JPH06256885A - Corrosion resistant and wear resistant alloy - Google Patents

Corrosion resistant and wear resistant alloy

Info

Publication number
JPH06256885A
JPH06256885A JP4077893A JP4077893A JPH06256885A JP H06256885 A JPH06256885 A JP H06256885A JP 4077893 A JP4077893 A JP 4077893A JP 4077893 A JP4077893 A JP 4077893A JP H06256885 A JPH06256885 A JP H06256885A
Authority
JP
Japan
Prior art keywords
alloy
layer
chromium
corrosion
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4077893A
Other languages
Japanese (ja)
Inventor
Kensuke Hidaka
謙介 日高
Kanichi Tanaka
完一 田中
Yoshio Kodaira
良男 小平
Shinichi Nishimura
信一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP4077893A priority Critical patent/JPH06256885A/en
Publication of JPH06256885A publication Critical patent/JPH06256885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve the hydrochloric acid resistance of an alloy and furthermore to improve its wear resistance, in a chromium base alloy layer of a Cr-Ni- W or Mo allay having a specified compsn. by providing its surface with a nitriding layer. CONSTITUTION:At least the surface of a chromium base allay layer constituted of, by weight, 30.0 to 48.O% Ni and 1.5 to 15.0% W or/and 1.0 to 6.5% Mo so as to satisfy the total of W+Mo of 15.0 at the maximum, and the balance >=40.0% Cr is provided with a nitriding layer. The thickness of the nitriding layer can be formed into a suitable one by using an ordinary nitriding device and controlling the heating temp. and time. If required, the same alloy layer may furthermore be added with <=15.0% Fe or/and <=10.0% Co so as to satisfy the total of Fe and Co of 20 at the maximum or moreover be added with 0.3 to 2.0% C, 0.1 to 1.5% B and 0.1 to 3.0% Si.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた耐食性、特に耐塩
酸性が良好で、耐摩耗性も良好なクロム基の合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromium-based alloy which has excellent corrosion resistance, particularly hydrochloric acid resistance, and wear resistance.

【0002】[0002]

【従来の技術】従来、耐摩耗性、耐食性を有するハード
フェーシング材としては、ステライトに代表されるCo-C
r-W 合金(以下CoCr合金という)やコルモノイに代表さ
れるNi-Cr-B-Si合金(以下NiCr合金という)が広く用い
られているが、近年その使用環境は苛酷さを増し、一部
の部品においては耐摩耗性、耐食性が満足できなくなっ
ている。こうしたことから、CoCr合金、NiCr合金よりさ
らに靱性、耐摩耗性、耐食性の優れたハードフェーシン
グ材の開発の要求が高まっている。
2. Description of the Related Art Conventionally, Co-C represented by stellite has been used as a hard facing material having abrasion resistance and corrosion resistance.
rW alloys (hereinafter referred to as CoCr alloys) and Ni-Cr-B-Si alloys (hereinafter referred to as NiCr alloys) represented by Colmonoy are widely used, but in recent years the environment of use has become more severe, and some parts In, the wear resistance and the corrosion resistance are not satisfactory. For these reasons, there is an increasing demand for the development of hard facing materials that are more excellent in toughness, wear resistance and corrosion resistance than CoCr alloys and NiCr alloys.

【0003】本発明者等は、CoCr合金及びNiCr合金に対
する問題点や要求に対応するため、Cr-Ni-W又は/及びM
o合金に注目し、優れた靱性、耐摩耗性および耐食性を
兼備したハードフェーシング用クロム基合金を開発し、
特願平3-214026号他7件の特許を出願した。この合金の
主な組成はNi 30.0〜48.0%、W 1.5〜15.0%又は/及び
Mo 1.0〜6.5%で、WとMoの合計は最大15.0%であり、残
部が40%以上のCrであるハードフェーシング用高靱性ク
ロム基合金およびその粉末であり、必要に応じ、Fe 15.
0%以下又は/及びCo 10.0%以下を加え、この場合Fe及
びCoの合計は最大20%とする。さらに必要に応じC 0.3
〜2.0%、B 0.1〜1.5%、Si 0.1〜3.0%の一種又は二種
以上を添加することができる。 しかしながら、本発明者らが開発した前記Cr-Ni-W又は
/及びMo合金(以下CrNiW/Mo合金という)は特定の酸、
特に塩酸に耐して耐食性がやや劣ることがその後の調査
で判明した。
The present inventors have developed Cr-Ni-W and / or M in order to meet the problems and requirements for CoCr alloys and NiCr alloys.
Focusing on alloys, we developed a chromium-based alloy for hard facings that has excellent toughness, wear resistance and corrosion resistance,
We have applied for 7 patents including Japanese Patent Application No. 3-214026. The main composition of this alloy is Ni 30.0-48.0%, W 1.5-15.0% or / and
Mo is 1.0 to 6.5%, the maximum of W and Mo is 15.0%, and the balance is 40% or more of Cr, which is a high toughness chromium-based alloy for hard facing and its powder, and if necessary, Fe 15.
Add 0% or less or / and Co 10.0% or less, and in this case, the total of Fe and Co is 20% at maximum. If necessary, C 0.3
˜2.0%, B 0.1˜1.5%, Si 0.1˜3.0% can be added alone or in combination. However, the Cr-Ni-W or / and Mo alloys (hereinafter referred to as CrNiW / Mo alloys) developed by the present inventors are
In particular, it was found in the subsequent investigation that the corrosion resistance was slightly inferior to hydrochloric acid.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記CrNiW合
金の塩酸耐食性を改良すべく種々の検討を行い、前記Cr
NiW合金に析出するCr固溶体中のCrリッチ相が塩酸に腐
食されることを発見し、この解決策として、少なくとも
表面に窒化層を設ければ耐塩酸性が改良され、然も耐摩
耗性もさらに改良されることを見いだし本発明を完成し
たものである。
The present invention has conducted various studies to improve the hydrochloric acid corrosion resistance of the CrNiW alloy.
It was discovered that the Cr-rich phase in the Cr solid solution precipitated in the NiW alloy was corroded by hydrochloric acid, and as a solution to this, a nitride layer was provided at least on the surface to improve the hydrochloric acid resistance and further improve the wear resistance. The inventors have completed the present invention by finding improvements.

【0005】[0005]

【課題を解決するための手段】本発明は重量%でNi 30.
0〜48.0%とW 1.5〜15.0%又は/及びMo 1.0〜6.5%
で、WとMoの合計は最大15.0%であり、残部が40.0%以
上のCrおよび不可避的不純物から成るクロム基合金層の
少なくとも表面に窒化層を設けたことを特徴とする耐食
・耐摩耗合金であり、必要に応じ、前記クロム基合金層
にFe 15.0%以下又は/及びCo 10.0%以下でFe及びCoの
合計は最大20%を添加することができ、さらに必要に応
じC 0.3〜2.0%、B 0.1〜1.5%、Si 0.1〜3.0%の一種
又は二種以上を添加することができる。
The present invention is directed to Ni 30.
0-48.0% and W 1.5-15.0% or / and Mo 1.0-6.5%
In addition, the sum of W and Mo is 15.0% at maximum, and the balance is 40.0% or more Cr and a chromium-based alloy layer consisting of unavoidable impurities. And, if necessary, the chromium-based alloy layer can contain Fe 15.0% or less or / and Co 10.0% or less and the total of Fe and Co can be added up to 20%, and if necessary, C 0.3 to 2.0%. , B 0.1 to 1.5%, and Si 0.1 to 3.0% can be added.

【0006】[0006]

【作用】本発明の一部を構成するクロム基合金層はCr、
Ni、W、Mo及び必要により添加するFe、Co、C、B、Siか
ら構成され耐摩耗性、耐食性を有する合金層を形成して
いる。このクロム基合金層に於ける各成分の限定理由は
次の通りである。
[Function] The chromium-based alloy layer forming part of the present invention is Cr,
An alloy layer composed of Ni, W, Mo, and optionally Fe, Co, C, B, and Si, which has wear resistance and corrosion resistance, is formed. The reasons for limiting each component in the chromium-based alloy layer are as follows.

【0007】(Cr)Crはクロム基合金層の残部を構成する
もので、Ni,W又は/及びMoを固溶した硬質のCr固溶体を
形成し、合金の耐摩耗性および耐食性の向上に寄与する
が、その量が40.0%以下では耐摩耗性が乏しく、かつ耐
食性の向上が認められない。このため、Crは40.0%以上
とした。
(Cr) Cr constitutes the balance of the chromium-based alloy layer and forms a hard Cr solid solution containing Ni, W or / and Mo as a solid solution, and contributes to the improvement of wear resistance and corrosion resistance of the alloy. However, if the amount is 40.0% or less, the wear resistance is poor and the corrosion resistance is not improved. Therefore, Cr is set to 40.0% or more.

【0008】(Ni)NiはW又は/及びMoを固溶し、靱性の
あるNi固溶体を形成するが、その量が30.0%以下では、
Cr固溶体が多くなり合金の靱性が低下し、48.0%以上で
は靱性は上がるものの、所定の硬さが得られず、耐摩耗
性が低下する。このために、Ni量は30.0〜48.0%に限定
した。
(Ni) Ni forms a tough Ni solid solution by forming a solid solution with W or / and Mo, but if the amount is 30.0% or less,
The Cr solid solution increases and the toughness of the alloy decreases, and if it is 48.0% or more, the toughness increases, but the desired hardness cannot be obtained, and the wear resistance decreases. For this reason, the amount of Ni was limited to 30.0-48.0%.

【0009】(W,Mo)W又は/及びMoはCr及びNiに固溶
し、合金の強度を高めるが、その量がW1.5%以下、Mo1.
0%以下ではこの効果がなく、W 15.0%以上、Mo6.5%以
上では靱性の乏しいσ相が析出するため合金の靱性が低
下する。このため、W量は1.5〜15.0%、Mo量は1.0〜6.5
%に限定した。ただし、MoとWの合計量が15.0%を越え
ると、かえって合金の靱性が低下するので、その合計量
を15.0%以下に限定した。
(W, Mo) W and / or Mo dissolve in Cr and Ni to form a solid solution to increase the strength of the alloy, but the amount of W is 1.5% or less, Mo1.
If it is 0% or less, this effect does not exist, and if W is 15.0% or more and Mo is 6.5% or more, the toughness of the alloy decreases because a σ phase having poor toughness is precipitated. Therefore, the W content is 1.5-15.0% and the Mo content is 1.0-6.5%.
Limited to%. However, if the total amount of Mo and W exceeds 15.0%, the toughness of the alloy will rather deteriorate, so the total amount was limited to 15.0% or less.

【0010】(Fe,Co)必要に応じ添加するFe又は/及
びCoは主にNiに固溶し、Ni固溶体中に入り、その硬さを
高め、合金の耐摩耗性向上に寄与するが、Fe 15%以上
では合金の靱性が低下するばかりでなく、耐食性も低下
する傾向がある、また、Co 10.0%以上ではその効果が
少なく、かえって合金の靱性を低下させる傾向がある。
このため、Fe量は15.0%以下、Co量は10.0%以下に限定
し、さらに、FeとCoの合計量が20%を越えるとかえって
合金の靱性が低下するので、その合計は最大20%に限定
した。
(Fe, Co) Fe or / and Co, which is added if necessary, mainly forms a solid solution in Ni and enters the Ni solid solution to increase the hardness and contribute to the improvement of the wear resistance of the alloy. If the Fe content is 15% or more, not only the toughness of the alloy tends to decrease, but also the corrosion resistance tends to decrease. If the Co content is 10.0% or more, the effect is small and the toughness of the alloy tends to decrease.
For this reason, the Fe content is limited to 15.0% or less and the Co content is limited to 10.0% or less. Furthermore, if the total content of Fe and Co exceeds 20%, the toughness of the alloy deteriorates, so the total content is up to 20%. Limited

【0011】(C)必要に応じ添加するCはCrとの間でCr炭
化物を形成し、合金の耐摩耗性を更に向上するのに寄与
する。Cr炭化物は低C側では Ni固溶体と共晶を形成し、
高C側では初晶炭化物として晶出する。その量が0.3 %
以下では耐摩耗性向上の効果が少なく、2.0 %以上では
合金の靱性が低下する。このため、C量は 0.3〜2.0 %
に限定した。
(C) C added as necessary forms Cr carbide with Cr and contributes to further improving the wear resistance of the alloy. Cr carbide forms a eutectic with Ni solid solution on the low C side,
Crystallized as primary carbide on the high C side. The amount is 0.3%
If it is less than 2.0%, the effect of improving wear resistance is small, and if it is 2.0% or more, the toughness of the alloy decreases. Therefore, the C content is 0.3-2.0%.
Limited to.

【0012】(B)必要に応じ添加するBはCrとの間でCr硼
化物を形成し、合金の耐摩耗性を更に向上させるのに寄
与する。Cr硼化物は Ni固溶体と共晶を形成するが、そ
の量が0.1%以下では耐摩耗性向上の効果が少なく、1.5
%以上では合金の靱性が低下する。このため、B量は
0.1〜1.5 %に限定した。
(B) B added as necessary forms Cr boride with Cr, and contributes to further improving the wear resistance of the alloy. Cr boride forms a eutectic with Ni solid solution, but if the amount is less than 0.1%, the effect of improving wear resistance is small, and
%, The toughness of the alloy decreases. Therefore, the amount of B is
Limited to 0.1-1.5%.

【0013】(Si)必要に応じて添加するSiは主にNiに
固溶し、Ni固溶体中に入り、その硬さを高め、合金の耐
摩耗性向上に寄与するとともに、ハードフェーシング時
に脱酸材として作用し、合金の溶解性を向上させる。そ
の量が0.1%以下では、これらの効果が得られず、3.0%
以上では合金の靱性が低下する、このため、Si量は0.1
〜3.0%に限定した。
(Si) Si, which is added if necessary, mainly forms a solid solution in Ni and enters the Ni solid solution to increase its hardness, contribute to the improvement of the wear resistance of the alloy, and deoxidize during hard facing. It acts as a material and improves the solubility of the alloy. If the amount is 0.1% or less, these effects cannot be obtained and 3.0%
Above all, the toughness of the alloy is reduced.
Limited to ~ 3.0%.

【0014】以上のクロム基合金層は靱性に優れたNi固
溶体と耐摩耗性に優れたCr固溶体から構成されている。
この一方のCr固溶体は冷却過程において、Crリッチ相と
Niリッチ相とに分離析出するが、この反応は共析変態に
よるものと推定される。前記Cr固溶体中のCrリッチ相は
塩酸に対する耐食性がやや悪く、選択的に塩酸に腐食さ
れ、合金全体の耐塩酸性を悪くしていることを腐食試験
の結果発見した。これを改良するため、種々の検討をす
る過程において、上記クロム基合金層の少なくとも表面
に窒化層を設ければ耐塩酸性が改良され、然も耐摩耗性
もさらに改良されることが判明した。
The above chromium-based alloy layer is composed of a Ni solid solution having excellent toughness and a Cr solid solution having excellent wear resistance.
One of the Cr solid solutions, during the cooling process, becomes a Cr-rich phase.
Although it separates and precipitates into the Ni-rich phase, this reaction is presumed to be due to the eutectoid transformation. As a result of a corrosion test, it was discovered that the Cr-rich phase in the Cr solid solution had a slightly poor corrosion resistance to hydrochloric acid and was selectively corroded by hydrochloric acid, which deteriorated the hydrochloric acid resistance of the entire alloy. In order to improve this, in the course of various investigations, it was found that if a nitride layer is provided on at least the surface of the chromium-based alloy layer, hydrochloric acid resistance is improved and wear resistance is further improved.

【0015】本発明に言う窒化層は上記クロム基合金層
の内部に存在していても耐食性及び耐摩耗性の改良はで
きるが、少なくともクロム基合金層の表面に存在するこ
とが必要である。この窒化層は主にクロムの窒化物と考
えられるが、この窒化物が存在することによりCrリッチ
層が塩酸に腐食されることがなくなる。また、この窒化
層が存在することにより、合金の耐摩耗性も向上する。
窒化層の厚さは特に規定しないが、少なくとも1μm程度
存在することが望ましい、1μm以下では耐食性の改善効
果が短時間で減少するためである。
The nitride layer referred to in the present invention can improve the corrosion resistance and wear resistance even if it exists inside the chromium-based alloy layer, but it must exist at least on the surface of the chromium-based alloy layer. This nitride layer is considered to be mainly a chromium nitride, but the presence of this nitride prevents the Cr-rich layer from being corroded by hydrochloric acid. The presence of this nitrided layer also improves the wear resistance of the alloy.
The thickness of the nitriding layer is not particularly specified, but it is desirable that the thickness is at least about 1 μm, because if it is 1 μm or less, the effect of improving corrosion resistance decreases in a short time.

【0016】窒化層の形成方法としては、上記クロム基
合金層が肉盛層のみならず焼結品、鋳物、溶射した後の
仕上げ研摩製品等の場合にも、通常の窒化処理装置を使
用し加熱温度と時間を調節することにより、クロム基合
金層の表面に適当な厚さの窒化層を形成することが可能
である。また、クロム基合金層の内部に窒化層を形成す
る場合は、上記クロム基合金を粉末に加工して、窒素ガ
スを用いたプラズマ溶射により溶射層を形成すると粉末
表面に窒化層が形成され、これが溶射層の内部で積層さ
れることにより、内部に窒化層が形成されると同時に表
面にも窒化層が形成される。同様にクロム基合金粉末
を、窒素ガスを用いてプラズマトランスファーアーク肉
盛法で肉盛しても窒化層を形成できる。
As a method for forming the nitrided layer, a normal nitriding apparatus is used not only when the chromium-based alloy layer is a built-up layer but also when it is a sintered product, a casting, a finish-polished product after thermal spraying, or the like. By adjusting the heating temperature and time, it is possible to form a nitride layer having an appropriate thickness on the surface of the chromium-based alloy layer. Further, when forming a nitride layer inside the chromium-based alloy layer, the chromium-based alloy is processed into a powder, and a nitride layer is formed on the powder surface by forming a sprayed layer by plasma spraying using nitrogen gas, By laminating this inside the thermal sprayed layer, a nitrided layer is formed inside and at the same time a nitrided layer is also formed on the surface. Similarly, a nitride layer can also be formed by overlaying a chromium-based alloy powder by a plasma transfer arc overlay method using nitrogen gas.

【0017】[0017]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。 実施例1 Cr 55%、Ni 41%、Mo 2.5%、B 0.5%、Si 1.0%に配
合した試料を通常の電気炉を用いアルゴン気流中で溶
解、15mm×15mm×50mmの四角柱のシェル型に鋳造し、こ
の鋳造片を10mm×10mm×20mmの寸法の四角柱に加工した
後、その表面を減圧下の窒素ガス雰囲気中での放電を利
用したイオン窒化処理を行い試料として、塩酸腐食試験
と合金の硬さ測定を行った。塩酸腐食試験は前記試料を
60〜65℃に加熱した 5%塩酸水溶液中に漬け、浸漬して
1時間保持した後の試料の腐食減量を測定した。硬さの
測定は上記試料の一部を用いてビッカース硬さ計を用い
て測定した。
EXAMPLES Next, examples of the present invention will be specifically described together with comparative examples. Example 1 A sample mixed with Cr 55%, Ni 41%, Mo 2.5%, B 0.5%, and Si 1.0% was melted in an argon stream using a normal electric furnace, and a 15 mm × 15 mm × 50 mm square column shell type was used. After casting, the cast piece was processed into a square column with dimensions of 10 mm × 10 mm × 20 mm, and the surface was subjected to ion nitriding treatment using discharge in a nitrogen gas atmosphere under reduced pressure, and a hydrochloric acid corrosion test was performed as a sample. And the hardness of the alloy was measured. Hydrochloric acid corrosion test
Immerse it in 5% hydrochloric acid solution heated to 60-65 ℃
The corrosion weight loss of the sample after holding for 1 hour was measured. The hardness was measured by using a part of the above sample using a Vickers hardness meter.

【0018】摩耗試験はピンオンディスク式摩耗試験機
を用い、試験荷重10Kgf、摩擦速度0.1m/sec、摩擦距離
2m、無潤滑下で行い、ピンの摩耗量を測定した。これに
用いたピンおよびディスクは次のようにして作成した。
ピンは前記組成の合金をシェル型に鋳造し、φ8×20mm
(先端が半球状)の寸法に加工しした後、腐食試験の試
料と同じ条件でイオン窒化処理を行った。ディスクは前
記組成の合金溶湯をアルゴンガスを使用したガス噴霧法
により粉化し、そのままアルゴンガス雰囲気中で冷却し
て、クロム基合金粉末を作成し、SUS304ディスク(直径
60mm、厚み10mm)の一面にプラズマトランスファーアー
ク(PTA)による肉盛を行い、その表面を研摩した
後、腐食試験の試料と同じ条件でイオン窒化処理を行っ
た。
The wear test was carried out using a pin-on-disc type wear tester with a test load of 10 Kgf, a friction speed of 0.1 m / sec, and a friction distance.
The amount of pin wear was measured after 2 m without lubrication. The pins and disks used for this were prepared as follows.
The pin is cast from an alloy of the above composition in a shell shape, and is φ8 × 20 mm
After processing to a dimension of (hemispherical tip), an ion nitriding treatment was performed under the same conditions as the sample of the corrosion test. The disc is pulverized by the gas atomization method using the argon alloy gas of the above composition, and cooled in an argon gas atmosphere as it is to prepare a chromium-based alloy powder.
One surface of 60 mm in thickness and 10 mm in thickness was overlaid by plasma transfer arc (PTA), the surface was polished, and then ion nitriding treatment was performed under the same conditions as the sample of the corrosion test.

【0019】以上の塩酸腐食試験、硬さ試験および摩耗
試験の結果を表1に示す。なお比較のためイオン窒化処
理を行わない試料の塩酸腐食試験、硬さ試験および摩耗
試験の結果も同時に表1に示す。
Table 1 shows the results of the above hydrochloric acid corrosion test, hardness test and abrasion test. For comparison, Table 1 also shows the results of the hydrochloric acid corrosion test, hardness test, and abrasion test of the sample not subjected to the ion nitriding treatment.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、窒化層を有する
合金は、比較例の窒化層のない合金に比べ、耐食性が改
善され、硬さも高く、さらに耐摩耗性の向上も認められ
る。 実施例2 次にCrNiW/Mo合金の組成範囲で各組成を変化させ、窒化
層の効果を確認するため、表2に示す組成の合金10種を
作成し、実施例1と同じ条件で塩酸腐食試験に用いる窒
化処理した試料を作成し、塩酸腐食試験を行った。塩酸
腐食試験は前記試料を60〜65℃に加熱した 5%塩酸水溶
液中に漬け、浸漬1分後に試料の表面から水素ガスが発
生するか否かを観察することにより行った。結果を表2
に示す。なお比較のため実施例1で作成したCrNiW/Mo合
金の窒化処理を行わない試料について比較例として表2
に同時に示す。
As is clear from Table 1, the alloy having the nitrided layer has improved corrosion resistance, higher hardness, and improved wear resistance as compared with the alloy having no nitrided layer of the comparative example. Example 2 Next, in order to confirm the effect of the nitriding layer by changing each composition within the composition range of the CrNiW / Mo alloy, 10 kinds of alloys having the compositions shown in Table 2 were prepared and subjected to hydrochloric acid corrosion under the same conditions as in Example 1. A sample subjected to nitriding treatment used for the test was prepared and a hydrochloric acid corrosion test was conducted. The hydrochloric acid corrosion test was carried out by immersing the sample in a 5% hydrochloric acid aqueous solution heated to 60 to 65 ° C. and observing whether or not hydrogen gas was generated from the surface of the sample 1 minute after the immersion. The results are shown in Table 2.
Shown in. For comparison, a sample of the CrNiW / Mo alloy prepared in Example 1 which is not subjected to nitriding treatment is shown in Table 2 as a comparative example.
Shown at the same time.

【0022】[0022]

【表2】 [Table 2]

【0023】表2の結果から本発明の一部を構成するク
ロム基合金の組成範囲内では窒化層を形成すれば塩酸耐
食性が良好であることが解る。
From the results shown in Table 2, it is understood that the hydrochloric acid corrosion resistance is good when the nitride layer is formed within the composition range of the chromium-based alloy forming part of the present invention.

【0024】[0024]

【発明の効果】以上述べたごとく、窒化層を形成した本
発明の合金は、窒化層を形成しないCrNiW/Mo合金に比べ
塩酸耐食性が改善され、さらに耐摩耗性も改善されてい
る。従ってより耐食性、耐摩耗性を要求される部分に適
用することができる。
As described above, the alloy of the present invention having a nitrided layer has improved hydrochloric acid corrosion resistance and wear resistance as compared with a CrNiW / Mo alloy having no nitrided layer. Therefore, it can be applied to a portion requiring higher corrosion resistance and wear resistance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%でNi 30.0〜48.0%とW 1.5〜15.0
%又は/及びMo 1.0〜6.5%で、WとMoの合計は最大15.0
%であり、残部が40.0%以上のCrおよび不可避的不純物
から成るクロム基合金層の少なくとも表面に窒化層を設
けたことを特徴とする耐食・耐摩耗合金。
1. Ni 30.0-48.0% and W 1.5-15.0% by weight
% Or / and Mo 1.0-6.5%, the maximum of W and Mo is 15.0
%, And the balance is 40.0% or more of Cr and a chromium-based alloy layer consisting of unavoidable impurities, and a nitride layer is provided on at least the surface of the corrosion-resistant and wear-resistant alloy.
【請求項2】 請求項1に記載されたクロム基合金層に
Fe 15.0重量%以下又は/及びCo 10.0重量%以下で、Fe
およびCoの合計が最大20重量%を含有させたことを特徴
とする耐食・耐摩耗合金。
2. The chromium-based alloy layer according to claim 1.
Fe 15.0 wt% or less and / or Co 10.0 wt% or less, Fe
A corrosion-resistant and wear-resistant alloy characterized by containing a maximum of 20% by weight of Co and Co.
【請求項3】 請求項1または請求項2のいずれかに記
載されたクロム基合金層にC 0.3〜2.0重量%を含有させ
たことを特徴とする耐食・耐摩耗合金。
3. A corrosion-resistant and wear-resistant alloy, characterized in that the chromium-based alloy layer according to claim 1 or 2 contains 0.3 to 2.0% by weight of C.
【請求項4】 請求項1、請求項2または請求項3のい
ずれかに記載されたクロム基合金層にB 0.1〜1.5重量%
を含有させたことを特徴とする耐食・耐摩耗合金。
4. The chromium-based alloy layer according to any one of claims 1, 2 and 3, wherein B is 0.1 to 1.5% by weight.
A corrosion-resistant and wear-resistant alloy characterized by containing
【請求項5】 請求項1、請求項2、請求項3または請
求項4のいずれかに記載されたクロム基合金にSi 0.1〜
3.0重量%を含有させたことを特徴とする耐食・耐摩耗
合金。
5. The chromium-based alloy according to claim 1, claim 2, claim 3 or claim 4, wherein Si 0.1 to
Corrosion and wear resistant alloy characterized by containing 3.0% by weight.
JP4077893A 1993-03-02 1993-03-02 Corrosion resistant and wear resistant alloy Pending JPH06256885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077893A JPH06256885A (en) 1993-03-02 1993-03-02 Corrosion resistant and wear resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077893A JPH06256885A (en) 1993-03-02 1993-03-02 Corrosion resistant and wear resistant alloy

Publications (1)

Publication Number Publication Date
JPH06256885A true JPH06256885A (en) 1994-09-13

Family

ID=12590093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077893A Pending JPH06256885A (en) 1993-03-02 1993-03-02 Corrosion resistant and wear resistant alloy

Country Status (1)

Country Link
JP (1) JPH06256885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280024A1 (en) * 2005-08-25 2009-11-12 Solvolthermal Crystal Growth Technology Research Alliance Ni-based corrosion resistant alloy and corrosion resistant member for supercritical ammonia reactor made of the alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280024A1 (en) * 2005-08-25 2009-11-12 Solvolthermal Crystal Growth Technology Research Alliance Ni-based corrosion resistant alloy and corrosion resistant member for supercritical ammonia reactor made of the alloy
US8414828B2 (en) * 2005-08-25 2013-04-09 Furuya Metal Co., Ltd. Ni-based corrosion resistant alloy and corrosion resistant member for supercritical ammonia reactor made of the alloy

Similar Documents

Publication Publication Date Title
CN100370051C (en) High temperature wearable anti-corrosion Fe-Cr-Si iron base alloy materials
JP3168158B2 (en) Ni-based heat-resistant brazing material with excellent wettability and corrosion resistance
KR20170093204A (en) A ferritic alloy
EP0149340B1 (en) Galling and wear resistant steel alloy
TW200840876A (en) Steel
US6764646B2 (en) Ni-Cr-Mo-Cu alloys resistant to sulfuric acid and wet process phosphoric acid
JP2013060633A (en) Co-BASED ALLOY FOR SURFACE HARDENING
CN101818298A (en) Corrosion-resistant medium-silicon-molybdenum-nickel-cobalt nodular cast iron alloy
CN100385028C (en) High temperature wearable anti-corrosion Co-Ti-Si intermetallic compound alloy materials
JPS58176095A (en) Co-base alloy for build-up welding for hard facing which provides excellent resistance to weld cracking
JPH06256885A (en) Corrosion resistant and wear resistant alloy
JP3274142B2 (en) Aluminum-manganese-silicon-nitrogen austenitic stainless acid-resistant steel
JP2684736B2 (en) Powder cold work tool steel
JP2020063495A (en) Co-BASED ALLOY AND POWDER THEREOF
JPH0547611B2 (en)
JPH06145874A (en) Chromium base corrosion resistant alloy and its powder
JP3207082B2 (en) Cr-based heat-resistant alloy
JP2006291285A (en) Erosion-resistant member for nonferrous molten metal
JPH08229657A (en) Member for casting and its production
CN114318164B (en) Wear-resistant corrosion-resistant tool steel
JPS609848A (en) Heat resistant co alloy
JPH08232058A (en) Member for die casting and its production
JP2002256363A (en) Surface coating material having excellent pickup resistance and high temperature wear resistance
JPH09108807A (en) Sleeve for pressure casting excellent in erosion resistance and heat retaining property
JPS6126739A (en) Heat resistant co alloy for metallic mold for molding