JPH06257137A - Stabilizing liquid water-level control method using atmospheric pressure sensor for underground continuous wall construction - Google Patents

Stabilizing liquid water-level control method using atmospheric pressure sensor for underground continuous wall construction

Info

Publication number
JPH06257137A
JPH06257137A JP4346593A JP4346593A JPH06257137A JP H06257137 A JPH06257137 A JP H06257137A JP 4346593 A JP4346593 A JP 4346593A JP 4346593 A JP4346593 A JP 4346593A JP H06257137 A JPH06257137 A JP H06257137A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
water
level
deviation
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4346593A
Other languages
Japanese (ja)
Other versions
JP2614006B2 (en
Inventor
Masahiro Kamio
正博 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP4346593A priority Critical patent/JP2614006B2/en
Publication of JPH06257137A publication Critical patent/JPH06257137A/en
Application granted granted Critical
Publication of JP2614006B2 publication Critical patent/JP2614006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE:To control the water-level of the stabilizing liquid appropriately by providing an atmospheric pressure sensor on the ground and on the water surface of an excavation channel, and computing the water-level on the basis of a difference of the atmospheric pressure, and computing a deviation between the computed water-level and the previously input water-level, and controlling a variable delivery pump so as to eliminate the deviation. CONSTITUTION:An atmospheric sensor 4B is provided on the water surface W of the stabilizing liquid for preventing collapse of an excavation channel 1, and an atmospheric pressure sensor 4A is provided on the ground at a fixed reference point Lo, and the water-level W is computed on the basis of a deviation between the atmospheric pressure of both the sensors. A deviation between the previously input water-level and the water-level obtained by the computing is computed, and in the case where a deviation exists, a variable delivery pump 7 is controlled to supply the stabilizing liquid so as to eliminate the deviation. The water-level of the stabilizing liquid is thereby maintained appropriately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地中連続壁工事におけ
る安定液の水位計測並びに管理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water level measurement and management of stable liquid in underground wall construction.

【0002】[0002]

【従来の技術】地中連続壁工事において掘削中の安定液
の水位の計測は、安定液により掘削溝の崩壊を防ぐため
に正確に計測する必要があり、その従来方法には次の3
つがある。
2. Description of the Related Art The water level of a stable liquid during excavation in underground continuous wall construction must be accurately measured in order to prevent collapse of the excavation trench by the stable liquid.
There is one.

【0003】(1) 図3に示すように、超音波距離計
9により水面までの距離を計測する。
(1) As shown in FIG. 3, an ultrasonic distance meter 9 measures the distance to the water surface.

【0004】(2) 図4に示すように、光波距離計1
0により水面に設置した反射板11までの距離を計測す
る。
(2) As shown in FIG. 4, a lightwave rangefinder 1
The distance to the reflector 11 installed on the water surface is measured by 0.

【0005】(3) 図5に示すように、水面に浮べた
フロート12により水面の水位を計測する。
(3) As shown in FIG. 5, the float 12 floating on the water surface measures the water level on the water surface.

【0006】[0006]

【発明が解決しようとする課題】前記の従来方法には次
の問題点があった。
The above-mentioned conventional method has the following problems.

【0007】(1) 超音波距離計による方法。(1) Method using an ultrasonic range finder.

【0008】水面上の浮遊物による誤計測が生じ、また
取付場所が振動の影響を受ける。
An erroneous measurement occurs due to suspended matter on the water surface, and the mounting place is affected by vibration.

【0009】(2) 光波距離計による方法。(2) A method using an optical distance meter.

【0010】反射板の平面位置を固定したままで、水面
に追従させるのは非常に困難である。
It is very difficult to follow the water surface with the planar position of the reflector plate fixed.

【0011】(3) フロートによる方法。(3) Float method.

【0012】スケールの読み取り誤差があり、また泥水
の比重の影響を受ける。
There is an error in reading the scale and it is affected by the specific gravity of the muddy water.

【0013】したがって、本発明の目的は、従来方法の
前記問題点を解決し、安定液の水位を容易に正確に計測
し、的確な水位管理を行うことのできる地中連続壁工事
の安定液の水位管理方法を提供するにある。
Therefore, an object of the present invention is to solve the above problems of the conventional method, to easily and accurately measure the water level of the stable liquid, and to perform accurate water level management. To provide a water level management method for

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に本発明によれば、掘削中の水面に気圧センサを搭載し
た浮遊体を設置し、また地上部の不動基準点に気圧セン
サを設置して、水面上の気圧及び地上部の不動基準点で
の気圧を計測し、予め掘削溝の崩壊を防ぐのに必要な水
面の水位をコンピュータに入力しておき、不動基準点で
の計測値との相対値より、水面の気圧を水位に演算し
て、予め入力された水位と演算で求められた水位との偏
差を演算し、偏差がある場合には、可変流量ポンプに制
御信号を出して、安定液を偏差がゼロになるように補給
制御するものとする。
To achieve the above object, according to the present invention, a floating body equipped with an atmospheric pressure sensor is installed on the water surface during excavation, and an atmospheric pressure sensor is installed at an immovable reference point on the ground. Then, the air pressure on the water surface and the air pressure at the immovable reference point on the ground are measured, and the water level of the water surface necessary to prevent the collapse of the excavation trench is input to the computer in advance, and the measured value at the immobile reference point is set. By calculating the atmospheric pressure of the water surface as the water level from the relative value of and the deviation between the water level input in advance and the water level obtained by the operation, if there is a deviation, send a control signal to the variable flow pump Then, the stabilizing solution is replenished and controlled so that the deviation becomes zero.

【0015】[0015]

【作用】気圧は1cm上昇することによって100万分
の1気圧下がるという原理を用いて、気圧計測により不
動基準点との相対値で水位を知ることができる。
The water level can be known from the relative value to the immovable reference point by measuring the atmospheric pressure by using the principle that the atmospheric pressure is reduced by 1 cm to decrease by one millionth of an atmospheric pressure.

【0016】今、掘削が進行しコンピュータに予め入力
した掘削溝の崩壊を防ぐのに必要な水面の水位より低下
すると、コンピュータからの制御信号により可変流量ポ
ンプが作動し、ないしは吐出流量が増加して安定液を補
給し、掘削溝の水面の水位が上昇し掘削溝の崩壊を防ぐ
のに必要な水面の水位に達すると、すなわち偏差がゼロ
になると、可変流量ポンプは停止、ないしは吐出流量が
減少する。これにより常に掘削溝の水面の水位は、その
崩壊を防ぐのに必要な水面の水位に維持管理される。
Now, when the excavation progresses and the water level drops below the water level required to prevent the collapse of the excavation groove input in the computer in advance, the variable flow pump is activated by the control signal from the computer, or the discharge flow rate increases. When the water level on the water surface of the excavation groove rises and reaches the water surface level required to prevent collapse of the excavation groove, that is, when the deviation becomes zero, the variable flow pump stops or the discharge flow rate changes. Decrease. As a result, the water level on the surface of the trench will always be maintained at the water level necessary to prevent its collapse.

【0017】[0017]

【実施例】図1に本発明の方法を実施する施設を示し、
1は掘削溝、2はガイドウォール、3は溝を掘削する掘
削機である。4Aは地上部の不動基準点L0に設置した
気圧センサ、4Bは掘削中の水面Wに浮遊体に搭載して
設置した気圧センサである。5は予め掘削溝の崩壊を防
ぐのに必要な水面の水位が入力され、また後述の演算を
行うコンピュータ(CPU)、6は必要な表示を行う表
示装置(CRT)である。7はCPUからの制御信号に
より制御される可変流量ポンプ、8は給液配管である。
EXAMPLE FIG. 1 shows a facility for carrying out the method of the present invention,
Reference numeral 1 is an excavation groove, 2 is a guide wall, and 3 is an excavator for excavating the groove. 4A is an atmospheric pressure sensor installed at the immovable reference point L0 on the ground, and 4B is an atmospheric pressure sensor installed on a floating body on the water surface W during excavation. Reference numeral 5 is a computer (CPU) for preliminarily inputting the water level of the water surface necessary for preventing collapse of the excavation trench, and 6 is a display device (CRT) for performing necessary display. Reference numeral 7 is a variable flow rate pump controlled by a control signal from the CPU, and 8 is a liquid supply pipe.

【0018】次に、図2に示すフローチャートにしたが
い前記の施設によっての安定液の水位計測並びに管理方
法について述べる。
Next, the method for measuring and managing the water level of the stabilizing solution by the above facility will be described according to the flow chart shown in FIG.

【0019】気圧は1cm上昇することによって100
万分の1気圧下がるという原理を用いて、気圧計測によ
り不動基準点L0との相対値で掘削中の水面Wの水位を
知ることができる。
The atmospheric pressure is raised by 1 cm to 100
It is possible to know the water level of the water surface W during excavation from the relative value with the immovable reference point L0 by measuring the atmospheric pressure by using the principle that the pressure decreases by one-tenth of an atmosphere.

【0020】予め掘削溝の崩壊を防ぐのに必要な水面の
水位をCPUに入力しておく(S−1)。
The water level of the water surface required to prevent the collapse of the excavation trench is input to the CPU in advance (S-1).

【0021】気圧センサ4Aおよび4Bにより不動基準
点L0での気圧および掘削中の水面Wでの気圧を計測し
計測値をCPUに入力する(S−2)。
The atmospheric pressure at the fixed reference point L0 and the atmospheric pressure at the water surface W during excavation are measured by the atmospheric pressure sensors 4A and 4B, and the measured values are input to the CPU (S-2).

【0022】不動基準点L0での計測値との相対値によ
り、水面Wの気圧をCPUで水位に演算する(S−
3)。
The CPU calculates the atmospheric pressure of the water surface W to the water level based on the relative value with the measured value at the fixed reference point L0 (S-
3).

【0023】予め入力された水位と演算で求められた水
位との偏差を演算する(S−4)。
The deviation between the water level input in advance and the water level calculated is calculated (S-4).

【0024】水位偏差ゼロか(S−5)。No water level deviation (S-5).

【0025】偏差がある場合には、CPUより可変流量
ポンプ7に制御信号を出して、安定液を偏差がゼロにな
るように補給制御する(S−6)。
If there is a deviation, a control signal is output from the CPU to the variable flow rate pump 7, and the stabilizing liquid is replenished and controlled so that the deviation becomes zero (S-6).

【0026】必要な表示をCRTで表示し目で確認でき
るようにする。
The necessary display is displayed on the CRT so that it can be visually confirmed.

【0027】本発明は、地中連続壁工事の水位管理に限
らず、同様にして、他の垂直方向の変動や相対高さ計測
及び管理に転用、適用が可能である。
The present invention is not limited to the water level control of underground continuous wall construction, but can be similarly applied to other vertical fluctuations and relative height measurement and control.

【0028】[0028]

【発明の効果】本発明は、気圧は1cm上昇することに
よって100万分の1気圧下がるという原理を用いて、
気圧計測により不動基準点との相対値で掘削中の水面の
水位を計測するものであるので、従来法の超音波距離計
による場合の水面上の浮遊物による誤計測、光波距離計
による場合の計測の困難性、フロートによる場合の泥水
の比重の影響などの不都合を解消して、安定液の水位を
容易に正確に計測し、的確な水位管理を行うことができ
るものである。
Industrial Applicability The present invention uses the principle that the atmospheric pressure is lowered by 1 cm to 1 millionth of an atmospheric pressure.
Since the water level of the water surface during excavation is measured by the relative value with the immovable reference point by the atmospheric pressure measurement, erroneous measurement due to suspended matter on the water surface when using the conventional ultrasonic rangefinder, It is possible to eliminate the inconvenience such as the difficulty of measurement and the influence of the specific gravity of muddy water due to the float, to easily and accurately measure the water level of the stable liquid, and to perform accurate water level management.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気圧センサを用いた地中連続壁工事の
安定液の水位管理方法を実施した掘削溝を縦断面で示す
正面図。
FIG. 1 is a front view showing a vertical section of an excavation groove in which a method for controlling the level of a stable liquid in a continuous underground wall construction using the atmospheric pressure sensor of the present invention is carried out.

【図2】図1の方法により可変流量ポンプの制御を行う
フローチャート図。
FIG. 2 is a flowchart showing how the variable flow rate pump is controlled by the method shown in FIG.

【図3】従来の超音波距離計による方法を示す図。FIG. 3 is a diagram showing a method using a conventional ultrasonic distance meter.

【図4】従来の光波距離計による方法を示す図。FIG. 4 is a diagram showing a method using a conventional optical distance meter.

【図5】従来のフロートによる方法を示す図。FIG. 5 is a diagram showing a conventional float method.

【符号の説明】[Explanation of symbols]

1・・・掘削溝 2・・・ガイドウォール 3・・・掘削機 4・・・気圧センサ 5・・・CPU 6・・・CRT 7・・・可変流量ポンプ 8・・・給液配管 1 ... Excavation groove 2 ... Guide wall 3 ... Excavator 4 ... Atmospheric pressure sensor 5 ... CPU 6 ... CRT 7 ... Variable flow rate pump 8 ... Liquid supply pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 掘削中の水面に気圧センサを搭載した浮
遊体を設置し、また地上部の不動基準点に気圧センサを
設置して、水面上の気圧及び地上部の不動基準点での気
圧を計測し、予め掘削溝の崩壊を防ぐのに必要な水面の
水位をコンピュータに入力しておき、不動基準点での計
測値との相対値より、水面の気圧を水位に演算して、予
め入力された水位と演算で求められた水位との偏差を演
算し、偏差がある場合には、可変流量ポンプに制御信号
を出して、安定液を偏差がゼロになるように補給制御す
ることを特徴とする気圧センサを用いた地中連続壁工事
の安定液の水位管理方法。
1. A floating body equipped with an atmospheric pressure sensor is installed on the surface of water during excavation, and an atmospheric pressure sensor is installed at an immovable reference point on the ground, so that the atmospheric pressure on the water surface and the atmospheric pressure at the immobile reference point on the ground are set. The water level of the water surface necessary to prevent the collapse of the excavation groove is input to the computer in advance, and the atmospheric pressure of the water surface is calculated as the water level from the relative value with the measured value at the immovable reference point. The deviation between the input water level and the calculated water level is calculated, and if there is a deviation, a control signal is output to the variable flow rate pump to replenish the stabilizing liquid so that the deviation becomes zero. A method for controlling the level of stable liquid in underground continuous wall construction using a barometric pressure sensor.
JP4346593A 1993-03-04 1993-03-04 Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor Expired - Lifetime JP2614006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346593A JP2614006B2 (en) 1993-03-04 1993-03-04 Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346593A JP2614006B2 (en) 1993-03-04 1993-03-04 Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor

Publications (2)

Publication Number Publication Date
JPH06257137A true JPH06257137A (en) 1994-09-13
JP2614006B2 JP2614006B2 (en) 1997-05-28

Family

ID=12664470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346593A Expired - Lifetime JP2614006B2 (en) 1993-03-04 1993-03-04 Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor

Country Status (1)

Country Link
JP (1) JP2614006B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265638A (en) * 2009-05-13 2010-11-25 Japan Pile Corp Device and method for setting reference level of stabilizer
JP2010265637A (en) * 2009-05-13 2010-11-25 Japan Pile Corp Stabilizer level management apparatus, level management method and level management system
JP2020144059A (en) * 2019-03-07 2020-09-10 明星電気株式会社 River flow condition monitoring system and monitoring device
JP2022162059A (en) * 2019-03-07 2022-10-21 明星電気株式会社 Monitoring system and monitoring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265638A (en) * 2009-05-13 2010-11-25 Japan Pile Corp Device and method for setting reference level of stabilizer
JP2010265637A (en) * 2009-05-13 2010-11-25 Japan Pile Corp Stabilizer level management apparatus, level management method and level management system
JP2020144059A (en) * 2019-03-07 2020-09-10 明星電気株式会社 River flow condition monitoring system and monitoring device
JP2022162059A (en) * 2019-03-07 2022-10-21 明星電気株式会社 Monitoring system and monitoring device

Also Published As

Publication number Publication date
JP2614006B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
EP0297128A1 (en) Apparatus and method for determining the position of a tool in a borehole
EP3276302A1 (en) Method and system for compensating for soft iron magnetic disturbances in multiple heading reference systems
JP2614006B2 (en) Water level control method of stable liquid for underground wall construction using atmospheric pressure sensor
JP2007232745A (en) Weir type flowmeter
RU2683451C2 (en) System of automated control of digging process by single-bucket trench excavators for installation of pipelines and engineer communications between non-horizontal bottom and on sites with slopes
JP2000130068A (en) Natural ground settlement measuring device and method therefor
CN100473947C (en) Level-meter
GB2418733A (en) Calibrating the zero setting of an ultrasonic depth sensor
US4393451A (en) Method and apparatus for measuring total liquid volume flow
JP2005331242A (en) Settlement measuring method for road surfaces
JP3218204B2 (en) Level measuring device and reference tank
JPH07324964A (en) Underground water gauge
Replogle Practical technologies for irrigation flow control and measurement
JP6591325B2 (en) Auxiliary water level gauge auxiliary system, its auxiliary method, its auxiliary program and auxiliary water level gauge with auxiliary functions
JPH07306040A (en) Displacement meter
JP3421959B2 (en) Level measuring method and tunnel level measuring device
CN219736498U (en) Error detection device for sensor
JPH0369053B2 (en)
JP2001330496A (en) Ground water level gage
KR20210145960A (en) Device for estimating pump flow
SU1138646A1 (en) Method of determination of distance between pipe-line pumping plants
SU968230A1 (en) Apparatus for controlling the working motion path of working member of trencher
JP2589990B2 (en) Elevation measuring device for shield machine
JPH06337721A (en) Liquid level measuring instrument
Fortino Flow measurement techniques for hydraulic dredges