JPH06257323A - Supporting structure for large span structure - Google Patents

Supporting structure for large span structure

Info

Publication number
JPH06257323A
JPH06257323A JP6734993A JP6734993A JPH06257323A JP H06257323 A JPH06257323 A JP H06257323A JP 6734993 A JP6734993 A JP 6734993A JP 6734993 A JP6734993 A JP 6734993A JP H06257323 A JPH06257323 A JP H06257323A
Authority
JP
Japan
Prior art keywords
cable
support
supporting
strut
strut structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6734993A
Other languages
Japanese (ja)
Other versions
JP2958934B2 (en
Inventor
Osamu Saito
修 斉藤
Toshiro Takaoka
敏朗 高岡
Hideo Shimomura
英男 下村
Kazunori Koshida
和憲 越田
Toshiyuki Yamada
利行 山田
Toshiyuki Kawazoe
俊之 川添
Hidekatsu Takayama
秀勝 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Tomoe Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Tomoe Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp, Tomoe Corp filed Critical Shimizu Construction Co Ltd
Priority to JP6734993A priority Critical patent/JP2958934B2/en
Publication of JPH06257323A publication Critical patent/JPH06257323A/en
Application granted granted Critical
Publication of JP2958934B2 publication Critical patent/JP2958934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PURPOSE:To improve safety against an earthquake, and to reduce the strength of a supporting column in comparison with that of a conventional one for reducing construction cost. CONSTITUTION:A plurality of supporting columns 2 is provided in a row in the X, Y directions being mutually perpendicular along the side 1a of a large span structure 1, which is horizontally slidably supported on the upper part of each of supporting columns 2 in every row of them. In addition, the side 1a of the large span structure 1 and the upper part of the supporting column 2 are mutually connected through at least one cable 5, and both the ends of the cable 5 are severally connected to the side 1a of the large span structure 1 at the upper parts of the two adjacent supporting columns 2, and the central part of the cable 5 is connected to the above side 1a between the two supporting columns 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、長径間構造物におけ
る屋根等の大張間構造物を支持する支持構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support structure for supporting a straddle structure such as a roof in a long span structure.

【0002】[0002]

【従来技術】従来、長径間構造物における屋根は、地上
で組み立ててジャッキ等により支持柱に沿ってリフトア
ップするか、或いは複数の屋根部材をクレーン車等の揚
重機により支持柱の上部に吊り上げて高所で組み立てて
いる。長径間構造物が長い場合には、屋根を複数に分割
した各分割屋根を桁行方向に沿う支持柱列の一端部上に
配置した後、他端側へ順次移動させ、かつ互いに連結し
て前記屋根を組み立てている。
2. Description of the Related Art Conventionally, a roof in a long span structure is assembled on the ground and lifted up along a support pillar by a jack or the like, or a plurality of roof members are lifted above a support pillar by a lifting machine such as a crane truck. Assembled at a high place. In the case where the long span structure is long, each divided roof obtained by dividing the roof into a plurality of parts is arranged on one end of the support column row along the girder direction, then sequentially moved to the other end side, and connected to each other, Assembling the roof.

【0003】前記屋根の側部は、長径間構造物の建設中
は横移動しないように仮固定し、建設後はシュー構造等
で屋根の横移動をある程度許容した状態で各支持柱の上
部に固定している。
The side portion of the roof is temporarily fixed so as not to move laterally during the construction of the long span structure, and after the construction, it is attached to the upper portion of each support pillar with a shoe structure or the like allowing the lateral movement of the roof to some extent. It is fixed.

【0004】[0004]

【発明の解決しようとする課題】しかしながら、上記従
来の屋根の支持構造では、地震の発生時、屋根から各支
持柱の上部に水平荷重が直接作用することになり、大地
震の場合には支持柱が曲ったり折れるおそれがある。特
に、支持柱がリフトアップ工法における仮設柱である場
合、コーンボックスのコンクリート強度が発生して屋根
が定着するまでの期間について仮設柱の強度を十分に確
保しなければならず、設備が大規模でかつコスト高とな
るという不都合があった。
However, in the above-described conventional roof support structure, when an earthquake occurs, a horizontal load directly acts on the upper portions of the support columns from the roof. The pillar may bend or break. In particular, if the support pillar is a temporary pillar used in the lift-up method, the strength of the temporary pillar must be sufficiently secured for the period until the concrete strength of the cone box occurs and the roof is settled. However, there is a disadvantage that the cost becomes high.

【0005】この発明は上記課題を解決するためになさ
れたもので、地震に対して安全性の向上が図れると共
に、支持柱の強度を従来に比べて低減させて建設費の低
減が図れる大張間構造物の支持構造を提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to improve the safety against earthquakes and reduce the strength of the supporting columns as compared with the prior art to reduce the construction cost. It is to provide a support structure for an interstructure.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明に係る大張間構造物の支持構造は、大張間
構造物の側部に沿って互いに直角な2方向に複数本の支
持柱を列設し、該支持柱列毎に各支持柱の上部に前記大
張間構造物を水平方向に摺動自在に支持し、かつ該大張
間構造物の側部と前記支持柱の上部とを少くとも1本の
ケーブルを介して連結し、前記ケーブルの両端部は隣合
う2本の支持柱の上部に、中央部は前記2本の支持柱間
にて前記大張間構造物の側部に各々連結したものであ
る。
In order to achieve the above-mentioned object, a supporting structure for a strut structure according to the present invention comprises a plurality of supporting structures in two directions perpendicular to each other along the side portion of the straddle structure. Support columns are provided in a row, and the strut structures are horizontally slidably supported on the upper part of each of the support columns, and the side portions of the strut structures and the support are supported. The upper part of the pillar is connected via at least one cable, and both ends of the cable are located on the upper part of two adjacent supporting pillars, and the central part is located between the two supporting pillars and is located between the large spans. It is connected to each side of the structure.

【0007】[0007]

【作用】上記構成によれば、地震の発生で一方の支持柱
列方向に沿って大張間構造物に水平荷重が作用したと
き、大張間構造物は横揺れして支持柱上部で水平移動す
るが、その際、前記一方の支持柱列方向に沿う各ケーブ
ルに張力が均等に生じ、該ケーブルにより大張間構造物
が支持柱上部を支点として支持される。水平荷重が双方
の支持柱列方向に交差した方向に作用したときも同様
で、大張間構造物の横移動で前記双方の支持柱列方向で
の各ケーブルに張力が生じて、大張間構造物が支持柱上
部を支点として支持される。
According to the above structure, when a horizontal load is applied to the straddle structure along one of the supporting column rows due to the occurrence of an earthquake, the straddle structure is swayed horizontally at the upper part of the supporting column. While moving, tension is evenly generated in each cable along the one support pillar row direction, and the cable supports the strut structure with the upper part of the support pillar as a fulcrum. The same applies when a horizontal load acts in a direction intersecting the direction of both supporting columns, and the lateral movement of the strut structure causes tension in each cable in the direction of both supporting columns, and The structure is supported with the upper part of the support pillar as a fulcrum.

【0008】前記ケーブルの固有周期を調整することに
よって大張間構造物の振動エネルギーを吸収して支持柱
上部に無理な水平力がかからないようにできる一方、前
記水平力をケーブルの伸びによる緩衝で低減させること
ができる。
By adjusting the natural period of the cable, it is possible to absorb the vibrational energy of the strut structure and prevent an unreasonable horizontal force from being applied to the upper part of the supporting column, while the horizontal force is buffered by the extension of the cable. Can be reduced.

【0009】[0009]

【実施例】以下、この発明の一実施例を図面に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1(1)は大張間構造物の支持構造を示
す平面図、(2)は(1)の正面図、図2(1)は図1
(1)の部分拡大図、(2)は図1(2)の部分拡大
図、図3は作用説明図、図4は地震発生時におけるケー
ブルの応答倍率と固有周期との関係を示す剪断力応答ス
ペクトルである。
FIG. 1 (1) is a plan view showing a supporting structure for a strut structure, (2) is a front view of (1), and FIG. 2 (1) is FIG.
1 is a partially enlarged view, (2) is a partially enlarged view of FIG. 1 (2), FIG. 3 is an explanatory view of action, and FIG. 4 is a shear force showing the relationship between the response magnification of the cable and the natural period when an earthquake occurs. It is a response spectrum.

【0011】図1及び図2において1は長径間構造物に
おける屋根等の大張間構造物、2は複数本の支持柱(実
施例ではリフトアップ工法における仮設柱)である。
In FIG. 1 and FIG. 2, 1 is a strut structure such as a roof in a long span structure, and 2 is a plurality of support columns (in the embodiment, temporary columns in the lift-up method).

【0012】前記支持柱2は大張間構造物1の側部1a
(妻部、軒部を含む。以下同じ)に沿って互いに直角な
2方向(図示X、Y方向)に列設されている。具体的に
は、支持柱2は大張間構造物1の側部1aの交差部(隅
角部)に1本、該交差部間の中央に1本で前記2方向に
各々都合3本ずつ配置されている。
The support pillar 2 is a side portion 1a of the strut structure 1
They are arranged in two directions (X and Y directions in the drawing) that are perpendicular to each other (including the wife part and the eaves part. The same applies hereinafter). Specifically, one support pillar 2 is provided at the intersection (corner) of the side portion 1a of the strut structure 1 and one is provided at the center between the intersections, and three are provided in each of the two directions. It is arranged.

【0013】前記大張間構造物1の側部1aの各支持部
位にはシュー金物3が、各支持柱2の上部にはベースプ
レート4が各々固定され、該ベースプレート4上には前
記シュー金物3が図示しないスライド機構を介して摺動
自在に載置されて、大張間構造物1が前記支持柱列毎に
各支持柱2の上部に水平方向に摺動自在に支持されてい
る。
A shoe metal piece 3 is fixed to each supporting portion of the side portion 1a of the strut structure 1 and a base plate 4 is fixed to an upper portion of each supporting column 2, and the shoe metal piece 3 is mounted on the base plate 4. Is slidably mounted via a slide mechanism (not shown), and the strut structure 1 is horizontally slidably supported on the upper part of each support column 2 for each support column row.

【0014】更に、前記支持柱列毎に前記大張間構造物
1の側部と支持柱2の上部とが2本のケーブル5を介し
て連結されている。各ケーブル5は大張間構造物1を平
面に見て直線状になるように該ケーブル5の両端部が隣
合う2本の支持柱2の上部に、中央部が前記2本の支持
柱2間の中央にて大張間構造物1の側部に各々連結され
ている。尚、前記ケーブル5は一本物でも、或いは大張
間構造物1の側部1aのほぼ同一箇所に一端が連結され
た二本物でも良く、またケーブル5の材質は柔軟性を有
し、引張り強度が十分にあるものであれば金属製に限ら
れないことは勿論である。
Further, the side portion of the strut structure 1 and the upper portion of the support column 2 are connected to each other by the two cables 5 for each of the support column rows. Each cable 5 has an upper portion of two supporting columns 2 adjacent to each other at both ends thereof and a central portion of the two supporting columns 2 so that both ends of the cable 5 are linear so that the strut structure 1 is seen in a plane. It is connected to the side portions of the strut structure 1 at the center of the space. The cable 5 may be a single piece or two pieces whose one end is connected to substantially the same position on the side portion 1a of the strut structure 1, and the material of the cable 5 has flexibility and tensile strength. Needless to say, the material is not limited to metal as long as it is sufficient.

【0015】前記ケーブル5と大張間構造物1の側部1
aとの連結は、図2(1)に示すように大張間構造物1
の側部1aにケーブル固定金物6を装着し、該ケーブル
固定金物6に形成された図示しないケーブル挿通孔に前
記ケーブル5の中央部を挿通して図示しない方法で固定
している。
The cable 5 and the side portion 1 of the strut structure 1
As shown in Fig. 2 (1), the connection with a is made by the structure 1
A cable fixing metal piece 6 is attached to the side portion 1a of the cable, and a central portion of the cable 5 is inserted into a cable insertion hole (not shown) formed in the cable fixing metal piece 6 and fixed by a method (not shown).

【0016】また、前記ケーブル5と支持柱2の上部と
の連結は、図2(2)に示すように前記ベースプレート
4にケーブル固定部4aを形成し、該ケーブル固定部4
aに形成された図示しないロッド挿通孔にロッド7の一
端部を挿通し、該一端部に形成されたねじ部7aに2個
のナット8、9を螺合し、該ナット8、9を前記ケーブ
ル固定部4aに対して両側から締め付ける一方、前記ロ
ッド6の他端部にケーブル固定金物10を介して前記ケ
ーブル5の端部を固定している。
The connection between the cable 5 and the upper portion of the support column 2 is such that a cable fixing portion 4a is formed on the base plate 4 as shown in FIG.
One end of the rod 7 is inserted into a rod insertion hole (not shown) formed in a, and two nuts 8 and 9 are screwed into the threaded portion 7a formed at the one end, and the nuts 8 and 9 are While tightening from both sides to the cable fixing portion 4a, the end portion of the cable 5 is fixed to the other end portion of the rod 6 via a cable fixing metal piece 10.

【0017】以上の構成において、図3に示すように、
地震の発生で一方の支持柱列方向の例えばX方向に沿っ
て大張間構造物1に水平荷重Hが作用したとき、大張間
構造物1はX方向に横揺れして支持柱2の上部で水平移
動するが、その際、X方向に沿う4本のケーブル5に張
力が均等に生じ(張力=H/4)、該ケーブル5により
大張間構造物1が支持柱2の上部を支点として支持され
る。
In the above structure, as shown in FIG.
When a horizontal load H acts on the straddle structure 1 along one of the supporting column row directions, for example, the X direction due to the occurrence of an earthquake, the straddle structure 1 rolls in the X direction and the supporting columns 2 Although it moves horizontally in the upper part, tension is evenly generated in the four cables 5 along the X direction (tension = H / 4), and the cables 5 cause the large strut structure 1 to move above the support columns 2. Supported as a fulcrum.

【0018】また、前記ケーブル5の長さ、太さ(断面
積)等で固有周期を調整することができ、これによって
大張間構造物1の振動エネルギーを吸収することが可能
になる一方、前記支持柱2の上部に作用する水平荷重が
前記ケーブル5の伸びによる緩衝で低減される。
Further, the natural period can be adjusted by the length, thickness (cross-sectional area), etc. of the cable 5, which makes it possible to absorb the vibration energy of the strut structure 1. The horizontal load acting on the upper portion of the support column 2 is reduced by buffering due to the extension of the cable 5.

【0019】また、水平荷重がX、Y方向の双方に交差
した方向に作用したとき、大張間構造物1の横移動で
X、Y方向での各ケーブル5に張力が生じることで、前
記と同様に前記大張間構造物1の振動エネルギーを吸収
することが可能となる一方、前記支持柱2の上部に作用
する水平荷重が前記ケーブル5の伸びによる緩衝で低減
される。
When a horizontal load acts in a direction intersecting both the X and Y directions, the lateral movement of the strut structure 1 causes tension in each of the cables 5 in the X and Y directions. Similarly to the above, it becomes possible to absorb the vibration energy of the strut structure 1, while the horizontal load acting on the upper portion of the support column 2 is reduced by the buffering due to the extension of the cable 5.

【0020】(1)ケーブル5の固有周期:固有周期T
は長さL、断面積A、ヤング率Eで自由に調整できる。
この固有周期Tの計算は次のように行う。例えばL=2
0m、A=7.86cm2 、E=1600t/cm2
ケーブルを使用すると、ばね定数kは次式で k=E・A/L =1600×7.86/2000=6.29(t/cm) ところで、大張間構造物1に作用する水平荷重H=18
45.3tではケーブル一本当りの張力Pは次式で P=H/4 =1845.3/4=461.3(t) 従って、前記固有周期Tは次式に前記2式で求めた値を
代入して T=2π{P/(k・gt)}1/2 =2π×{461.3/(6.29×980)}1/2 =1.72(秒) となる。
(1) Natural period of cable 5: Natural period T
Can be freely adjusted by length L, cross-sectional area A, and Young's modulus E.
The calculation of the natural period T is performed as follows. For example L = 2
When a cable of 0 m, A = 7.86 cm 2 and E = 1600 t / cm 2 is used, the spring constant k is k = E · A / L = 1600 × 7.86 / 2000 = 6.29 (t / cm) By the way, the horizontal load H = 18 that acts on the strut structure 1
At 45.3t, the tension P per cable is calculated by the following equation: P = H / 4 = 1845.3 / 4 = 461.3 (t) Therefore, the natural period T is the value obtained by the following equation in the following equation. And T = 2π {P / (k · gt)} 1/2 = 2π × {461.3 / (6.29 × 980)} 1/2 = 1.72 (seconds).

【0021】(2)支持柱2の安全性:ここで、既発生
地震のTokyo101−NS波を想定した場合、図4
から固有周期T=1.72(秒)における応答倍率ηは
ほぼ0.3となることから、応答加速度は、建築基準法
で定められた地震剪断係数C0 =0.2相当の応答加速
度200galに対して 200×0.3=60gal となり、地震剪断係数C0 はほぼ0.06であるため、
リフトアップ用仮設柱を構成する支持柱2の上部が受け
る水平力は 1845.3×0.06=110.7(t) となる。このため、リフトアップ工法における仮設柱を
構成する支持柱2の弾性設計を前記水平力で行えば良く
なる。
(2) Safety of the support pillar 2: Here, assuming the Tokyo101-NS wave of the existing earthquake, FIG.
Since the response magnification η at the natural period T = 1.72 (sec) is about 0.3, the response acceleration is 200 gal corresponding to the earthquake shear coefficient C 0 = 0.2 specified by the Building Standards Act. Since 200 × 0.3 = 60 gal, and the seismic shear coefficient C 0 is approximately 0.06,
The horizontal force received by the upper portion of the support column 2 that constitutes the lift-up temporary column is 1845.3 × 0.06 = 110.7 (t). For this reason, the elastic design of the support columns 2 forming the temporary columns in the lift-up method can be performed by the horizontal force.

【0022】(3)ケーブル5の安全性:ケーブルがJ
SS規格のスパイラルロープでロープ径=36mm、断
面積A=7.86cm2 、ヤング率E=1600t/c
2 、切断荷重114tであるとき、Tokyo101
−NS波を想定したとき、前項から地震剪断係数C0
0.06であるから、ケーブル一本当りの張力P1 は次
式で P1 =0.06P =0.06×461.3 =27.7(t) このため、安全率Fは次式で F=114/27.7 =4.1 となり、安全性が確保される。
(3) Safety of cable 5: The cable is J
SS standard spiral rope, rope diameter = 36 mm, cross-sectional area A = 7.86 cm 2 , Young's modulus E = 1600 t / c
m 2, when a cutting load 114t, Tokyo101
-Assuming NS waves, the seismic shear coefficient C 0 =
Since it is 0.06, the tension P 1 per cable is P 1 = 0.06 P = 0.06 × 461.3 = 27.7 (t) Therefore, the safety factor F is F = 114 / 27.7 = 4.1, and safety is secured.

【0023】(4)ケーブル5の伸び:最大伸びδは次
式で δ=(P1 ・L)/(A・E) =(27.7×2000)/(7.86×1600) =4.4(cm) となる。
(4) Elongation of cable 5: The maximum elongation δ is expressed by the following equation: δ = (P 1 · L) / (AE) = (27.7 × 2000) / (7.86 × 1600) = 4 It becomes 0.4 (cm).

【0024】以上のようにケーブル5の固有周期Tを計
算調整することによって、大張間構造物1の振動エネル
ギーを吸収して支持柱2の上部に無理な水平力がかから
ないようにできる。また、前記水平力をケーブル5の伸
びによる緩衝で低減させることができると共に、前記水
平力に基づく弾性設計で支持柱2の強度を従来に比べて
低減できる。
By calculating and adjusting the natural period T of the cable 5 as described above, it is possible to absorb the vibration energy of the strut structure 1 and prevent an excessive horizontal force from being applied to the upper portion of the support column 2. Further, the horizontal force can be reduced by buffering due to the extension of the cable 5, and the strength of the support column 2 can be reduced as compared with the conventional one by the elastic design based on the horizontal force.

【0025】尚、上記実施例では、大張間構造物1を平
面に見てケーブル5が直線状になるように該ケーブル5
の両端部を隣合う2本の支持柱2の上部に、中央部を前
記2本の支持柱2間の中央にて大張間構造物1の側部に
各々連結したが、図5に示すように、大張間構造物1の
側部におけるケーブル5の連結位置をずらして大張間構
造物1を平面に見てケーブル5がV状になるようにして
も良い。前記隣合う2本の支持柱2は、該支持柱2間に
少くとも1本の支持柱2が存在する場合を含む。
In the above embodiment, the cable 5 is arranged so that the cable 5 is straight when the strut structure 1 is seen in a plane.
Both end portions of the above are connected to the upper portions of two adjacent support columns 2 and the central portion is connected to the side portions of the strut structure 1 at the center between the two support columns 2, respectively, as shown in FIG. As described above, the connecting positions of the cables 5 on the side portions of the straddle structure 1 may be shifted so that the cable 5 has a V shape when the straddle structure 1 is seen in a plane. The two adjacent support columns 2 include the case where at least one support column 2 exists between the support columns 2.

【0026】また、支持柱2がリフトアップ工法におけ
る仮設柱を構成する場合について説明したが、支持柱2
が本設柱を構成する場合にも適用可能であることは勿論
である。
The case where the support pillar 2 constitutes a temporary pillar in the lift-up method has been described.
It is needless to say that the present invention is also applicable to the case where the main pillar is constructed.

【0027】[0027]

【発明の効果】以上の通りこの発明は、大張間構造物の
側部に沿って互いに直角な2方向に複数本の支持柱を列
設し、該支持柱列毎に各支持柱の上部に前記大張間構造
物を水平方向に摺動自在に支持し、かつ該大張間構造物
の側部と前記支持柱の上部とを少くとも1本のケーブル
を介して連結し、前記ケーブルの両端部は隣合う2本の
支持柱の上部に、中央部は前記2本の支持柱間にて前記
大張間構造物の側部に各々連結したため、地震の発生
時、大張間構造物を支持柱上部で水平移動させてケーブ
ルに張力を発生させ、大張間構造物を支持柱上部を支点
として支持することができることから、地震に対してケ
ーブルの固有周期の調整で大張間構造物の振動エネルギ
ーを吸収して支持柱上部に無理な水平力がかからないよ
うにでき、また、前記水平力をケーブルの伸びによる緩
衝で低減させることができると共に、前記水平力に基づ
く弾性設計で支持柱の強度を従来に比べて低減できる。
従って、地震に対して安全性の向上が図れると共に、建
設費の低減が図れる。
As described above, according to the present invention, a plurality of support pillars are provided in a row in two directions at right angles to each other along the side portion of the strut structure, and each support pillar has an upper portion of each support pillar. A slidably supporting the strut structure in a horizontal direction, and connecting a side portion of the strut structure and an upper portion of the supporting column through at least one cable, Since both ends of the above are connected to the upper part of two adjacent support pillars, and the center part is connected to the side part of the above-mentioned straddle structure between the two support pillars, when an earthquake occurs, the straddle structure Since an object can be horizontally moved above the support column to generate tension in the cable and the structure can be supported using the upper part of the support column as a fulcrum, it is possible to adjust the natural period of the cable against the earthquake. The vibration energy of the structure can be absorbed to prevent an unreasonable horizontal force from being applied to the upper part of the support column. It is possible to reduce the horizontal force in the buffer according to the elongation of the cable, the strength of the support pillar can be reduced as compared with conventionally elastic design based on the horizontal force.
Therefore, it is possible to improve safety against earthquakes and reduce construction costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】(1) この発明の一実施例である大張間構造
物の支持構造を示す平面図である。 (2) (1)の正面図である。
FIG. 1 is a plan view showing a supporting structure for a strut structure according to an embodiment of the present invention. (2) It is a front view of (1).

【図2】(1) 図1(1)の部分拡大図である。 (2) 図1(2)の部分拡大図である。FIG. 2 (1) is a partially enlarged view of FIG. 1 (1). (2) It is a partially enlarged view of FIG. 1 (2).

【図3】図1に示す大張間構造物の支持構造の作用説明
図である。
FIG. 3 is an operation explanatory view of the support structure for the strut structure shown in FIG. 1.

【図4】地震発生時におけるケーブルの応答倍率と固有
周期との関係を示す剪断力応答スペクトルである。
FIG. 4 is a shear force response spectrum showing the relationship between the response magnification of the cable and the natural period when an earthquake occurs.

【図5】この発明の他の実施例である大張間構造物の支
持構造を部分的に示す平面図である。
FIG. 5 is a plan view partially showing a supporting structure for a strut structure according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 大張間構造物 1a 側部 2 支持柱 5 ケーブル X、Y 互いに直角な2方向 1 Structure between Ohari 1a Side 2 Support column 5 Cable X, Y Two directions perpendicular to each other

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 英男 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 越田 和憲 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 山田 利行 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 川添 俊之 東京都中央区銀座6−2−10 株式会社巴 コーポレーション内 (72)発明者 高山 秀勝 東京都中央区銀座6−2−10 株式会社巴 コーポレーション内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hideo Shimomura 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Kazunori Koshida 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Incorporated (72) Inventor Toshiyuki Yamada 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Toshiyuki Kawazoe 6-2-10 Ginza, Chuo-ku, Tokyo Inside Tomoe Corporation (72) ) Inventor Hidekatsu Takayama 6-2-10 Ginza, Chuo-ku, Tokyo Inside Tomoe Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 大張間構造物の側部に沿って互いに直角
な2方向に複数本の支持柱を列設し、該支持柱列毎に各
支持柱の上部に前記大張間構造物を水平方向に摺動自在
に支持し、かつ該大張間構造物の側部と前記支持柱の上
部とを少くとも1本のケーブルを介して連結し、前記ケ
ーブルの両端部は隣合う2本の支持柱の上部に、中央部
は前記2本の支持柱間にて前記大張間構造物の側部に各
々連結したことを特徴とする大張間構造物の支持構造。
1. A plurality of support pillars are arranged in a row in two directions at right angles to each other along a side portion of the strut structure, and the strut structure is provided above each of the support pillars for each row of the supporting pillars. Is slidably supported in the horizontal direction, and the side portion of the strut structure and the upper portion of the supporting column are connected via at least one cable, and both ends of the cable are adjacent to each other. A support structure for a strut structure, characterized in that a central portion is connected to the side portions of the straddle structure between the two support pillars at the upper part of the support pillar.
JP6734993A 1993-03-04 1993-03-04 Support structure for Ochoma structure Expired - Fee Related JP2958934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6734993A JP2958934B2 (en) 1993-03-04 1993-03-04 Support structure for Ochoma structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6734993A JP2958934B2 (en) 1993-03-04 1993-03-04 Support structure for Ochoma structure

Publications (2)

Publication Number Publication Date
JPH06257323A true JPH06257323A (en) 1994-09-13
JP2958934B2 JP2958934B2 (en) 1999-10-06

Family

ID=13342459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6734993A Expired - Fee Related JP2958934B2 (en) 1993-03-04 1993-03-04 Support structure for Ochoma structure

Country Status (1)

Country Link
JP (1) JP2958934B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605963A (en) * 2012-04-18 2012-07-25 中建六局工业设备安装有限公司 Method for manufacturing double-layer tensioning sleeve of large-span ultrathin and ultralong steel stranded wire
JP2016118008A (en) * 2014-12-19 2016-06-30 西日本高速道路株式会社 Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
CN105971298A (en) * 2016-06-17 2016-09-28 中国建筑第八工程局有限公司 Large-span stand column cable protective shed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605963A (en) * 2012-04-18 2012-07-25 中建六局工业设备安装有限公司 Method for manufacturing double-layer tensioning sleeve of large-span ultrathin and ultralong steel stranded wire
JP2016118008A (en) * 2014-12-19 2016-06-30 西日本高速道路株式会社 Structural vibration control device, method for removing residual displacement of superstructure using the same and bridge reinforcement method
CN105971298A (en) * 2016-06-17 2016-09-28 中国建筑第八工程局有限公司 Large-span stand column cable protective shed

Also Published As

Publication number Publication date
JP2958934B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4409765A (en) Earth-quake proof building construction
JP2928948B2 (en) Construction method of large span roof
CN108755952B (en) Vertical energy-consuming beam eccentric support
JP2000352017A (en) Bridge erection method
JPH06257323A (en) Supporting structure for large span structure
JP3804904B2 (en) Bracing structure of bearing wall in three-story house
JP2003090145A (en) Support method and support structure to cope with pull- out force in base isolation structure
JP3511045B2 (en) Steel bar vibration control device for buildings
JPH09242386A (en) Damping structure
KR100395712B1 (en) The method and structure of supplimentang support material for cleanroom floor panel
JPH05311921A (en) Damping device
JP2731359B2 (en) Yamagata ramen structure
JP2001200654A (en) Vibration control building
JPH06212692A (en) Gate shaped structure
JP4660722B2 (en) Vibration control device
JP2005132597A (en) Guide rail fixing device for elevator
JP3233172B2 (en) Plate-like support tool
JP7436341B2 (en) Structure lift-up method and its equipment configuration
CN213319970U (en) Marble portal frame platform
CN216379957U (en) Light-duty steel construction factory building bearing structure that stability is good
JP2002357024A (en) Fitting and method for supporting stringpiece of fence
JP7492899B2 (en) Vibration-damping buildings
JP3259236B2 (en) Non-thrust large span frame construction method
Alaghebandian et al. Effect of distributed mass on earthquake response of reinforced concrete frames
AU600833B2 (en) A method of building structures

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees