JPH0625646B2 - Alignment method - Google Patents

Alignment method

Info

Publication number
JPH0625646B2
JPH0625646B2 JP59118485A JP11848584A JPH0625646B2 JP H0625646 B2 JPH0625646 B2 JP H0625646B2 JP 59118485 A JP59118485 A JP 59118485A JP 11848584 A JP11848584 A JP 11848584A JP H0625646 B2 JPH0625646 B2 JP H0625646B2
Authority
JP
Japan
Prior art keywords
light
grating
interference fringes
pitch
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118485A
Other languages
Japanese (ja)
Other versions
JPS60262003A (en
Inventor
隆吉 松村
登 野村
山口  緑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59118485A priority Critical patent/JPH0625646B2/en
Publication of JPS60262003A publication Critical patent/JPS60262003A/en
Publication of JPH0625646B2 publication Critical patent/JPH0625646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、精度の高い位置合わせ位置、特に高密な半導
体装置(以下LSIとよぶ)の位置合わせ装置に適用で
きる位置合わせ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate alignment position, and more particularly to a alignment method applicable to a highly dense alignment device for a semiconductor device (hereinafter referred to as an LSI).

従来例の構成とその問題点 半導体装置は最近ますます高密度化され、各々の素子の
微細パターンの寸法は、1ミクロン以下に及んでいる。
従来からのLSI製造時のフォトマスクとLSIウェハ
の位置合わせは、ウェハに設けた位置合わせマークを用
いて、ウェハを着装したステージの回転と2軸平行移動
し、フォトマスク上のマークとウェハ上のマークを重ね
合わせることによって行なっていたが、その位置合わせ
精度は±0.3ミクロン程度であり、サブミクロンの素
子を形成する場合には、合わせ精度が悪く実用にならな
い。また、Sオースチン(Applied Physics Letters.vo
l.31NO.7 P.428,1977)らが示した干渉
法を用いた位置合わせ方法では、第1図で示したよう
に、入射レーザビーム1をフォトマスク2に入射し、フ
ォトマスク2上に形成した格子3で回折し、この回折し
た光をもう一度、ウェハ4上に形成した格子5によって
回折することにより、回折光6,7,8…を得る。この
回折光は、フォトマスクでの回折次数とウェハでの回折
次数の二値表示で表わすと、回折光6は(0,1)、回
折光7は(1,1)、回折光8は(−1,2)…で表わ
すことができる。この回折光をレンズにより一点に集め
光強度を測定する。回折光は入射レーザビーム1に対し
て左右対称な位置に光強度を持ち、フォトマスク2とウ
ェハ4との位置合わせには、左右に観察された回折光の
強度を一致させることにより行なえる。この方法では位
置合わせ精度は、数100Åとされている。
Structure of Conventional Example and Its Problems Semiconductor devices have been increasingly densified recently, and the size of the fine pattern of each element reaches 1 micron or less.
The conventional alignment of the photomask and the LSI wafer during LSI manufacturing uses the alignment marks provided on the wafer to rotate the stage on which the wafer is mounted and move it in two axes in parallel. However, the alignment accuracy is about ± 0.3 microns, and when forming a submicron element, the alignment accuracy is poor and it is not practical. In addition, S Austin (Applied Physics Letters.vo
l.31 NO.7 P. 428, 1977) et al., The method of alignment using the interferometry causes the incident laser beam 1 to be incident on the photomask 2 and diffracted by the grating 3 formed on the photomask 2 as shown in FIG. Then, the diffracted light is diffracted again by the grating 5 formed on the wafer 4 to obtain diffracted lights 6, 7, 8 ... This diffracted light is represented by a binary representation of the diffraction order on the photomask and the diffraction order on the wafer. Diffracted light 6 is (0, 1), diffracted light 7 is (1, 1), and diffracted light 8 is ( -1, 2) ... The diffracted light is collected by a lens at one point and the light intensity is measured. The diffracted light has a light intensity at a position symmetrical with respect to the incident laser beam 1, and the photomask 2 and the wafer 4 can be aligned by matching the intensities of the diffracted light observed on the left and right. In this method, the alignment accuracy is set to several hundred Å.

しかし、この方法においては、フォトマスク2とウェハ
4との位置合わせは、フォトマスク2とウェハ4との間
隔Dに大きく影響されるため、間隔Dの精度を要求す
る。また、フォトマスク2とウェハ4を接近させ、間隔
Dの精度を保持した状態で位置合わせする必要があり装
置が複雑となるため、実用に問題があった。
However, in this method, since the alignment between the photomask 2 and the wafer 4 is greatly affected by the distance D between the photomask 2 and the wafer 4, the accuracy of the distance D is required. In addition, the photomask 2 and the wafer 4 must be brought close to each other and aligned with the accuracy of the distance D maintained, which complicates the apparatus, which is a problem in practical use.

また、サブミクロン線巾を持つ素子の位置合わせには、
素子からの二次電子放出による観察による方法がある
が、大気中での取り扱いができないため、LSIを製造
する上でのスループットが小さくなり、実用上問題があ
った。
Also, for alignment of elements with submicron line width,
Although there is a method of observing by secondary electron emission from the element, it cannot be handled in the atmosphere, so that the throughput in manufacturing an LSI becomes small and there is a practical problem.

発明の目的 本発明はこのような従来からの問題に鑑み、微細パター
ンの位置合わせを大気中で、かつ、簡単な構成で行なえ
る位置合わせ方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems in the related art, and an object of the present invention is to provide a positioning method capable of positioning a fine pattern in the atmosphere with a simple structure.

発明の構成 本発明はコヒーレントな光を2方向から入射し、この2
光束の干渉により得られる干渉縞と、前記2光束の光路
中に配置された格子とによって反射又は透過した光を光
検知手段に導き、前記2光束の入射角を変化させたとき
の光強度変化を測定し、前記2光束の干渉縞のピッチP
と格子のピッチPとの関係がP≒P×N(Nは
1,2,…整数)となるように前記2光束の入射角を調
整すると共に、前記2光束の干渉縞と格子との相対位置
を検知することにより、位置合わせを高精度に行なうこ
とを実現するものである。
According to the present invention, coherent light is incident from two directions.
Interference fringes obtained by interference of light fluxes and light reflected or transmitted by a grating arranged in the optical path of the two light fluxes are guided to a light detecting means, and the light intensity changes when the incident angle of the two light fluxes is changed. Is measured, and the pitch P of the interference fringes of the two light beams is measured.
The incident angle of the two light beams is adjusted so that the relationship between f and the grating pitch P G is P G ≈P f × N (N is 1, 2, ... By detecting the relative position with respect to the grid, it is possible to perform the alignment with high accuracy.

実施例の説明 第2図に本発明による位置検知方法を実施できるホログ
ラフィック露光装置および光検知器を具備した位置検知
装置を示す。
Description of Embodiments FIG. 2 shows a position detecting device equipped with a holographic exposure device and a photodetector capable of implementing the position detecting method according to the present invention.

コヒーレントな光10をレーザー発生装置(図略)から
ビームスプリッタ(BS)に入射させ、ほぼ同一強度の
反射光11と透過光12とに振幅分割し、各々反射鏡M
1とM2に入射し、ウェハWの表面に対して双方の反射
光がほぼ等しい角度θで入射するように、BS,M1,
M2,Wを配置する。ウェハW上には格子Gが形成され
ており、格子Gによって回折した反射光13および14
が、スリットS1およびS2を介して光検知器D1およ
びD2に入射する。レーザの波長をλ,M1,M2,か
らの反射光11,12が干渉して作る干渉縞のピッチを
とすると、ウエハGにできる干渉縞は で表される。
A coherent light 10 is made incident on a beam splitter (BS) from a laser generator (not shown), and is amplitude-divided into a reflected light 11 and a transmitted light 12 having almost the same intensity, and each is reflected by a reflecting mirror M.
BS, M1, so that both reflected lights are incident on the surface of the wafer W at substantially equal angles θ.
Place M2 and W. A grating G is formed on the wafer W, and reflected lights 13 and 14 diffracted by the grating G are formed.
Enters the photodetectors D1 and D2 through the slits S1 and S2. Assuming that the pitch of the interference fringes formed by the interference of the reflected lights 11 and 12 from λ, M1, M2 with the laser wavelength is P f , the interference fringes formed on the wafer G are It is represented by.

この干渉縞のピッチPのほぼ整数倍のピッチPを持
つ格子Gからは、2光束11と12の干渉した光を波面
分割する格子によって回折された光が得られ、この光に
より、2光束の干渉縞と格子Gとの間の平行度およびピ
ッチ方向の相対位置関係を示す光強度情報が得られる。
From the grating G having a pitch P G that is an integer multiple of the pitch P f of the interference fringes, the light diffracted by the grating that splits the interference light of the two light beams 11 and 12 by the wavefront is obtained. Light intensity information indicating the parallelism between the interference fringes of the light flux and the grating G and the relative positional relationship in the pitch direction can be obtained.

第3,4図に、2光束の干渉縞と格子Gに関して、位置
合わせ前の相対位置関係を示す。fは干渉縞、αは干渉
縞fと格子Gとのなす角、xは干渉縞fと格子Gとの位
置づれを示す。ウェハWを格子Gを有する面の法線回り
に微小回転させ、スリットS1,S2を介して光検知器
D1,D2に導びくことにより、第5図のような光強度
Iの変化が得られる。縦軸は光強度I、横軸は回転量α
又、ウェハWを2光束の干渉縞fのピッチ方向に微小
移動させ、光強度Iを検出することにより、第6図のよ
うに光強度Iの変化が得られる。縦軸は光強度I、横軸
は移動量x2光束の干渉縞fのピッチP毎に光強度
Iが周期的に変化する。又、光強度Iの微小な変動は、
ある間隔で微細ピッチ送りさせたための変動である。光
強度Iのピーク値において、干渉縞fと格子Gとの位置
づれxが、x=0となる。
3 and 4 show the relative positional relationship of the interference fringes of the two light fluxes and the grating G before the alignment. f is an interference fringe, α is an angle formed by the interference fringe f and the grating G, and x is a positional deviation between the interference fringe f and the grating G. By slightly rotating the wafer W around the normal to the surface having the grating G and guiding it to the photodetectors D1 and D2 through the slits S1 and S2, a change in the light intensity I as shown in FIG. 5 can be obtained. . The vertical axis represents the light intensity I and the horizontal axis represents the rotation amount α.
Further , by slightly moving the wafer W in the pitch direction of the interference fringes f of the two light fluxes and detecting the light intensity I, a change in the light intensity I can be obtained as shown in FIG. The vertical axis represents the light intensity I, and the horizontal axis represents the periodic change of the light intensity I for each pitch P f of the interference fringes f of the movement amount x 0 2. In addition, a slight fluctuation of the light intensity I is
This is a variation caused by feeding a fine pitch at a certain interval. At the peak value of the light intensity I, the positional deviation x between the interference fringe f and the grating G is x = 0.

本実施例では、ウェハWを移動させたが2光束を移動さ
せても、同様な位置合わせができる。回転方向αの位置
合わせ、およびピッチ方向xの位置合わせの順序はどち
らを先に実施してもよく、最終的に、光強度Iのピーク
値において、両方向の位置合わせが完了した状態にな
り、光強度Iのピーク値に近づけるほど位置合わせ精度
がより高精度になる。
In the present embodiment, the wafer W is moved, but the same alignment can be performed by moving the two light fluxes. The order of the alignment in the rotation direction α and the alignment in the pitch direction x may be performed first, and finally, in the peak value of the light intensity I, the alignment in both directions is completed, The closer to the peak value of the light intensity I, the higher the alignment accuracy becomes.

格子GのピッチPは干渉縞のピッチPの整数倍で製
作するが、格子Gを有したウェハWが半導体の各構造プ
ロセスを経ることにより格子GのピッチPがΔP
れる可能性がある。また、格子Gの製作精度誤差により
ピッチPはΔPの誤差があり、実際上は格子のピッ
チPと干渉縞のピッチPとは P+ΔP+ΔP=P×N,つまり P≠P×N(Nは1,2,3…整数) となり、位置合わせ精度が悪くなる。そこで、2光束の
入射角θを変化させると、干渉縞fのピッチPが変化
することにより反射鏡M1,M2,のいずれか一方、又
は両方を微小回転さて2光束の入射角θを変化させたと
きの、反射光13および14の光強度変化を光検出器D
1およびD2により測定すると、第7図のような光強度
変化が得られる。縦軸は光強度I、横軸は入射角θ、干
渉縞のピッチPと格子のピッチPとの関係が P=P×N となるとき、反射光13,14の光強度は最大になる。
従って、第7図の光強度ピーク位置になるように反射鏡
M1,M2のいずれか一方、又は両方を微小回転させる
ことにより、干渉縞のピッチPと格子のピッチP
の関係が P≒P×N となり、2光束の干渉縞fと格子Gとの位置合わせ精度
がより向上する。
The pitch P G of the grating G is made to be an integral multiple of the pitch P f of the interference fringes. However, there is a possibility that the pitch P G of the grating G is deviated by ΔP 1 as the wafer W having the grating G goes through each structural process of the semiconductor. There is. Further, there is an error of ΔP 2 in the pitch P G due to the manufacturing accuracy error of the grating G, and in practice, the grating pitch P G and the interference fringe pitch P f are P G + ΔP 1 + ΔP 2 = P f × N, that is, Since P G ≠ P f × N (N is 1, 2, 3 ... Integer), the alignment accuracy becomes poor. Therefore, the change varying the incident angle θ of the two light beams, whereas any reflection mirror M1, M2, the by pitch P f of the interference fringes f is changed, or the incident angle θ of microspheroidal now two beams both The change in the light intensity of the reflected lights 13 and 14 when the
When measured with 1 and D2, the light intensity change as shown in FIG. 7 is obtained. When the vertical axis is the light intensity I, the horizontal axis is the incident angle θ, and the relationship between the interference fringe pitch P f and the grating pitch P G is P G = P f × N, the light intensities of the reflected lights 13 and 14 are It will be maximum.
Therefore, by slightly rotating one or both of the reflecting mirrors M1 and M2 so as to reach the light intensity peak position in FIG. 7, the relationship between the interference fringe pitch P f and the grating pitch P G becomes P Since G ≈P f × N, the alignment accuracy between the interference fringes f of the two light fluxes and the grating G is further improved.

又、入射角θを変化させたとき、干渉縞fのピッチP
の変化と共に、干渉縞fと格子Gとの相対的位置も同時
に変化する可能性があり、干渉縞fと格子Gとのなす角
度αおよび位置ずれxがα=Δα,x=Δx,生じる可
能性がある。
Further, when the incident angle θ is changed, the pitch P f of the interference fringes f
The relative position between the interference fringe f and the grating G may also change at the same time with the change of, and the angle α and the positional deviation x formed by the interference fringe f and the grating G may be α = Δα, x = Δx, There is a nature.

そこで、入射角θの調整,および、干渉縞fと格子Gと
のなす角度α,および位置ずれ量xの調整を交互に行な
い、光強度が最大になるように調整することにより、2
光束の干渉縞fと格子Gとの位置合わせがより高精度に
実現できる。
Therefore, the incident angle θ, the angle α formed by the interference fringes f and the grating G, and the positional deviation amount x are alternately adjusted so that the light intensity is maximized.
The alignment of the interference fringe f of the light flux and the grating G can be realized with higher accuracy.

発明の効果 以上のように本発明によれば、2光束の干渉により得ら
れる干渉縞と格子とによって反射又は回折した光を光検
出器に導き、前記2光束の入射角を変化させたときの光
強度変化を測定することにより、前記2光束の干渉縞の
ピッチPと格子とのピッチPとの関係がP≒P
×N(Nは1,2,3…整数)となるように2光束の入
射角を調整すると共に、2光束の干渉縞と格子との相対
位置を検知することにより、2光束の干渉縞と格子との
位置合わせ精度をより高精度にすることが可能となる。
As described above, according to the present invention, the light reflected or diffracted by the interference fringes obtained by the interference of the two light beams and the grating is guided to the photodetector, and the incident angle of the two light beams is changed. By measuring the change in light intensity, the relationship between the pitch P f of the interference fringes of the two light fluxes and the pitch P G of the grating is P G ≈P f
By adjusting the incident angle of the two light fluxes so that XN (N is 1, 2, 3 ... Integer) and detecting the relative position between the interference fringes of the two light fluxes and the grating, the interference fringes of the two light fluxes can be obtained. It is possible to further improve the alignment accuracy with the grid.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の位置合わせ装置の原理図、第2図は本発
明による位置合わせ方法の一実施例を実現する装置の構
成図、第3図,第4図は2光束の干渉縞と格子に関する
位置合わせ前の相対位置を示す関係図、第5図は2光束
の干渉縞に対し、長手方向を略平行に配置したスリット
を設けたときの2光束の干渉縞と格子との回転方向の光
強度依存性を示す図、第6図は本発明によって得られる
位置合わせ方法によって得られるピッチ方向の光強度依
存性を示す図、第7図は2光束の入射角θを変化させた
ときの反射光13,14の光強度依存性を示す図であ
る。 10……光、11……反射光、12……透過光、13,
14……反射光、W……ウェハ、G……格子、S1,S
2……スリット、D1,D2……光検知器、f……干渉
縞、P……干渉縞のピッチ、P……格子のピッチ。
FIG. 1 is a principle diagram of a conventional alignment apparatus, FIG. 2 is a configuration diagram of an apparatus that realizes an embodiment of an alignment method according to the present invention, and FIGS. 3 and 4 are interference fringes of two light fluxes and a grating. FIG. 5 is a relational diagram showing the relative position before alignment with respect to the interference fringes of the two light fluxes, and FIG. 5 shows the interference fringes of the two light fluxes and the rotation direction of the grating when a slit whose longitudinal direction is arranged substantially parallel to the interference fringes is provided. FIG. 6 is a diagram showing the light intensity dependency, FIG. 6 is a diagram showing the light intensity dependency in the pitch direction obtained by the alignment method obtained by the present invention, and FIG. 7 is a diagram when the incident angle θ of two light fluxes is changed. It is a figure which shows the light intensity dependence of the reflected lights 13 and 14. 10 ... light, 11 ... reflected light, 12 ... transmitted light, 13,
14 ... Reflected light, W ... Wafer, G ... Lattice, S1, S
2 ...... slit, D1, D2 ...... photodetector, f ...... interference fringes, the pitch of P f ...... interference fringes, the pitch of P G ...... grating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コヒーレントな光を2方向から入射させ、
前記光の2光束の干渉により空間中で得られる干渉縞に
対して略平行に形成された格子を有する基板を前記2光
束の光路中に配置し、前記格子部分で反射叉は透過した
光を光学系を通して光検知手段に導き、前記光検知手段
の出力変化を測定することにより、前記2光束の干渉縞
と前記格子との相対位置を検知し、前記相対位置ずれを
なくす方向に前記基板を搭載したステージを移動させる
ことにより、前記干渉縞と基板上に形成された格子とを
位置合わせする位置合わせ方法において、 前記2光束の干渉縞のピッチPfと格子のピッチPGとの
関係がPG≒Pf×N(Nは1,2,…の整数)となるよ
うに前記2光束の入射角を調整することを特徴とする位
置合わせ方法。
1. Coherent light is incident from two directions,
A substrate having a grating formed substantially parallel to the interference fringes obtained in space by the interference of the two light beams is arranged in the optical path of the two light beams, and the light reflected or transmitted by the grating portion is The relative position between the interference fringes of the two light fluxes and the grating is detected by guiding the light to the light detecting means through the optical system and measuring the output change of the light detecting means, and the substrate is moved in the direction to eliminate the relative position shift. In the alignment method for aligning the interference fringes with the grating formed on the substrate by moving the mounted stage, the relationship between the pitch Pf of the interference fringes of the two light fluxes and the pitch PG of the grating is PG≈. A positioning method, wherein the incident angles of the two light fluxes are adjusted so as to be Pf × N (N is an integer of 1, 2, ...).
【請求項2】2光束の入射角の調整、および前記2光束
の干渉縞と格子との相対的位置調整を、適宜繰返し調整
し、光強度が最大になるように調整することを特徴とす
る特許請求の範囲第1項記載の位置合わせ方法。
2. The adjustment of the incident angle of the two light fluxes and the relative position adjustment of the interference fringes of the two light fluxes and the grating are appropriately repeated so as to maximize the light intensity. The positioning method according to claim 1.
JP59118485A 1984-06-08 1984-06-08 Alignment method Expired - Lifetime JPH0625646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118485A JPH0625646B2 (en) 1984-06-08 1984-06-08 Alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118485A JPH0625646B2 (en) 1984-06-08 1984-06-08 Alignment method

Publications (2)

Publication Number Publication Date
JPS60262003A JPS60262003A (en) 1985-12-25
JPH0625646B2 true JPH0625646B2 (en) 1994-04-06

Family

ID=14737841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118485A Expired - Lifetime JPH0625646B2 (en) 1984-06-08 1984-06-08 Alignment method

Country Status (1)

Country Link
JP (1) JPH0625646B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145863A (en) * 2011-11-29 2013-07-25 Gigaphoton Inc Two-beam interference apparatus and two-beam interference exposure system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023617A (en) * 1973-06-29 1975-03-13

Also Published As

Publication number Publication date
JPS60262003A (en) 1985-12-25

Similar Documents

Publication Publication Date Title
US4656347A (en) Diffraction grating position adjuster using a grating and a reflector
US4200395A (en) Alignment of diffraction gratings
US4311389A (en) Method for the optical alignment of designs in two near planes and alignment apparatus for performing this method
US4636077A (en) Aligning exposure method
JPH039403B2 (en)
JPS6352453B2 (en)
US4895447A (en) Phase-sensitive interferometric mask-wafer alignment
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
US4771180A (en) Exposure apparatus including an optical system for aligning a reticle and a wafer
US4626103A (en) Focus tracking system
JPH0625646B2 (en) Alignment method
JPH09152309A (en) Method and device for position detection
JPH0269604A (en) Aligning method
JPH0441485B2 (en)
JPH0430734B2 (en)
JP2694045B2 (en) Positioning device using diffraction grating
JPH0441484B2 (en)
JP2578742B2 (en) Positioning method
JP3302164B2 (en) Positioning device
JP2623757B2 (en) Positioning device
JPH0334307A (en) Semiconductor wafer exposing method
JP2789487B2 (en) Relative position detector using slit and diffraction grating
JPS618606A (en) Position detecting method
JPH07122565B2 (en) Exposure equipment
JPH0441285B2 (en)