ3の上流で前記
第6の導管14に接続する第7の導管15と、この第7
の導管15と前記第6の導管14との接続部に配置され
た電磁弁16を備えている。
In the engine cooling apparatus of this embodiment, the first conduit 5 connecting the discharge port of the water pump 4 and the cooling water passage in the cylinder block 2 and the water branched from the first conduit 5 are provided. The discharge port of the pump 4 is the cylinder head 1
A second conduit 6 connected to a cooling water passage inside the cylinder head, a third conduit 8 connecting an outlet of the cooling water passage inside the cylinder head 1 to a suction port of the water pump 4 via a radiator 7, and a cylinder block 2 Inside the cooling water passage, the radiator 7
A fourth conduit 9 connecting upstream to the third conduit 8
And a fifth conduit 11 that branches from the fourth conduit 9 and connects the discharge port of the cylinder block 2 to the third conduit 8 downstream of the radiator 7 via an electric heater 10.
A first thermostat valve 12 arranged at a connection portion between the fifth conduit 11 and the third conduit 8 and a first thermostat valve 12 arranged at a branch portion between the fifth conduit 11 and the fourth conduit 9. Two
Of the thermostat valve 13 of the third conduit 8 and the fourth conduit 9 of the third conduit 8 are branched from the upstream side, pass through the oil cooler 3, bypass the radiator 7 and the first thermostat valve 12, and are connected to the water pump. A sixth conduit 14 which joins the third conduit 8 again before the suction port 4;
A seventh conduit 15 branching from the second thermostat valve 13 upstream of the fifth conduit 11 and connecting to the sixth conduit 14 upstream of the oil cooler 3;
An electromagnetic valve 16 is provided at a connection portion between the conduit 15 and the sixth conduit 14.

【0017】上記第1のサーモスタットバルブ12は、
比較的低温側の第1の設定温度(図2のA)で作動する
ものであって、その設定温度以下では第3の導管8の上
流側からの導通を遮断して第5の導管11を第3の導管
8の下流側に連通させ、設定温度を越えたときには第5
の導管11と第3の導管8を連通させたまま第3の導管
8自体も上流側と下流側を導通させる。また、上記第2
のサーモスタットバルブ13は、上記第1の設定温度よ
り高温側の第2の設定温度(図2のB)で作動するもの
であって、その設定温度以下では第4の導管9の下流側
への導通を遮断して該第4の導管9の上流側を第5の導
管11に連通させ、設定温度を越えたときには第5の導
管11との連通を遮断して第4の導管の上流側と下流側
とを導通させる。また、上記電磁弁16は、水温および
エンジンの負荷に応じて制御されるものであって、冷間
時には第7の導管15との連通を遮断して第6の導管1
4の上流側および下流側を導通させ、温間時でエンジン
の負荷が所定負荷以下の低負荷時には第6の導管14の
上流側からの導通を遮断して第7の導管15を第6の導
管14の下流側に連通させ、温間時でエンジンの負荷が
所定負荷を越える高負荷時には再び第7の導管15との
連通を遮断して第6の導管14の上流側および下流側を
導通させる。
The first thermostat valve 12 is
It operates at a first set temperature (A in FIG. 2) on a relatively low temperature side, and below the set temperature, the conduction from the upstream side of the third conduit 8 is cut off and the fifth conduit 11 is opened. It is connected to the downstream side of the third conduit 8, and when the set temperature is exceeded, the fifth conduit
The third conduit 8 itself also conducts the upstream side and the downstream side while keeping the conduit 11 and the third conduit 8 communicating with each other. In addition, the second
The thermostat valve 13 operates at a second set temperature (B in FIG. 2) that is higher than the first set temperature, and at the set temperature or lower, the thermostat valve 13 is connected to the downstream side of the fourth conduit 9. The conduction is cut off so that the upstream side of the fourth conduit 9 is communicated with the fifth conduit 11, and when the set temperature is exceeded, the communication with the fifth conduit 11 is cut off and the upstream side of the fourth conduit is connected. Conducts electrical connection with the downstream side. Further, the solenoid valve 16 is controlled according to the water temperature and the load of the engine, and when it is cold, the communication with the seventh conduit 15 is cut off and the sixth conduit 1 is cut off.
4 is electrically connected to the upstream side and the downstream side, and when the engine load is a low load equal to or lower than a predetermined load at the time of warming, the sixth conduit 14 is disconnected from the upstream side so that the seventh conduit 15 is connected to the sixth conduit 15. The sixth conduit 14 is connected to the downstream side of the sixth conduit 14 by cutting off the communication with the seventh conduit 15 again when the engine load is high and the load exceeds a predetermined load during warm time. Let

【0018】上記エンジンの冷却装置において、ウォー
タポンプ4から第1の導管5および第2の導管6を経て
シリンダヘッド1内の冷却水通路に接続し、ラジエータ
7を介する第3の導管8あるいはラジエータ7を迂回す
る第6の導管14を経てウォータポンプ4に戻る経路
は、シリンダヘッド1へ冷却水を供給する第1の冷却水
経路を構成し、また、ウォータポンプ4から第1の導管
5を経てシリンダブロック2内の冷却水通路に接続し、
第4の導管9からラジエータ7を介する第3の導管8あ
るいはヒータ10を介する第5の導管11を経てウォー
タポンプ4に戻る経路は、シリンダブロック2へ冷却水
を供給する第2の冷却水経路を構成する。
In the above engine cooling device, the water pump 4 is connected to the cooling water passage in the cylinder head 1 via the first conduit 5 and the second conduit 6, and the third conduit 8 or the radiator via the radiator 7 is connected. The path that returns to the water pump 4 via the sixth conduit 14 that bypasses 7 constitutes the first cooling water path that supplies the cooling water to the cylinder head 1, and the path from the water pump 4 to the first conduit 5 is formed. After that, connect to the cooling water passage in the cylinder block 2,
A path for returning to the water pump 4 from the fourth conduit 9 via the third conduit 8 via the radiator 7 or the fifth conduit 11 via the heater 10 is a second cooling water path for supplying cooling water to the cylinder block 2. Make up.

【0019】図2はシリンダヘッド1側の上記第1の冷
却水経路()およびシリンダブロック2側の上記第2
の冷却水経路()のエンジン始動後の水温推移を示
し、また、図3乃至図6はこの実施例の装置の作動状態
を示す。
FIG. 2 shows the first cooling water path () on the cylinder head 1 side and the second cooling water path on the cylinder block 2 side.
3 shows the water temperature transition of the cooling water path () after the engine is started, and FIGS. 3 to 6 show the operating state of the device of this embodiment.

【0020】図2に示すように、第1の冷却水経路
()の水温はシリンダヘッド1からの受熱量が多いこ
とによって比較的立ち上がりが速い。そして、この第1
の冷却水経路()は水温が第1の設定温度(A)を越
えると後述のようにラジエータ7を通る経路に切り換え
られ、水温が該設定温度(A)に保持される。これに対
し第2の冷却水経路()は、シリンダヘッド1に比べ
て温度の低いシリンダブロック2から受熱するため水温
の立ち上がりが比較的緩やかである。そして、この第2
の冷却水経路()は、水温が上記第1の設定温度
(A)より高温側の第2の設定温度(B)を越えると後
述のようにヒータ10を迂回してラジエータ7を通る経
路に切り換えられ、水温が該設定温度(B)に保持され
る。そして、後述のように第2の冷却水経路()の水
温が第1の冷却水経路()の水温レベルに達するまで
の冷間時には第1の冷却水経路()のシリンダヘッド
1通過後の冷却水がオイルクーラ3に導かれ、第2の冷
却水経路()の水温が第1の冷却水経路()の水温
レベルを越えた温間時には、オイルクーラ3への冷却水
経路がエンジンの負荷に応じて切り換えられ、低負荷時
には第1の冷却水経路()のシリンダヘッド1通過後
の冷却水がオイルクーラ3へ導かれ、高負荷時には第2
の冷却水経路()のシリンダブロック2通過後の冷却
水がオイルクーラ3へ導かれる。
As shown in FIG. 2, the water temperature in the first cooling water path () rises relatively quickly due to the large amount of heat received from the cylinder head 1. And this first
When the water temperature exceeds the first set temperature (A), the cooling water path () is switched to a path passing through the radiator 7 as described later, and the water temperature is maintained at the set temperature (A). On the other hand, the second cooling water path () receives heat from the cylinder block 2 whose temperature is lower than that of the cylinder head 1, so that the water temperature rises relatively slowly. And this second
When the water temperature exceeds the second set temperature (B), which is higher than the first set temperature (A), the cooling water path () becomes a path that bypasses the heater 10 and passes through the radiator 7 as described later. The water temperature is switched to the set temperature (B). Then, as will be described later, when the water temperature of the second cooling water passage () reaches the water temperature level of the first cooling water passage () during the cold state, after the passage of the cylinder head 1 of the first cooling water passage (). When the cooling water is guided to the oil cooler 3 and the water temperature of the second cooling water path () exceeds the water temperature level of the first cooling water path (), the cooling water path to the oil cooler 3 is operated by the engine. The cooling water is switched according to the load, the cooling water after passing through the cylinder head 1 of the first cooling water path () is guided to the oil cooler 3 when the load is low, and the second cooling water is supplied when the load is high.
The cooling water after passing through the cylinder block 2 of the cooling water path () is guided to the oil cooler 3.

【0021】図3は冷間時で水温が第1の設定温度
(A)に達するまで(図2のa)の冷却水の流れを示
す。この時、電磁弁16がラジエータ7を迂回する第6
の導管14の上流側と下流側を導通させ、第1のサーモ
スタットバルブ12がラジエータ7を介する第3の導管
8の導通を遮断してヒータ10を介する第5の導管11
を第3の導管8の下流側に連通させ、また、第2のサー
モスタットバルブ13がヒータ10を迂回する第4の導
管9の導通を遮断して該第4の導管9の上流側をヒータ
10を介する第5の導管11に連通させることにより、
図に示すようにシリンダヘッド1側の第1の冷却水経路
はラジエータ7を迂回する経路となり、また、シリンダ
ブロック2側の第2の冷却水経路はヒータ10を通りラ
ジエータ7を迂回する経路となる。また、オイルクーラ
3へはシリンダヘッド1通過後の第1の冷却水経路の冷
却水が導入される。
FIG. 3 shows the flow of the cooling water in the cold state until the water temperature reaches the first set temperature (A) (a in FIG. 2). At this time, the solenoid valve 16 bypasses the radiator 7
And the fifth thermostat valve 12 blocks the conduction of the third conduit 8 via the radiator 7 and the fifth conduit 11 via the heater 10.
Is connected to the downstream side of the third conduit 8, and the second thermostat valve 13 cuts off the conduction of the fourth conduit 9 bypassing the heater 10 so that the upstream side of the fourth conduit 9 is connected to the heater 10. By communicating with the fifth conduit 11 via
As shown in the figure, the first cooling water path on the cylinder head 1 side is a path that bypasses the radiator 7, and the second cooling water path on the cylinder block 2 side is a path that bypasses the radiator 7 through the heater 10. Become. Further, the cooling water in the first cooling water passage after passing through the cylinder head 1 is introduced into the oil cooler 3.

【0022】図4は冷間時で水温が第1の設定温度
(A)を達した後(図2のb)の冷却水の流れを示す。
この時、第1のサーモスタットバルブ12はラジエータ
7を介する第3の導管8を導通させるとともに、ヒータ
10を介する第5の導管11を第3の導管8の下流側に
連通させ、電磁弁16はやはりラジエータ7を迂回する
第6の導管14の上流側と下流側を導通させ、第2のサ
ーモスタットバルブ13はやはりヒータ10を迂回する
第4の導管9の導通を遮断して該第4の導管9の上流側
をヒータ10を介する第5の導管11に連通させる。そ
の結果、図に示すようにシリンダヘッド1側の第1の冷
却水経路はラジエータ7を通る経路となり、また、シリ
ンダブロック2側の第2の冷却水経路はヒータ10を通
りラジエータ7を迂回する経路となる。また、オイルク
ーラ3へは依然としてシリンダヘッド1通過後の第1の
冷却水経路の冷却水が導入される。
FIG. 4 shows the flow of the cooling water after the water temperature reaches the first set temperature (A) in the cold state (b in FIG. 2).
At this time, the first thermostat valve 12 makes the third conduit 8 passing through the radiator 7 electrically conductive, the fifth conduit 11 passing through the heater 10 communicates with the downstream side of the third conduit 8, and the solenoid valve 16 becomes The sixth conduit 14 which also bypasses the radiator 7 is electrically connected to the upstream side and the downstream side, and the second thermostat valve 13 also interrupts the conduction of the fourth conduit 9 which also bypasses the heater 10 to close the fourth conduit. The upstream side of 9 is connected to the fifth conduit 11 via the heater 10. As a result, as shown in the figure, the first cooling water path on the cylinder head 1 side becomes a path passing through the radiator 7, and the second cooling water path on the cylinder block 2 side passes through the heater 10 and bypasses the radiator 7. Become a route. Further, the cooling water in the first cooling water passage after passing through the cylinder head 1 is still introduced into the oil cooler 3.

【0023】図5は温間時で水温が第2の設定温度
(B)に達するまでの期間(図2のc)であり、かつ、
エンジンの負荷が所定負荷以下の低負荷時の冷却水の流
れを示す。この時、第1のサーモスタットバルブ12は
ラジエータ7を介する第3の導管8を導通させるととも
に、ヒータ10を介する第5の導管11を第3の導管8
の下流側に連通させ、電磁弁16はラジエータ7を迂回
する第6の導管14の上流側からの導通を遮断してシリ
ンダブロック2側の第7の導管15をオイルクーラ3側
に連通させ、第2のサーモスタットバルブ13はヒータ
10を迂回しラジエータ7側へ通ずる第4の導管9の導
通を遮断して該第4の導管9の上流側をヒータ10を介
する第5の導管11に連通させる。その結果、図に示す
ようにシリンダヘッド1側の第1の冷却水経路はラジエ
ータ7を通る経路となり、また、シリンダブロック2側
の第2の冷却水経路はヒータ10を通りラジエータ7を
迂回する経路となり、オイルクーラ3へはシリンダブロ
ック2通過後の第2の冷却水経路の冷却水が導入され
る。
FIG. 5 shows a period during which the water temperature reaches the second set temperature (B) during warm time (c in FIG. 2), and
The flow of cooling water when the engine load is a low load below a predetermined load is shown. At this time, the first thermostat valve 12 conducts the third conduit 8 via the radiator 7 and the fifth conduit 11 via the heater 10 to the third conduit 8.
The solenoid valve 16 blocks the conduction from the upstream side of the sixth conduit 14 that bypasses the radiator 7, and connects the seventh conduit 15 on the cylinder block 2 side to the oil cooler 3 side. The second thermostat valve 13 bypasses the heater 10 and cuts off the conduction of the fourth conduit 9 communicating with the radiator 7 side so that the upstream side of the fourth conduit 9 communicates with the fifth conduit 11 passing through the heater 10. . As a result, as shown in the figure, the first cooling water path on the cylinder head 1 side becomes a path passing through the radiator 7, and the second cooling water path on the cylinder block 2 side passes through the heater 10 and bypasses the radiator 7. The cooling water in the second cooling water path after passing through the cylinder block 2 is introduced into the oil cooler 3.

【0024】図6は温間時で水温が第2の設定温度
(B)に達した後(図2のd)であり、かつ、エンジン
の負荷が所定負荷を越えた高負荷時の冷却水の流れを示
す。この時、第1のサーモスタットバルブ12はラジエ
ータ7を介する第3の導管8を導通させ、電磁弁16は
ラジエータ7を迂回する第6の導管14を導通させ、第
2のサーモスタットバルブ13はヒータ10を迂回しラ
ジエータ7側へ通ずる第4の導管9を導通させる。その
結果、図に示すようにシリンダヘッド1側の第1の冷却
水経路はラジエータ7を通る経路となり、また、シリン
ダブロック2側の第2の冷却水経路もラジエータ7を通
る経路となる。また、オイルクーラ3へは低温設定の第
1の冷却水経路から冷却水が導入される。
FIG. 6 shows the cooling water after the water temperature reaches the second set temperature (B) during warm time (d in FIG. 2) and when the engine load exceeds a predetermined load at high load. Shows the flow of. At this time, the first thermostat valve 12 conducts the third conduit 8 passing through the radiator 7, the solenoid valve 16 conducts the sixth conduit 14 bypassing the radiator 7, and the second thermostat valve 13 operates the heater 10. And the fourth conduit 9 that bypasses to the radiator 7 side is conducted. As a result, as shown in the figure, the first cooling water path on the cylinder head 1 side becomes a path passing through the radiator 7, and the second cooling water path on the cylinder block 2 side also becomes a path passing through the radiator 7. Further, cooling water is introduced into the oil cooler 3 from the first cooling water path set at a low temperature.

【0025】図7は温間時で水温が第2の設定温度
(B)に達するまでの期間(図2のc)であり、かつ、
エンジンの負荷が所定負荷を越えた高負荷時の冷却水の
流れを示す。この時、第1のサーモスタットバルブ12
はラジエータ7を介する第3の導管8を導通させるとと
もに、ヒータ10を介する第5の導管11を第3の導管
8の下流側に連通させ、電磁弁16はラジエータ7を迂
回する第6の導管14を導通させ、第2のサーモスタッ
トバルブ13はヒータ10を迂回しラジエータ7側へ通
ずる第4の導管9の導通を遮断して該第4の導管9の上
流側をヒータ10を介する第5の導管11に連通させ
る。その結果、図に示すようにシリンダヘッド1側の第
1の冷却水経路はラジエータ7を通る経路となり、ま
た、シリンダブロック2側の第2の冷却水経路はヒータ
10を通りラジエータ7を迂回する経路となり、オイル
クーラ3へは低温設定の第1の冷却水経路から冷却水が
導入される。
FIG. 7 shows the period until the water temperature reaches the second set temperature (B) during warm time (c in FIG. 2), and
Fig. 7 shows the flow of cooling water when the engine load exceeds a predetermined load and is high. At this time, the first thermostat valve 12
Makes the third conduit 8 passing through the radiator 7 conductive, and makes the fifth conduit 11 passing through the heater 10 communicate with the downstream side of the third conduit 8, and the solenoid valve 16 makes the sixth conduit bypassing the radiator 7. 14, the second thermostat valve 13 bypasses the heater 10 and cuts off the conduction of the fourth conduit 9 that communicates with the radiator 7, and the upstream side of the fourth conduit 9 passes through the heater 10. It communicates with the conduit 11. As a result, as shown in the figure, the first cooling water path on the cylinder head 1 side becomes a path passing through the radiator 7, and the second cooling water path on the cylinder block 2 side passes through the heater 10 and bypasses the radiator 7. The cooling water is introduced into the oil cooler 3 from the first cooling water path set at a low temperature.

【0026】図8は温間時で水温が第2の設定温度
(B)に達した後(図2のd)であり、かつ、エンジン
の負荷が所定負荷以下の低負荷時の冷却水の流れを示
す。この時、第1のサーモスタットバルブ12はラジエ
ータ7を介する第3の導管8を導通させ、電磁弁16は
ラジエータ7を迂回する第6の導管14の上流側からの
導通を遮断してシリンダブロック2側の第7の導管15
をオイルクーラ3側に連通させ、第2のサーモスタット
バルブ13はヒータ10を迂回しラジエータ7側へ通ず
る第4の導管9を導通させる。その結果、図に示すよう
にシリンダヘッド1側の第1の冷却水経路はラジエータ
7を通る経路となり、シリンダブロック2側の第2の冷
却水経路もラジエータ7を通る経路となり、オイルクー
ラ3へはシリンダブロック2通過後の第2の冷却水経路
の冷却水が導入される。
FIG. 8 shows the cooling water after the water temperature reaches the second set temperature (B) (d in FIG. 2) during warm time and when the engine load is under a predetermined load or a low load. Show the flow. At this time, the first thermostat valve 12 brings the third conduit 8 through the radiator 7 into conduction, and the solenoid valve 16 shuts off the conduction of the sixth conduit 14 bypassing the radiator 7 from the upstream side. Side seventh conduit 15
Is communicated with the oil cooler 3 side, and the second thermostat valve 13 bypasses the heater 10 and conducts the fourth conduit 9 leading to the radiator 7 side. As a result, as shown in the figure, the first cooling water path on the cylinder head 1 side becomes a path passing through the radiator 7, and the second cooling water path on the cylinder block 2 side also becomes a path passing through the radiator 7 to the oil cooler 3. The cooling water in the second cooling water passage after passing through the cylinder block 2 is introduced.

【0027】なお、上記実施例においてはオイルクーラ
への冷却水導入経路の切り換えを電磁弁によって行うも
のを説明したが、この電磁弁に代えてサーモスタットバ
ルブを用いることも可能である。ただし、サーモスタッ
トバルブを用いる場合はエンジンの負荷による切り換え
はできない。したがって、高負荷時に潤滑油が過加熱と
ならないようシリンダブロック側冷却水の設定温度を幾
分低くしなければならない場合がある。
In the above embodiment, the solenoid valve is used to switch the cooling water introduction path to the oil cooler, but a thermostat valve may be used instead of the solenoid valve. However, when a thermostat valve is used, switching cannot be performed due to engine load. Therefore, the set temperature of the cooling water on the cylinder block side may have to be lowered somewhat so that the lubricating oil will not be overheated at the time of high load.

【0028】また、上記実施例では冷却水によって潤滑
油を冷却するオイルクーラを装備したものを説明した
が、本発明は、オイルクーラに限らず、エンジン冷却水
との間で熱交換を行う他の受熱部材についても適用でき
る。
In the above embodiment, the oil cooler for cooling the lubricating oil with the cooling water is provided. However, the present invention is not limited to the oil cooler, and heat exchange with the engine cooling water is performed. It is also applicable to the heat receiving member of.

【0029】[0029]

【発明の効果】本発明は以上のように構成されているの
で、冷却水との間で熱交換を行うオイルクーラ等の受熱
部材を流れる潤滑油等の温度上昇を促進するとともに過
加熱を抑制することが可能となり、潤滑油の粘性等によ
る摩擦抵抗の増大を抑制して燃費性能を向上させること
ができる。
Since the present invention is constructed as described above, it promotes the temperature rise of the lubricating oil flowing through the heat receiving member such as the oil cooler that exchanges heat with the cooling water and suppresses overheating. It is possible to suppress the increase in frictional resistance due to the viscosity of the lubricating oil and improve the fuel efficiency.

【0030】また、オイルクーラ等の受熱部材に冷却水
を導入する受熱経路の切り換えは例えばサーモスタット
バルブ等単に水温に応じて作動する簡単な構成によって
実現でき、また、電磁弁等を用いることにより水温およ
びエンジンの負荷に応じて緻密な切り換えを実現し、特
に過加熱の心配のない低負荷時に限って高温設定のシリ
ンダブロック側から冷却水を導入することでシリンダブ
ロック側の設定温度を高くすることが可能となり、高油
温を達成し一層の燃費向上を図るようにできる。
Further, the switching of the heat receiving path for introducing the cooling water to the heat receiving member such as an oil cooler can be realized by a simple structure such as a thermostat valve which operates simply according to the water temperature, and the water temperature can be changed by using an electromagnetic valve or the like. And realize precise switching according to the engine load, and raise the set temperature on the cylinder block side by introducing cooling water from the cylinder block side that is set to a high temperature only when the load is low and there is no concern of overheating. It is possible to achieve high oil temperature and further improve fuel efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体図FIG. 1 is an overall view of an embodiment of the present invention

【図2】本発明の一実施例における水温推移の特性図FIG. 2 is a characteristic diagram of water temperature transition in one embodiment of the present invention.

【図3】本発明の一実施例の作動状態説明図(その1)FIG. 3 is an operation state explanatory diagram of an embodiment of the present invention (No. 1)

【図4】本発明の一実施例の作動状態説明図(その2)FIG. 4 is an operation state explanatory diagram of the embodiment of the present invention (No. 2)

【図5】本発明の一実施例の作動状態説明図(その3)FIG. 5 is an explanatory diagram of the operating state of the embodiment of the present invention (No. 3).

【図6】本発明の一実施例の作動状態説明図(その4)FIG. 6 is an explanatory view of the operating state of the embodiment of the present invention (No. 4).

【図7】本発明の一実施例の作動状態説明図(その5)FIG. 7 is an explanatory view of the operating state of the embodiment of the present invention (No. 5).

【図8】本発明の一実施例の作動状態説明図(その6)FIG. 8 is an operational state explanatory diagram (6) of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリンダヘッド 2 シリンダブロック 3 オイルクーラ 4 ウォータポンプ 5 第1の導管 6 第2の導管 7 ラジエータ 8 第3の導管 9 第4の導管 10 ヒータ 11 第5の導管 12 第1のサーモスタットバルブ 13 第2のサーモスタットバルブ 14 第6の導管 15 第7の導管 16 電磁弁 1 Cylinder Head 2 Cylinder Block 3 Oil Cooler 4 Water Pump 5 1st Conduit 6 2nd Conduit 7 Radiator 8 3rd Conduit 9 4th Conduit 10 Heater 11 5th Conduit 12 1st Thermostat Valve 13 2nd Thermostat valve 14 sixth conduit 15 seventh conduit 16 solenoid valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01M 5/00 M 7443−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location F01M 5/00 M 7443-3G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッドへ冷却水を供給する第1
の冷却水経路と、シリンダブロックへ冷却水を供給する
第2の冷却水経路と、エンジン始動後前記第1の冷却水
経路の水温を第1の設定温度まで上昇させ該第1の設定
温度に保持する第1の水温調整手段と、エンジン始動後
前記第2の冷却水経路の水温を前記第1の設定温度より
高温側の第2の設定温度まで上昇させ該第2の設定温度
に保持する第2の水温調整手段とからなる2系統式のエ
ンジンの冷却装置において、切換手段を介しシリンダヘ
ッド通過後の前記第1の冷却水経路からの冷却水とシリ
ンダブロック通過後の前記第2の冷却水経路からの冷却
水を受熱部材へ選択的に導入する受熱経路を設けたこと
を特徴とするエンジンの冷却装置。
1. A first supply of cooling water to a cylinder head
Cooling water path, a second cooling water path for supplying cooling water to the cylinder block, and the water temperature of the first cooling water path after engine start up to a first set temperature to reach the first set temperature. The first water temperature adjusting means for holding and the water temperature of the second cooling water path after engine start up to a second set temperature higher than the first set temperature and held at the second set temperature. In a two-system engine cooling device including a second water temperature adjusting means, cooling water from the first cooling water passage after passing through a cylinder head and second cooling after passing through a cylinder block via a switching means. An engine cooling device comprising a heat receiving path for selectively introducing cooling water from a water path to a heat receiving member.
【請求項2】 前記切換手段はシリンダヘッド通過後の
前記第1の冷却水経路の水温およびシリンダブロック通
過後の前記第2の冷却水経路の水温が所定温度以下の冷
間時には前記第1の冷却水経路からの冷却水を前記受熱
部材へ導入し、前記シリンダヘッド通過後の第1の冷却
水経路の水温および前記シリンダブロック通過後の第2
の冷却水経路の水温が前記所定温度を越えた温間時には
前記第2冷却水経路からの冷却水を前記受熱部材へ導入
するよう水温に応じて作動するものとした請求項1記載
のエンジンの冷却装置。
2. The switching means is configured such that when the water temperature of the first cooling water passage after passing through a cylinder head and the water temperature of the second cooling water passage after passing through a cylinder block are equal to or lower than a predetermined temperature, the first means is provided. The cooling water from the cooling water path is introduced into the heat receiving member, and the water temperature of the first cooling water path after passing through the cylinder head and the second temperature after passing through the cylinder block.
2. The engine according to claim 1, wherein when the water temperature of the cooling water passage exceeds the predetermined temperature, the cooling water from the second cooling water passage is operated according to the water temperature so as to be introduced into the heat receiving member. Cooling system.
【請求項3】 前記切換手段はシリンダヘッド通過後の
前記第1の冷却水経路の水温およびシリンダブロック通
過後の前記第2の冷却水経路の水温が所定温度以下の冷
間時には前記第1の冷却水経路からの冷却水を前記受熱
部材へ導入し、前記シリンダヘッド通過後の第1の冷却
水経路の水温および前記シリンダブロック通過後の第2
の冷却水経路の水温が前記所定温度を越えるとともにエ
ンジンの負荷が所定負荷以下の温間低負荷時には前記第
2冷却水経路からの冷却水を前記受熱部材へ導入し、ま
た、前記シリンダヘッド通過後の第1の冷却水経路の水
温および前記シリンダブロック通過後の第2の冷却水経
路の水温が前記所定温度を越えるとともにエンジンの負
荷が所定負荷を越える温間高負荷時には前記第1冷却水
経路からの冷却水を前記受熱部材へ導入するよう水温お
よび負荷に応じて作動するものとした請求項1記載のエ
ンジンの冷却装置。
3. The switching means is configured such that when the water temperature of the first cooling water passage after passing a cylinder head and the water temperature of the second cooling water passage after passing a cylinder block are equal to or lower than a predetermined temperature, the first means is provided. The cooling water from the cooling water path is introduced into the heat receiving member, and the water temperature of the first cooling water path after passing through the cylinder head and the second temperature after passing through the cylinder block.
When the water temperature of the cooling water passage exceeds the predetermined temperature and the engine load is a warm low load equal to or less than the predetermined load, the cooling water from the second cooling water passage is introduced into the heat receiving member, and the cooling water passes through the cylinder head. When the water temperature of the subsequent first cooling water passage and the water temperature of the second cooling water passage after passing through the cylinder block exceed the predetermined temperature and the engine load exceeds the predetermined load during warm high load, the first cooling water The engine cooling device according to claim 1, wherein the cooling device operates according to a water temperature and a load so as to introduce the cooling water from the path to the heat receiving member.
JP06759693A 1993-03-02 1993-03-02 Engine cooling system Expired - Fee Related JP3389279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06759693A JP3389279B2 (en) 1993-03-02 1993-03-02 Engine cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06759693A JP3389279B2 (en) 1993-03-02 1993-03-02 Engine cooling system

Publications (2)

Publication Number Publication Date
JPH06257430A true JPH06257430A (en) 1994-09-13
JP3389279B2 JP3389279B2 (en) 2003-03-24

Family

ID=13349461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06759693A Expired - Fee Related JP3389279B2 (en) 1993-03-02 1993-03-02 Engine cooling system

Country Status (1)

Country Link
JP (1) JP3389279B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776707A1 (en) * 1998-03-31 1999-10-01 Peugeot Motor vehicle heat exchange management system
KR100411078B1 (en) * 2000-12-30 2003-12-18 기아자동차주식회사 Engine thermal management system and control method
JP2005325790A (en) * 2004-05-17 2005-11-24 Mitsubishi Electric Corp Method for controlling engine cooling system and device for controlling engine cooling system
US7073467B2 (en) 2003-10-07 2006-07-11 Denso Corporation Cooling water circuit system
JP2011179421A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Cooling device of internal combustion engine
WO2014147905A1 (en) * 2013-03-19 2014-09-25 ヤンマー株式会社 Internal combustion engine and cogeneration device
JP2015183586A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Engine cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080778A1 (en) * 2012-11-21 2014-05-30 日産自動車株式会社 Cooling device for internal combusion engine, and method for controlling same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776707A1 (en) * 1998-03-31 1999-10-01 Peugeot Motor vehicle heat exchange management system
KR100411078B1 (en) * 2000-12-30 2003-12-18 기아자동차주식회사 Engine thermal management system and control method
US7073467B2 (en) 2003-10-07 2006-07-11 Denso Corporation Cooling water circuit system
JP2005325790A (en) * 2004-05-17 2005-11-24 Mitsubishi Electric Corp Method for controlling engine cooling system and device for controlling engine cooling system
JP2011179421A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Cooling device of internal combustion engine
WO2014147905A1 (en) * 2013-03-19 2014-09-25 ヤンマー株式会社 Internal combustion engine and cogeneration device
JP2014181626A (en) * 2013-03-19 2014-09-29 Yanmar Co Ltd Internal combustion engine
US10180090B2 (en) 2013-03-19 2019-01-15 Yanmar Co., Ltd. Internal combustion engine and cogeneration system
JP2015183586A (en) * 2014-03-24 2015-10-22 トヨタ自動車株式会社 Engine cooling system

Also Published As

Publication number Publication date
JP3389279B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
EP1995424B1 (en) Internal combustion engine cooling system
JP3742723B2 (en) Transmission oil temperature regulator
US20130047940A1 (en) Cooling system and method
JP2013528743A (en) INTERNAL COMBUSTION ENGINE HAVING COOLANT COLLECTION TUBE FOR COOLING DURING COLD OR OPERATION
GB2392235A (en) Engine thermal management of an internal combustion engine
GB2245703A (en) Engine cooling system
JPH06257430A (en) Cooling system for engine
JP4145506B2 (en) Cooling water passage layout structure in the engine
JP3086929B2 (en) Engine cooling structure
JP2013104313A (en) Engine cooling device
JP2000145457A (en) Turbocharging type engine cooling system equipped with double circulation radiator
JP2007085457A (en) Oil temperature adjusting device of transmission
JP5583045B2 (en) Engine cooling system
JP2010216542A (en) Heat exchanger
JP3972783B2 (en) Cooling device for vehicle engine
JP5333679B2 (en) Cooling system
JP4292883B2 (en) Engine cooling system
JP3810892B2 (en) Engine cooling system
JP2001271644A (en) Method and device for adjusting engine oil temperature
JPH11182241A (en) Cooling device for internal combustion engine
GB2581479A (en) Engine cooling circuit and method of cooling an engine
JP2688828B2 (en) Cooling system for engine with supercharger
JP4098023B2 (en) Cooling device for internal combustion engine
JP3982372B2 (en) Cooling device for vehicle engine
JP2008248741A (en) Warming-up device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120117

LAPS Cancellation because of no payment of annual fees