JP2010216542A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010216542A
JP2010216542A JP2009062644A JP2009062644A JP2010216542A JP 2010216542 A JP2010216542 A JP 2010216542A JP 2009062644 A JP2009062644 A JP 2009062644A JP 2009062644 A JP2009062644 A JP 2009062644A JP 2010216542 A JP2010216542 A JP 2010216542A
Authority
JP
Japan
Prior art keywords
hydraulic oil
side end
oil
path
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009062644A
Other languages
Japanese (ja)
Inventor
Yoshishige Ozeki
良重 尾関
Tadashi Tomohiro
匡 友広
Toshikatsu Kondo
俊勝 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2009062644A priority Critical patent/JP2010216542A/en
Publication of JP2010216542A publication Critical patent/JP2010216542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for constituting an oil temperature control system which has improved capability of reducing extra pressure loss along with the circulation of operating oil and controlling the temperature of the operating oil. <P>SOLUTION: The heat exchanger 12 includes a bypass oil path 23 provided between an introduction side end 20a and a return side end 20b of an operating oil flow path 20 for bypassing a heat exchange part 22 when circulating operating oil, and an operating oil delivery path 24 for delivering the operating oil from the return side end 20b to a cooling oil path 13. It also includes a four-way valve 25 for changing over the conditions of communicating the bypassing oil path 23 and the operating oil delivery path 24 with the return side end 20b of the operating oil flow path 20 into a warming mode, a steady mode, or a cooling mode. The four-way valve 25 is controlled to change over them in accordance with an external signal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、車両におけるトルクコンバータ式自動変速機等の作動油の油温を調節するための熱交換器に関するものである。   The present invention relates to a heat exchanger for adjusting the temperature of hydraulic oil of a torque converter type automatic transmission or the like in a vehicle.

従来、この種の技術としては、例えば特許文献1に開示されるものがある。図8に示すように、この特許文献1の構成においては、自動変速機50に設けられた熱交換器51の熱交換部52内に、自動変速機50内の作動油を外部循環させる作動油流路53が設けられ、この作動油流路53の戻り側端部53aからは、経路上にオイルクーラ54を有する冷却油路55が分岐されている。さらに、作動油流路53と冷却油路55との上流側分岐部には、作動油流路53から冷却油路55側へ流れる作動油の流量割合を調整する流量調節バルブ(サーモバルブよりなる)56が設けられている。この流量調節バルブ56は、作動油流路53内の作動油の温度に応じて自律的に開閉動作する。そして、作動油の温度が低いときには、流量調節バルブ56により冷却油路55側への作動油の流出が規制され、オイルクーラ54による作動油の冷却が回避されて作動油が加温される。一方、作動油の温度が高いときには、流量調節バルブ56により冷却油路55への作動油の流出が許容され、オイルクーラ54により作動油が冷却される。また、特許文献2に開示される構成は、特許文献1における流量調節バルブ56を、制御装置により切換制御される電磁切換弁に置き換えたものである。この構成によっても、特許文献1の構成と同様の作用が得られる。   Conventionally, as this type of technology, for example, there is one disclosed in Patent Document 1. As shown in FIG. 8, in the configuration of Patent Document 1, hydraulic oil that circulates hydraulic oil in the automatic transmission 50 externally in a heat exchange portion 52 of a heat exchanger 51 provided in the automatic transmission 50. A flow path 53 is provided, and a cooling oil path 55 having an oil cooler 54 on the path is branched from a return side end 53a of the hydraulic oil flow path 53. Further, at the upstream branch portion between the hydraulic oil passage 53 and the cooling oil passage 55, a flow rate adjusting valve (consisting of a thermo valve) that adjusts the flow rate ratio of the hydraulic oil flowing from the hydraulic oil passage 53 to the cooling oil passage 55 side. ) 56 is provided. The flow rate adjustment valve 56 autonomously opens and closes according to the temperature of the hydraulic oil in the hydraulic oil passage 53. When the temperature of the hydraulic oil is low, the flow rate adjusting valve 56 restricts the outflow of the hydraulic oil to the cooling oil passage 55 side, the cooling of the hydraulic oil by the oil cooler 54 is avoided, and the hydraulic oil is heated. On the other hand, when the temperature of the hydraulic oil is high, the flow rate adjusting valve 56 allows the hydraulic oil to flow out to the cooling oil passage 55, and the hydraulic oil is cooled by the oil cooler 54. Further, the configuration disclosed in Patent Document 2 is obtained by replacing the flow rate adjustment valve 56 in Patent Document 1 with an electromagnetic switching valve that is switched and controlled by a control device. Also with this configuration, the same operation as the configuration of Patent Document 1 can be obtained.

また、特許文献3の構成においては、図9に示すように、熱交換器60の熱交換部61内に設けられた作動油流路62の導入側端部62aと戻り側端部62bとの間に熱交換部61を迂回する迂回油路63が設けられている。また、導入側端部62a及び戻り側端部62bと迂回油路63との各接続部には、自動変速機から供給される作動油の流路を作動油流路62と迂回油路63とで切り替えるための電磁式の流路切換弁64がそれぞれ設けられている。この両流路切換弁64は、エンジンの冷却水温と自動変速機の作動油温とに基づいて制御信号を生成する制御装置により切換制御される。そして、両流路切換弁64の作動により自動変速機から作動油が作動油流路62に導かれるときには、エンジンの冷却水による作動油の加温又は冷却が行われる。一方、両流路切換弁64の作動により作動油が迂回油路63に導かれるときには、冷却水による作動油の加温や冷却が回避される。   Moreover, in the structure of patent document 3, as shown in FIG. 9, between the introduction side edge part 62a and the return side edge part 62b of the hydraulic fluid flow path 62 provided in the heat exchange part 61 of the heat exchanger 60 is shown. A bypass oil passage 63 that bypasses the heat exchange unit 61 is provided between them. In addition, at each connection portion between the introduction side end portion 62 a and the return side end portion 62 b and the bypass oil passage 63, the operation oil passage supplied from the automatic transmission is connected to the operation oil passage 62 and the bypass oil passage 63. Electromagnetic flow path switching valves 64 are provided for switching at the same time. The both flow path switching valve 64 is switch-controlled by a control device that generates a control signal based on the coolant temperature of the engine and the hydraulic oil temperature of the automatic transmission. When the hydraulic fluid is guided from the automatic transmission to the hydraulic fluid passage 62 by the operation of the two passage switching valves 64, the hydraulic fluid is heated or cooled by the cooling water of the engine. On the other hand, when the hydraulic oil is guided to the bypass oil path 63 by the operation of the two flow path switching valves 64, heating or cooling of the hydraulic oil by the cooling water is avoided.

特開2005−226619号公報JP 2005-226619 A 特開2006−207606号公報JP 2006-207606 A 特開2006−283872号公報JP 2006-238772 A

しかしながら、特許文献1,2の構成によれば、作動油は、加温や冷却の不要時にも作動油流路53を必ず流れる。このため、作動油の循環に伴う余分な圧力損失が発生する上に、エンジン暖気後の無用な加温により作動油の劣化が促進されたり、冷間始動時の無用な冷却により作動油の温度上昇が阻害されたりすることがある。   However, according to the configurations of Patent Documents 1 and 2, the hydraulic oil always flows through the hydraulic oil passage 53 even when heating or cooling is unnecessary. For this reason, excessive pressure loss due to the circulation of the hydraulic oil occurs, and the deterioration of the hydraulic oil is promoted by unnecessary heating after the engine warms up, or the temperature of the hydraulic oil is increased by unnecessary cooling at the cold start. The rise may be hindered.

また、特許文献3の構成によれば、作動油は、熱交換器60でのみ冷却されるので、過大なエンジン負荷により作動油の温度が過度に上昇したときには作動油の冷却不足が発生することがある。この結果、作動油の劣化が促進されることがある。   Moreover, according to the structure of patent document 3, since hydraulic fluid is cooled only by the heat exchanger 60, when the temperature of hydraulic fluid rises too much by excessive engine load, the cooling of hydraulic fluid will generate | occur | produce. There is. As a result, deterioration of the hydraulic oil may be promoted.

この発明の目的は、作動油の循環に伴う余分な圧力損失を低減するとともに作動油の温度を調整する能力に優れた油温制御システムを構成することができる熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that can constitute an oil temperature control system that has an excellent ability to adjust the temperature of hydraulic oil while reducing excessive pressure loss due to circulation of the hydraulic oil. .

請求項1に記載の発明は、自動変速機から供給される作動油を通過させる作動油流路と、エンジンから供給される冷却水を通過させる冷却水流路とを備え、作動油路と冷却水流路との間で熱交換を行う熱交換部と、前記熱交換部を迂回するように前記作動油路の導入側端部と戻り側端部とを連通する迂回油路と、前記戻り側端部から外部に向けて分岐された作動油送出路と、外部信号に基づいて作動し、前記作動油流路の戻り側端部に対する迂回油路及び作動油送出路の連通状態を、前記導入側端部から前記作動油流路に作動油を導入して戻り側端部から自動変速機内に戻す加温モードと、導入側端部から前記迂回油路に作動油を導入して戻り側端部から自動変速機内に戻す定常モードと、導入側端部から作動油流路に作動油を導入して作動油送出路から外部に循環させる冷却モードとのいずれかに切り替える流路切換手段とを備えたことを特徴とする。   The invention according to claim 1 is provided with a hydraulic fluid passage that allows hydraulic fluid supplied from the automatic transmission to pass therethrough, and a cooling fluid passage that allows cooling water supplied from the engine to pass therethrough. A heat exchanging portion that exchanges heat with the passage, a bypass oil passage that communicates the introduction side end portion and the return side end portion of the hydraulic oil passage so as to bypass the heat exchange portion, and the return side end The hydraulic oil delivery path branched from the part toward the outside, and the communication state of the bypass oil path and the hydraulic oil delivery path with respect to the return side end of the hydraulic oil flow path is operated based on the external signal, and the introduction side A heating mode for introducing hydraulic oil from the end into the hydraulic oil flow path and returning it from the return side end to the automatic transmission, and a return side end by introducing hydraulic oil from the introduction side end to the bypass oil passage Operation from the introduction side end to the hydraulic oil flow path Circulating the delivery path to the outside, characterized in that a flow channel switching means for switching to one of the cooling mode.

(作用)
この発明は、以下のような作用を奏する。外部の制御装置において、例えば作動油温度と冷却水温とに基づいて、作動油を加温する加温モード、作動油を冷却する冷却モード、又は、作動油を加温も冷却もしない定常モードが設定される。そして、流路切換手段は、各モードに対応して制御装置が生成する外部信号により制御される。加温モードにおいては、導入側端部から作動油流路に作動油を導入して戻り側端部から自動変速機内に戻すことにより、熱交換部において冷却水流路を通過する冷却水により作動油が加温されるとともに、作動油送出路上に設けられたオイルクーラによる作動油の冷却が回避される。従って、加温モードにおいては、作動油が作動油送出路を通じてオイルクーラ回路へ循環するときの圧力損失が回避されるとともに、作動油が効率良く加温される。また、定常モードにおいては、導入側端部から迂回油路に作動油を導入して戻り側端部から自動変速機内に戻すことにより、熱交換部における作動油の加温又は冷却が回避されるとともに、オイルクーラにおける作動油の冷却が回避される。従って、定常モードにおいては、作動油が作動油流路及び作動油送出路を通過するときの圧力損失が回避されるとともに、作動油に対する無用な加温や冷却が回避される。さらに、冷却モードにおいては、導入側端部から作動油流路に作動油を導入して作動油送出路からオイルクーラ回路に循環させることにより、熱交換部において冷却水により作動油が冷却されるとともにオイルクーラによりさらに作動油が冷却される。従って、冷却モードにおいては、熱交換器とオイルクーラとにより作動油が効率良く冷却される。
(Function)
The present invention has the following effects. In the external control device, for example, based on the hydraulic oil temperature and the cooling water temperature, a heating mode for heating the hydraulic oil, a cooling mode for cooling the hydraulic oil, or a steady mode that neither warms nor cools the hydraulic oil. Is set. The flow path switching means is controlled by an external signal generated by the control device corresponding to each mode. In the heating mode, the hydraulic oil is introduced into the hydraulic oil flow path from the introduction side end and returned to the automatic transmission from the return side end, so that the hydraulic oil passes through the cooling water flow path in the heat exchange section. And the cooling of the hydraulic oil by the oil cooler provided on the hydraulic oil delivery path is avoided. Therefore, in the heating mode, pressure loss when the hydraulic oil circulates through the hydraulic oil delivery path to the oil cooler circuit is avoided, and the hydraulic oil is efficiently heated. Further, in the steady mode, the operating oil is introduced into the bypass oil passage from the introduction side end portion and returned from the return side end portion into the automatic transmission, so that heating or cooling of the operation oil in the heat exchange portion is avoided. At the same time, cooling of the hydraulic oil in the oil cooler is avoided. Therefore, in the steady mode, pressure loss when the hydraulic oil passes through the hydraulic oil passage and the hydraulic oil delivery passage is avoided, and unnecessary heating and cooling of the hydraulic oil are avoided. Furthermore, in the cooling mode, the working oil is cooled by the cooling water in the heat exchange section by introducing the working oil from the introduction side end to the working oil flow path and circulating it from the working oil delivery path to the oil cooler circuit. At the same time, the hydraulic oil is further cooled by the oil cooler. Therefore, in the cooling mode, the hydraulic oil is efficiently cooled by the heat exchanger and the oil cooler.

この発明によれば、作動油の循環に伴う余分な圧力損失を低減するとともに作動油の温度を調整する能力に優れた油温制御システムを構成することができるという効果を発揮する。   According to the present invention, it is possible to configure an oil temperature control system that can reduce an excess pressure loss accompanying the circulation of the hydraulic oil and that has an excellent ability to adjust the temperature of the hydraulic oil.

第1実施形態の熱交換器を備えた自動変速機の油温制御システムを示す模式図。The schematic diagram which shows the oil temperature control system of the automatic transmission provided with the heat exchanger of 1st Embodiment. 加温モードの熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of a heating mode. 定常モードの熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of a steady mode. 冷却モードの熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of cooling mode. 第2実施形態の熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of 2nd Embodiment. 定常モードの熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of a steady mode. 冷却モードの熱交換器を示す模式断面図。The schematic cross section which shows the heat exchanger of cooling mode. 従来の熱交換器を備えた自動変速機の油温制御システムを示す模式図。The schematic diagram which shows the oil temperature control system of the automatic transmission provided with the conventional heat exchanger. 従来の熱交換器を示す模式図。The schematic diagram which shows the conventional heat exchanger.

(第1実施形態)
以下、この発明を具体化した一実施形態について、図1〜図4を参照して説明する。
図1に示すように、車両のエンジン10にはトルクコンバータ式の自動変速機11が組み付けられ、この自動変速機11のハウジングには、自動変速機11内の作動油(ATF:Automatic Transmission Fluid )を加温又は冷却するための熱交換器12が装着されている。この熱交換器12からは、作動油が送り出される冷却油路13が延出され、その冷却油路13の他端は、自動変速機11のハウジングに設けられた図示しない作動油導入口に接続されている。この冷却油路13上には、空冷式のオイルクーラ14が設けられている。
(First embodiment)
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a torque converter type automatic transmission 11 is assembled to a vehicle engine 10, and hydraulic oil (ATF: Automatic Transmission Fluid) in the automatic transmission 11 is installed in a housing of the automatic transmission 11. A heat exchanger 12 for heating or cooling is mounted. A cooling oil path 13 through which hydraulic oil is sent out extends from the heat exchanger 12, and the other end of the cooling oil path 13 is connected to a hydraulic oil inlet (not shown) provided in the housing of the automatic transmission 11. Has been. An air-cooled oil cooler 14 is provided on the cooling oil passage 13.

また、エンジン10からは、冷却水を送り出す冷却水循環路15が延出され、その他端は、ウォータポンプ16を介してエンジン10内の冷却水路に接続されている。この冷却水循環路15上には、ラジエータ17が設けられている。なお、前記オイルクーラ14は、冷却水循環路15の冷却水を用いる水冷式であってもよい。すなわち、冷却水循環路15から分岐された冷却水回路と、冷却油路13との間で熱交換を行うように構成された水冷式のオイルクーラを用いてもよい。   Further, a cooling water circulation path 15 for sending cooling water is extended from the engine 10, and the other end is connected to a cooling water path in the engine 10 via a water pump 16. A radiator 17 is provided on the cooling water circulation path 15. The oil cooler 14 may be a water-cooled type that uses the cooling water of the cooling water circulation path 15. That is, a water-cooled oil cooler configured to perform heat exchange between the cooling water circuit branched from the cooling water circulation path 15 and the cooling oil path 13 may be used.

さらに、エンジン10からは、冷却水を送り出すヒータ循環水路18が延出され、前記ウォータポンプ16を介してエンジン10内の冷却水路に接続されている。このヒータ循環水路18上には、前記熱交換器12とヒータコア19とが設けられている。なお、熱交換器12を、冷却水循環路15及びヒータ循環水路18とは別に設けた加温・冷却用水路上に設けてもよい。   Further, from the engine 10, a heater circulation water passage 18 for sending out cooling water is extended and connected to the cooling water passage in the engine 10 through the water pump 16. On the heater circulation channel 18, the heat exchanger 12 and the heater core 19 are provided. The heat exchanger 12 may be provided on a heating / cooling water channel provided separately from the cooling water circulation channel 15 and the heater circulation water channel 18.

図2に示すように、熱交換器12は、自動変速機11内の作動油を循環させる作動油流路20を備え、この作動油流路20は、自動変速機11の内部から作動油を導入する導入側端部20aと、自動変速機11の内部に作動油を戻す戻り側端部20bとを備えている。また、熱交換器12は、エンジン10からヒータ循環水路18に供給される冷却水を通過させる冷却水流路21を備えている。この冷却水流路21と作動油流路20とにより、冷却水と作動油との間で熱交換を行う熱交換部22が構成されている。また、熱交換器12は、熱交換部22を迂回して作動油流路20の導入側端部20aと戻り側端部20bとを連通する迂回油路23を備えている。さらに、熱交換器12は、戻り側端部20bから作動油を前記冷却油路13に送り出す作動油送出路24を備えている。   As shown in FIG. 2, the heat exchanger 12 includes a hydraulic oil passage 20 that circulates the hydraulic oil in the automatic transmission 11, and the hydraulic oil passage 20 draws hydraulic oil from the inside of the automatic transmission 11. An introduction side end portion 20 a to be introduced and a return side end portion 20 b for returning the working oil to the inside of the automatic transmission 11 are provided. Further, the heat exchanger 12 includes a cooling water passage 21 through which the cooling water supplied from the engine 10 to the heater circulation water passage 18 passes. The cooling water passage 21 and the hydraulic oil passage 20 constitute a heat exchanging unit 22 that exchanges heat between the cooling water and the hydraulic oil. Further, the heat exchanger 12 includes a bypass oil passage 23 that bypasses the heat exchange portion 22 and communicates the introduction side end 20a and the return side end 20b of the hydraulic oil passage 20. Furthermore, the heat exchanger 12 includes a hydraulic oil delivery path 24 that feeds hydraulic oil from the return side end 20b to the cooling oil path 13.

迂回油路23及び作動油送出路24は、作動油流路20の戻り側端部20bにおける1箇所に接続され、この接続部には、戻り側端部20bに対する迂回油路23及び作動油送出路24の連通状態を切り替えるための流路切換手段としての四方電磁弁(以下、四方弁と略称する)25が設けられている。この四方弁25は、図1に示すように、コンピュータよりなる制御装置26が生成する制御信号S0に基づいて切換動作する。   The bypass oil path 23 and the hydraulic oil delivery path 24 are connected to one place at the return side end 20b of the hydraulic oil flow path 20, and the bypass oil path 23 and the hydraulic oil delivery to the return side end 20b are connected to this connection part. A four-way electromagnetic valve (hereinafter abbreviated as a four-way valve) 25 is provided as a flow path switching means for switching the communication state of the path 24. As shown in FIG. 1, the four-way valve 25 performs a switching operation based on a control signal S0 generated by a control device 26 composed of a computer.

制御装置26は、制御プログラムに従って作動し、例えば自動変速機11のハウジングに設けられた作動油温センサ27が検出する作動油温Toと、冷却水流路21上に設けられた冷却水温センサ28が検出する冷却水温Twとに基づいて、四方弁25を切換制御するための制御信号S0を生成する。制御装置26は、作動油温Toと冷却水温Twとに基づいて、作動油を冷却水により加温する状態、作動油を冷却水により冷却する状態、及び、作動油を加温も冷却もしない状態を判別する。作動油を加温する状態は、例えば、エンジン10の冷間始動後に、冷却水の温度が作動油を加温可能な値まで上昇したときである。また、作動油を冷却する状態は、例えば、過大な負荷がエンジン10や自動変速機11に加わったことにより、作動油の温度が過度に上昇するときである。さらに、作動油を加温も冷却もしない状態は、例えば、エンジン10の冷間始動時に冷却水及び作動油の温度が共に低いときや、自動変速機11の暖気完了により作動油が加温不要な温度となったときである。そして、制御装置26は、その判別結果に応じて、作動油を加温する加温モード、作動油を冷却する冷却モード、又は、作動油を加温も冷却もしない定常モードを設定し、この各モードに対応して四方弁25を切換制御するための制御信号S0を生成する。   The control device 26 operates according to a control program. For example, a hydraulic oil temperature To detected by a hydraulic oil temperature sensor 27 provided in the housing of the automatic transmission 11 and a cooling water temperature sensor 28 provided on the cooling water flow path 21 are provided. Based on the detected coolant temperature Tw, a control signal S0 for switching and controlling the four-way valve 25 is generated. Based on the hydraulic oil temperature To and the cooling water temperature Tw, the control device 26 warms the hydraulic oil with the cooling water, cools the hydraulic oil with the cooling water, and neither warms nor cools the hydraulic oil. Determine the state. The state in which the hydraulic oil is heated is, for example, when the temperature of the cooling water has increased to a value at which the hydraulic oil can be heated after the engine 10 is cold started. The state of cooling the hydraulic oil is when the temperature of the hydraulic oil rises excessively due to, for example, an excessive load applied to the engine 10 or the automatic transmission 11. Furthermore, the state in which neither the operating oil is heated nor cooled is, for example, when the temperature of the cooling water and the operating oil is low at the cold start of the engine 10 or when the warming of the automatic transmission 11 is completed. When it reaches a certain temperature. Then, according to the determination result, the control device 26 sets a heating mode for heating the hydraulic oil, a cooling mode for cooling the hydraulic oil, or a steady mode for neither heating nor cooling the hydraulic oil. A control signal S0 for switching control of the four-way valve 25 is generated corresponding to each mode.

四方弁25は、加温モードに対応する制御信号S0により、図2に示すように、戻り側端部20bを通じて作動油流路20を自動変速機11内に連通させるとともに、迂回油路23及び作動油送出路24の戻り側端部20bに対する連通を遮断する加温モードに切り換わる。また、四方弁25は、定常モードに対応する制御信号S0により、図3に示すように、作動油流路20を戻り側端部20bで遮断させ、迂回油路23を戻り側端部20bに連通させるとともに、作動油送出路24の戻り側端部20bに対する連通を遮断する定常モードに切り換わる。さらに、四方弁25は、冷却モードに対応する制御信号S0により、図4に示すように、作動油流路20を戻り側端部20bで遮断させ、迂回油路23の戻り側端部20bに対する連通を遮断するとともに、作動油送出路24を戻り側端部20bに連通させる冷却モードに切り替わる。   As shown in FIG. 2, the four-way valve 25 communicates the hydraulic oil flow path 20 into the automatic transmission 11 through the return side end portion 20 b by the control signal S 0 corresponding to the heating mode, and the bypass oil path 23 and The operation mode is switched to a heating mode in which communication with the return side end 20b of the hydraulic oil delivery path 24 is blocked. Further, as shown in FIG. 3, the four-way valve 25 blocks the hydraulic oil passage 20 at the return side end portion 20b and the bypass oil passage 23 at the return side end portion 20b by the control signal S0 corresponding to the steady mode. While being connected, it switches to the steady mode which interrupts | blocks the communication with respect to the return side edge part 20b of the hydraulic oil delivery path 24. Further, as shown in FIG. 4, the four-way valve 25 blocks the hydraulic oil flow path 20 at the return side end 20b by the control signal S0 corresponding to the cooling mode, and the return side end 20b of the bypass oil path 23 is blocked. The communication mode is shut off, and the operation mode is switched to the cooling mode in which the hydraulic oil delivery path 24 is communicated with the return side end portion 20b.

さて、エンジン10の冷間始動時のように、冷却水温Twと作動油温Toが共に低く、冷却水により作動油を加温できないときには、四方弁25は、制御装置26により定常モードに制御される。この定常モードにおいては、図3に示すように、自動変速機11から作動油流路20の導入側端部20aに導入された作動油は、迂回油路23を経て戻り側端部20bから自動変速機11に戻される。従って、冷間始動時において作動油を加温も冷却もしない状態においては、作動油が作動油流路20及び冷却油路13を通過しないことから余分な圧力損失が回避されるとともに、オイルクーラ14による作動油の無用な冷却が禁止される。   When the cooling water temperature Tw and the hydraulic oil temperature To are both low and the hydraulic oil cannot be heated by the cooling water as in the cold start of the engine 10, the four-way valve 25 is controlled to a steady mode by the control device 26. The In this steady mode, as shown in FIG. 3, the hydraulic oil introduced from the automatic transmission 11 to the introduction side end 20 a of the hydraulic oil flow path 20 is automatically transmitted from the return side end 20 b via the bypass oil passage 23. Returned to the transmission 11. Therefore, in a state where the hydraulic oil is not heated or cooled at the cold start, the hydraulic oil does not pass through the hydraulic oil passage 20 and the cooling oil passage 13, so that an extra pressure loss is avoided and the oil cooler is avoided. 14. Unnecessary cooling of the hydraulic oil by 14 is prohibited.

冷間始動後に冷却水温Twが作動油を加温可能な値まで上昇すると、四方弁25は、制御装置26により定常モードから加温モードに切り替えられる。この加温モードにおいては、図2に示すように、作動油流路20の導入側端部20aに導入された作動油は、作動油流路20を経て戻り側端部20bから自動変速機11に戻される。従って、冷間始動後に冷却水温Twが作動油を加温可能な値まで上昇した状態においては、作動油がオイルクーラ14側を通過しないことから余分な圧力損失が回避されるとともにオイルクーラ14による作動油の無用な冷却が禁止された状態で、熱交換器12により作動油が加温される。   When the coolant temperature Tw rises to a value that can heat the hydraulic oil after the cold start, the four-way valve 25 is switched from the steady mode to the heating mode by the control device 26. In this heating mode, as shown in FIG. 2, the hydraulic oil introduced into the introduction side end 20 a of the hydraulic oil passage 20 passes through the hydraulic oil passage 20 and returns from the return side end 20 b to the automatic transmission 11. Returned to Therefore, in a state where the coolant temperature Tw has increased to a value that can heat the hydraulic oil after the cold start, since the hydraulic oil does not pass through the oil cooler 14 side, an extra pressure loss is avoided and the oil cooler 14 The hydraulic oil is heated by the heat exchanger 12 in a state where unnecessary cooling of the hydraulic oil is prohibited.

自動変速機11の暖気完了により作動油温Toが加温不要な値まで上昇すると、四方弁25は、制御装置26により加温モードから定常モードに切り替えられる。この定常モードにおいては、図3に示すように、作動油流路20の導入側端部20aに導入された作動油は、迂回油路23を経て戻り側端部20bから自動変速機11に戻される。従って、自動変速機11の暖気完了時において作動油を加温も冷却もしない状態においては、作動油が作動油流路20及び冷却油路13を通過しないことから余分な圧力損失が回避されるとともに、オイルクーラ14による作動油の無用な冷却が禁止される。   When the hydraulic oil temperature To rises to a value that does not require heating due to the completion of warming of the automatic transmission 11, the four-way valve 25 is switched from the warming mode to the steady mode by the control device 26. In this steady mode, as shown in FIG. 3, the hydraulic oil introduced into the introduction side end 20 a of the hydraulic oil flow path 20 returns to the automatic transmission 11 from the return side end 20 b via the bypass oil path 23. It is. Therefore, in a state where the hydraulic oil is not heated or cooled when the automatic transmission 11 is warmed up, the hydraulic oil does not pass through the hydraulic oil passage 20 and the cooling oil passage 13, so that an extra pressure loss is avoided. At the same time, unnecessary cooling of the hydraulic oil by the oil cooler 14 is prohibited.

エンジン10や自動変速機11に対する負荷が過大となり、作動油温Toが、自動変速機11のロックアップ制御が困難な高温領域に達しようとするときには、四方弁25は、制御装置26により定常モードから冷却モードに切り替えられる。この冷却モードにおいては、図4に示すように、作動油流路20の導入側端部20aに導入された作動油は、作動油流路20を経た後、作動油送出路24から冷却油路13を介して自動変速機11に戻される。従って、作動油温Toが高すぎる状態においては、熱交換器12において冷却水により作動油が冷却された後に、オイルクーラ14により作動油がさらに空冷される。   When the load on the engine 10 or the automatic transmission 11 becomes excessive and the hydraulic oil temperature To tends to reach a high temperature region where the lockup control of the automatic transmission 11 is difficult, the four-way valve 25 is controlled by the control device 26 in the steady mode. Can be switched to cooling mode. In this cooling mode, as shown in FIG. 4, the working oil introduced into the introduction side end 20 a of the working oil passage 20 passes through the working oil passage 20 and then passes from the working oil delivery passage 24 to the cooling oil passage. 13 is returned to the automatic transmission 11. Therefore, when the hydraulic oil temperature To is too high, the hydraulic oil is further cooled by the oil cooler 14 after the hydraulic oil is cooled by the cooling water in the heat exchanger 12.

以上のように、この実施形態によれば、以下の効果を得ることができる。
(1)熱交換器12において、作動油流路20の導入側端部20aと戻り側端部20bとの間に熱交換部22を迂回して作動油を循環させる迂回油路23を設けるとともに、戻り側端部20bから作動油を冷却油路13に送り出す作動油送出路24を設けた。さらに、作動油流路20の戻り側端部20bに対する迂回油路23及び作動油送出路24の連通状態を加温モード、定常モード及び冷却モードのいずれかに切り替える四方弁25を設け、この四方弁25を外部信号により切換制御するようにした。
As described above, according to this embodiment, the following effects can be obtained.
(1) In the heat exchanger 12, a bypass oil passage 23 is provided between the introduction side end 20a and the return side end 20b of the hydraulic oil passage 20 to bypass the heat exchange portion 22 and circulate the hydraulic oil. A hydraulic oil delivery path 24 for feeding hydraulic oil from the return side end 20b to the cooling oil path 13 is provided. Further, a four-way valve 25 is provided for switching the communication state of the bypass oil passage 23 and the hydraulic oil delivery passage 24 to the return side end 20b of the hydraulic oil passage 20 to any one of a heating mode, a steady mode and a cooling mode. The valve 25 is controlled to be switched by an external signal.

このため、作動油を加温する加温モードにおいては、作動油が作動油流路20を通るとともにオイルクーラ14側を通らないようにすることにより、余分な圧力損失を回避するとともに作動油を効率良く加温することができる。また、作動油を加温も冷却もしない定常モードにおいては、作動油が迂回油路23を通るとともにオイルクーラ14側を通らないようにすることにより、余分な圧力損失を回避するとともに作動油に対する無用な加温や冷却を回避することができる。さらに、作動油を冷却する冷却モードにおいては、作動油が作動油流路20を通った後にオイルクーラ14側を通るようにすることにより、作動油を効果的に冷却することができる。従って、この熱交換器12は、作動油の余分な圧力損失を低減するとともに作動油の温度を調整する能力に優れた油温制御システムを構成することができる。以上の結果、作動油の無用な圧力損失を回避して車両の燃費を向上することができる。また、作動油の無用な加温を回避して作動油の劣化を抑制することができる。さらに、作動油の温度を適正に制御することにより、自動変速機11の伝達損失を低減することができる。   For this reason, in the heating mode in which the hydraulic fluid is heated, the hydraulic fluid passes through the hydraulic fluid passage 20 and does not pass through the oil cooler 14 side, thereby avoiding excessive pressure loss and the hydraulic fluid. Heating can be done efficiently. Further, in the steady mode in which the hydraulic oil is neither heated nor cooled, by preventing the hydraulic oil from passing through the bypass oil passage 23 and from the oil cooler 14 side, an extra pressure loss is avoided and the hydraulic oil is prevented from flowing. Unnecessary heating and cooling can be avoided. Further, in the cooling mode for cooling the hydraulic oil, the hydraulic oil can be effectively cooled by passing the hydraulic oil through the hydraulic oil flow path 20 and then the oil cooler 14 side. Therefore, the heat exchanger 12 can constitute an oil temperature control system that has an excellent ability to adjust the temperature of the hydraulic oil while reducing excessive pressure loss of the hydraulic oil. As a result, unnecessary fuel pressure loss of hydraulic oil can be avoided and the fuel efficiency of the vehicle can be improved. Also, unnecessary heating of the hydraulic oil can be avoided and deterioration of the hydraulic oil can be suppressed. Furthermore, the transmission loss of the automatic transmission 11 can be reduced by appropriately controlling the temperature of the hydraulic oil.

(2)作動油流路20の戻り側端部20bにおける1箇所に、迂回油路23と作動油送出路24とを接続し、この接続部に設けた四方弁25により、戻り側端部20bに対する迂回油路23と作動油送出路24との連通状態を3つのモードに応じて切り替えるようにした。従って、戻り側端部20bにおいて異なる2位置に迂回油路23及び作動油送出路24をそれぞれ分けて接続し、各接続部に設けた切換弁により、戻り側端部20bに対する迂回油路23と作動油送出路24との連通状態を切り替えるようにした場合に比較して、熱交換器12を小型化できる。   (2) The detour oil path 23 and the hydraulic oil delivery path 24 are connected to one place in the return side end 20b of the hydraulic oil flow path 20, and the return side end 20b is provided by the four-way valve 25 provided in this connection. The communication state between the bypass oil passage 23 and the hydraulic oil delivery passage 24 is switched according to the three modes. Accordingly, the bypass oil passage 23 and the hydraulic oil delivery passage 24 are separately connected to two different positions on the return side end 20b, and the bypass oil passage 23 with respect to the return side end 20b is connected to the return side end 20b by a switching valve provided at each connection portion. Compared with the case where the communication state with the hydraulic oil delivery path 24 is switched, the heat exchanger 12 can be downsized.

(第2実施形態)
次に、この発明を具体化した第2実施形態について、図5〜図7を参照して説明する。なお、この実施形態では、第1実施形態とは異なる点を中心に説明する。
(Second Embodiment)
Next, a second embodiment embodying the present invention will be described with reference to FIGS. In this embodiment, the points different from the first embodiment will be mainly described.

図5に示すように、熱交換器12において、作動油流路20の戻り側端部20bに対する迂回油路23の接続部には、前記制御装置26の制御信号S1により開閉作動する第1電磁開閉弁30が設けられている。また、戻り側端部20bにおいて迂回油路23の接続部よりも下流側には、制御装置26の制御信号S2により開閉作動する第2電磁開閉弁31が設けられている。制御装置26は、前記加温モード、冷却モード及び定常モードに対応して第1電磁開閉弁30及び第2電磁開閉弁31をそれぞれ制御するための制御信号S1,S2を生成する。この実施形態においては、第1電磁開閉弁30及び第2電磁開閉弁31により流路切換手段が構成されている。   As shown in FIG. 5, in the heat exchanger 12, the connection portion of the bypass oil passage 23 with respect to the return side end portion 20b of the hydraulic oil passage 20 is opened and closed by a control signal S1 of the control device 26. An on-off valve 30 is provided. Further, a second electromagnetic on-off valve 31 that opens and closes by a control signal S2 of the control device 26 is provided downstream of the connection portion of the bypass oil passage 23 at the return side end 20b. The control device 26 generates control signals S1 and S2 for controlling the first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31, respectively, corresponding to the heating mode, the cooling mode, and the steady mode. In this embodiment, the first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31 constitute a flow path switching means.

第1電磁開閉弁30及び第2電磁開閉弁31は、加温モードに対応する制御信号S1,S2により、図5に示すように、それぞれ閉状態及び開状態に切換制御され、戻り側端部20bに対する迂回油路23の連通を遮断するとともに、戻り側端部20bを通じて作動油流路20を自動変速機11の内部に連通させる。また、第1電磁開閉弁30及び第2電磁開閉弁31は、定常モードに対応する制御信号S1,S2により、図6に示すように、共に開状態に制御され、戻り側端部20bを通じて作動油流路20を自動変速機11の内部に連通させた状態で、迂回油路23を作動油流路20の戻り側端部20bに連通させる。さらに、第1電磁開閉弁30及び第2電磁開閉弁31は、冷却モードに対応する制御信号S1,S2により、図7に示すように、共に閉状態に制御され、戻り側端部20bを通じた作動油流路20の自動変速機11の内部への連通を遮断するとともに、戻り側端部20bに対する迂回油路23の連通を遮断する。   The first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31 are controlled to be switched between a closed state and an open state by control signals S1 and S2 corresponding to the heating mode, respectively, as shown in FIG. The communication of the bypass oil passage 23 with respect to 20 b is blocked, and the hydraulic oil passage 20 is communicated with the inside of the automatic transmission 11 through the return side end portion 20 b. Further, the first electromagnetic on / off valve 30 and the second electromagnetic on / off valve 31 are both controlled to be opened by the control signals S1 and S2 corresponding to the steady mode, as shown in FIG. 6, and are operated through the return side end 20b. With the oil passage 20 in communication with the automatic transmission 11, the bypass oil passage 23 is communicated with the return-side end portion 20 b of the hydraulic oil passage 20. Further, the first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31 are both controlled to be closed by the control signals S1 and S2 corresponding to the cooling mode, as shown in FIG. 7, through the return side end 20b. The communication of the hydraulic oil passage 20 to the inside of the automatic transmission 11 is cut off, and the communication of the bypass oil passage 23 to the return side end portion 20b is cut off.

さて、制御装置26により定常モードが設定されると、第1電磁開閉弁30及び第2電磁開閉弁31が共に開状態に制御される。この場合、図6に示すように、自動変速機11から作動油流路20の導入側端部20aに導入された作動油は、流路抵抗が迂回油路23側よりも大きな作動油流路20側に流れず、迂回油路23を経て戻り側端部20bから自動変速機11に戻る。この結果、作動油は、加温も冷却もされない。   Now, when the steady mode is set by the control device 26, both the first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31 are controlled to be in the open state. In this case, as shown in FIG. 6, the hydraulic oil introduced from the automatic transmission 11 to the introduction side end 20 a of the hydraulic oil passage 20 has a larger hydraulic resistance than the bypass oil passage 23 side. It does not flow to the 20 side, returns to the automatic transmission 11 from the return side end portion 20b through the bypass oil passage 23. As a result, the hydraulic oil is neither heated nor cooled.

また、制御装置26により加温モードが設定され、第1電磁開閉弁30が閉状態に制御されるとともに第2電磁開閉弁31が開状態に制御されると、図5に示すように、導入側端部20aに導入された作動油は、流路抵抗が戻り側端部20b側よりも大きな冷却油路13側には流れず、戻り側端部20bから自動変速機11に戻る。この結果、作動油は、熱交換器12により加温される。   Further, when the heating mode is set by the control device 26 and the first electromagnetic on-off valve 30 is controlled to be in the closed state and the second electromagnetic on-off valve 31 is controlled to be in the open state, as shown in FIG. The hydraulic oil introduced into the side end portion 20a does not flow to the cooling oil passage 13 side where the flow path resistance is larger than that of the return side end portion 20b side, and returns to the automatic transmission 11 from the return side end portion 20b. As a result, the hydraulic oil is heated by the heat exchanger 12.

さらに、制御装置26により冷却モードが設定され、第1電磁開閉弁30及び第2電磁開閉弁31が共に閉状態に制御されると、図7に示すように、導入側端部20aに導入された作動油は、作動油流路20を経て冷却油路13側へ流れる。この結果、作動油は、熱交換器12及びオイルクーラ14により冷却される。   Further, when the cooling mode is set by the control device 26 and both the first electromagnetic on-off valve 30 and the second electromagnetic on-off valve 31 are controlled to be in the closed state, as shown in FIG. 7, they are introduced into the introduction side end 20a. The working oil flows to the cooling oil passage 13 side through the working oil passage 20. As a result, the hydraulic oil is cooled by the heat exchanger 12 and the oil cooler 14.

この実施形態によれば、第1実施形態の(1)に記載の効果を得ることができる。
(他の実施形態)
なお、この実施形態は、次のように変更して具体化することも可能である。
According to this embodiment, the effect described in (1) of the first embodiment can be obtained.
(Other embodiments)
In addition, this embodiment can also be changed and embodied as follows.

・ 戻り側端部20bにおいて異なる2位置に迂回油路23及び作動油送出路24をそれぞれ分けて接続し、各接続部に切換弁を設ける。そして、各切換弁を開閉制御して、戻り側端部20bに対する迂回油路23と作動油送出路24との連通状態を切り替えることにより、熱交換器12を加温モード、定常モード又は冷却モードに切り換えるように構成すること。   The bypass oil passage 23 and the hydraulic oil delivery passage 24 are separately connected to two different positions on the return side end portion 20b, and a switching valve is provided at each connection portion. Then, each switching valve is controlled to open and close, and the communication state between the bypass oil passage 23 and the hydraulic oil delivery passage 24 with respect to the return-side end portion 20b is switched, so that the heat exchanger 12 is in the heating mode, steady mode, or cooling mode. Configure to switch to.

・この発明を、トルクコンバータ式の無段変速機における熱交換器に具体化すること。
(他の技術的思想)
以下、前記各実施形態から把握され、請求項として挙げられていない技術的思想を記載する。
-The present invention is embodied in a heat exchanger in a torque converter type continuously variable transmission.
(Other technical ideas)
Hereinafter, technical ideas that are grasped from the respective embodiments and are not listed as claims will be described.

(1)請求項1に記載の熱交換器において、前記迂回油路及び作動油送出路は、前記作動油流路の戻り側端部における1箇所に接続されており、前記流路切換手段は、その接続部に設けられた四方電磁弁であって、この四方電磁弁は、前記加温モードにおいては、戻り側端部を通じて前記作動油流路を自動変速機内に連通させるとともに迂回油路及び作動油送出路の戻り側端部に対する連通を遮断し、前記定常モードにおいては、作動油流路を戻り側端部で遮断させ、迂回油路を戻り側端部に連通させるとともに作動油送出路の戻り側端部に対する連通を遮断し、前記冷却モードにおいては、作動油流路を戻り側端部で遮断させ、迂回油路の戻り側端部に対する連通を遮断するとともに作動油送出路を戻り側端部に連通させるように構成されていることを特徴とする熱交換器。   (1) In the heat exchanger according to claim 1, the bypass oil path and the hydraulic oil delivery path are connected to one place at a return side end of the hydraulic oil flow path, and the flow path switching means is A four-way solenoid valve provided in the connecting portion, and in the heating mode, the four-way solenoid valve communicates the hydraulic oil passage into the automatic transmission through a return side end portion and a bypass oil passage and The communication with the return side end of the hydraulic oil delivery path is blocked, and in the steady mode, the hydraulic oil flow path is blocked at the return side end, and the bypass oil path is communicated with the return side end and the hydraulic oil delivery path In the cooling mode, the hydraulic oil flow path is blocked at the return side end, the communication to the return side end of the detour oil path is blocked and the hydraulic oil delivery path is returned. Configured to communicate with the side edges Heat exchanger, characterized in that there.

(2)請求項1に記載の熱交換器において、前記迂回油路及び作動油送出路は、前記作動油流路の戻り側端部における1箇所に接続されており、前記流路切換手段は、迂回油路と、前記戻り側端部における迂回油路と作動油送出路との接続部よりも下流側とにそれぞれ設けられた電磁開閉弁であることを特徴とする熱交換器。   (2) In the heat exchanger according to claim 1, the bypass oil path and the hydraulic oil delivery path are connected to one place at a return side end portion of the hydraulic oil flow path, and the flow path switching means is A heat exchanger, comprising: a bypass oil path, and an electromagnetic on-off valve provided on a downstream side of a connection portion between the bypass oil path and the hydraulic oil delivery path at the return side end.

(3)請求項1、技術的思想(1),(2)のいずれか一項に記載の熱交換器と、この熱交換器の作動油排出路に接続された冷却油路上に設けられたオイルクーラと、作動油温と冷却水温とに基づいて前記流路切換手段を制御する制御装置とを備えたことを特徴とする自動変速機の作動油温制御装置。  (3) The heat exchanger according to any one of claims 1 and 1 (1) and (2), and the cooling oil passage connected to the hydraulic oil discharge passage of the heat exchanger. An operating oil temperature control device for an automatic transmission, comprising: an oil cooler; and a control device that controls the flow path switching means based on an operating oil temperature and a cooling water temperature.

(4)技術的思想(3)に記載の自動変速機の作動油温制御装置を備えたことを特徴とする車両。   (4) A vehicle comprising the hydraulic oil temperature control device for an automatic transmission according to the technical idea (3).

10…エンジン、11…自動変速機、12…熱交換器、20…作動油流路、20a…導入側端部、20b…戻り側端部、21…冷却水流路、22…熱交換部、23…迂回油路、24…作動油送出路、25…流路切換手段としての四方電磁弁、30…流路切換手段を構成する第1電磁開閉弁、31…第2電磁開閉弁、S0,S1,S2…外部信号としての制御信号。   DESCRIPTION OF SYMBOLS 10 ... Engine, 11 ... Automatic transmission, 12 ... Heat exchanger, 20 ... Hydraulic oil flow path, 20a ... Introduction side edge part, 20b ... Return side edge part, 21 ... Cooling water flow path, 22 ... Heat exchange part, 23 DESCRIPTION OF SYMBOLS ... Detour oil path, 24 ... Hydraulic oil delivery path, 25 ... Four-way electromagnetic valve as flow path switching means, 30 ... First electromagnetic on-off valve constituting flow path switching means, 31 ... Second electromagnetic on-off valve, S0, S1 , S2: Control signals as external signals.

Claims (1)

自動変速機から供給される作動油を通過させる作動油流路と、エンジンから供給される冷却水を通過させる冷却水流路とを備え、作動油路と冷却水流路との間で熱交換を行う熱交換部と、
前記熱交換部を迂回するように前記作動油路の導入側端部と戻り側端部とを連通する迂回油路と、
前記戻り側端部から外部に向けて分岐された作動油送出路と、
外部信号に基づいて作動し、前記作動油流路の戻り側端部に対する迂回油路及び作動油送出路の連通状態を、前記導入側端部から前記作動油流路に作動油を導入して戻り側端部から自動変速機内に戻す加温モードと、導入側端部から前記迂回油路に作動油を導入して戻り側端部から自動変速機内に戻す定常モードと、導入側端部から作動油流路に作動油を導入して作動油送出路から外部に循環させる冷却モードとのいずれかに切り替える流路切換手段とを備えたことを特徴とする熱交換器。
A hydraulic oil passage that allows hydraulic fluid supplied from the automatic transmission to pass therethrough and a cooling water passage that allows cooling water supplied from the engine to pass therethrough, and performs heat exchange between the hydraulic oil passage and the cooling water passage. A heat exchange section;
A bypass oil passage communicating the introduction side end portion and the return side end portion of the hydraulic oil passage so as to bypass the heat exchange portion;
A hydraulic oil delivery path branched from the return side end portion toward the outside;
It operates based on an external signal, introduces hydraulic oil into the hydraulic oil flow path from the introduction side end, and communicates the bypass oil path and the hydraulic oil delivery path with respect to the return side end of the hydraulic oil flow path. A heating mode for returning from the return side end portion into the automatic transmission, a steady mode for introducing hydraulic oil from the introduction side end portion into the bypass oil passage and returning from the return side end portion to the automatic transmission, and from the introduction side end portion. A heat exchanger comprising a flow path switching means for switching to a cooling mode in which hydraulic oil is introduced into the hydraulic oil flow path and circulated from the hydraulic oil delivery path to the outside.
JP2009062644A 2009-03-16 2009-03-16 Heat exchanger Pending JP2010216542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062644A JP2010216542A (en) 2009-03-16 2009-03-16 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062644A JP2010216542A (en) 2009-03-16 2009-03-16 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2010216542A true JP2010216542A (en) 2010-09-30

Family

ID=42975604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062644A Pending JP2010216542A (en) 2009-03-16 2009-03-16 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2010216542A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
US9322319B2 (en) 2011-11-22 2016-04-26 Hyundai Motor Company Heat exchanger for vehicle
US9360262B2 (en) 2011-09-19 2016-06-07 Hyundai Motor Company Heat exchanger for vehicle
DE102017218005A1 (en) * 2017-10-10 2019-04-11 Zf Friedrichshafen Ag Cooling system for a motor vehicle
CN113446390A (en) * 2021-07-22 2021-09-28 中国第一汽车股份有限公司 Transmission oil coolant circulation system, control method, vehicle, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283872A (en) * 2005-03-31 2006-10-19 Fujitsu Ten Ltd Temperature adjustment device in automatic transmission
JP2007333068A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Thermovalve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283872A (en) * 2005-03-31 2006-10-19 Fujitsu Ten Ltd Temperature adjustment device in automatic transmission
JP2007333068A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Thermovalve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107623A (en) * 2010-11-18 2012-06-07 Hamilton Sundstrand Corp Heat exchanger system and operation method thereof
US9360262B2 (en) 2011-09-19 2016-06-07 Hyundai Motor Company Heat exchanger for vehicle
US9322319B2 (en) 2011-11-22 2016-04-26 Hyundai Motor Company Heat exchanger for vehicle
DE102017218005A1 (en) * 2017-10-10 2019-04-11 Zf Friedrichshafen Ag Cooling system for a motor vehicle
CN113446390A (en) * 2021-07-22 2021-09-28 中国第一汽车股份有限公司 Transmission oil coolant circulation system, control method, vehicle, and storage medium

Similar Documents

Publication Publication Date Title
JP4196802B2 (en) Cooling water circuit
JP4877057B2 (en) Internal combustion engine cooling system device
US8739745B2 (en) Cooling system and method
US9347364B2 (en) Temperature control arrangement for transmission oil in a motor vehicle and method for controlling the temperature of transmission oil in a motor vehicle
JP6306529B2 (en) Cooling device and control method for vehicle internal combustion engine
JPH11264318A (en) Temperature adjusting device for transmission oil
JP2011099400A (en) Cooling device for vehicle
JP2010216542A (en) Heat exchanger
JP2015052308A (en) Cooling water control device
JP2007016651A (en) Device for controlling oil temperature
JP5040816B2 (en) Internal combustion engine cooling circuit
JP5585723B2 (en) Stirling engine output control device
JP2007085457A (en) Oil temperature adjusting device of transmission
JP2010209736A (en) Engine warm-up control device
JP5583045B2 (en) Engine cooling system
JP2004324459A (en) Engine cooling device for vehicle
JP5333679B2 (en) Cooling system
JP2018053720A (en) Cooling system for internal combustion engine
WO2020152734A1 (en) Cooling device for hybrid vehicles
JP2001271644A (en) Method and device for adjusting engine oil temperature
JP6604540B2 (en) Engine cooling system
GB2581479A (en) Engine cooling circuit and method of cooling an engine
JP2004332583A (en) Cooling system for engine
JP4352882B2 (en) Engine cooling system
US11792955B2 (en) Thermal transfer system and control in multiple operating conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305