JPH06254648A - Thermostatic die forging method - Google Patents
Thermostatic die forging methodInfo
- Publication number
- JPH06254648A JPH06254648A JP12705093A JP12705093A JPH06254648A JP H06254648 A JPH06254648 A JP H06254648A JP 12705093 A JP12705093 A JP 12705093A JP 12705093 A JP12705093 A JP 12705093A JP H06254648 A JPH06254648 A JP H06254648A
- Authority
- JP
- Japan
- Prior art keywords
- die
- temperature
- mold
- forging
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ニッケル基合金あるい
は金属間化合物などの難塑性加工材料を成形する恒温型
鍛造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant temperature die forging method for forming a hard plastic working material such as a nickel base alloy or an intermetallic compound.
【0002】[0002]
【従来の技術】航空機エンジン用のタービンデイスクや
ブレード等に用いられるニッケル基合金や金属間化合物
等からなる耐熱高合金は、その材料特性のために塑性加
工は著しく難しい、そのため、通常その塑性加工には恒
温型鍛造法が適用され、また、その恒温型鍛造において
は、結晶粒の極めて微細な材料を用い、それら材料が超
塑性挙動を示す高温(1000℃以上)かつ低歪速度(10-2
〜10-4/sec)の領域において成形が行われる。2. Description of the Related Art Heat-resistant high alloys such as nickel-base alloys and intermetallic compounds used for turbine disks and blades for aircraft engines are extremely difficult to plastically work due to their material properties. isothermal forging method is applicable to, and in its isothermal forging, using a very fine material of the crystal grains, the high temperatures these materials exhibit superplastic behavior (1000 ° C. or higher) and low distortion rate (10 - 2
Molding is performed in the region of ~ 10 -4 / sec).
【0003】一方、それら恒温型鍛造において、金型は
1000℃以上の高温でかつ比較的長時間の過酷な条件下に
おかれるため、モリブデン基合金等の耐熱合金およびフ
ァインセラミックス、あるいはニッケル基耐熱超合金か
らなるものが用いられる。On the other hand, in the constant temperature die forging, the die is
Since it is exposed to severe conditions of high temperature of 1000 ° C. or higher for a relatively long time, a heat-resistant alloy such as molybdenum-based alloy and fine ceramics, or a nickel-based heat-resistant superalloy is used.
【0004】[0004]
【発明が解決しようとする課題】ところで、近年、航空
機エンジン用部材等に用いられる耐熱高合金としては、
性能向上のためにより優れた高温強度のものが求めら
れ、その塑性加工はより困難なものとなる傾向にある。
そのため、それら材料を超塑性加工する温度領域も1,10
0℃〜 1,200℃となるものが多くなり、その恒温型鍛造
は、より高い温度領域で効率良く行うことが必要となっ
ている。By the way, in recent years, as heat resistant high alloys used for aircraft engine members, etc.,
In order to improve the performance, more excellent high temperature strength is required, and its plastic working tends to be more difficult.
Therefore, the temperature range for superplastic forming these materials is 1,10
Many of them reach 0 ℃ to 1,200 ℃, and constant temperature die forging is required to be performed efficiently in a higher temperature range.
【0005】しかし、モリブデン基合金は、1100℃以上
の高温においても高強度を有するが、大気雰囲気下では
酸化して強度が著しく低下するので、これら合金を恒温
型鍛造用の金型として用いる場合、酸化防止のために真
空あるいは非酸化性雰囲気下で鍛造することが必要とな
る。そのため排気装置やチャンバー等を設けなければな
らず、それに伴い、装置構成が大がかりになって設備費
が高騰するだけでなく、被加工材の出し入れも困難とな
って生産性が低下する。However, molybdenum-based alloys have high strength even at high temperatures of 1100 ° C. or higher, but their strength is significantly reduced by oxidation in the air atmosphere. Therefore, when these alloys are used as a die for isothermal die forging. However, it is necessary to forge in a vacuum or in a non-oxidizing atmosphere to prevent oxidation. Therefore, it is necessary to provide an exhaust device, a chamber, and the like, and accordingly, not only does the device structure become large, the equipment cost rises, but also it is difficult to put in and take out the workpiece, and the productivity is lowered.
【0006】また、ファインセラミックスは、高温な大
気雰囲気下においても酸化することなく高強度を有する
が、靭性に劣るため単独では金型として構成し難く、そ
れをバックアップする金属部材と複合して用いる必要が
あり、また、凹凸の多い複雑な金型や比較的大型な金型
に用いる場合、インプレッションのコーナー部等の応力
集中部からの破壊を防ぐために、金型をコーナー部等か
ら複数に分割した組立構成とする必要も生じ、その構成
が複雑になって製造コストが高騰するだけでなく、メン
テナンスにも大きな負担を強いられる。Further, fine ceramics have high strength without being oxidized even in a high-temperature atmosphere, but they are inferior in toughness, so that it is difficult to form them as a mold by themselves, and they are used in combination with a metal member for backing them up. It is necessary, and when it is used for a complicated mold with many irregularities or a relatively large mold, the mold is divided into multiple parts from the corners etc. in order to prevent damage from stress concentration parts such as the corners of the impression. In addition to the need for an assembled structure, the structure becomes complicated and the manufacturing cost rises, and a heavy burden is imposed on maintenance.
【0007】一方、ニッケル基耐熱超合金製の一体金型
は、1000℃近傍の恒温大気雰囲気下で使用できるものと
されており、これを1100℃以上の恒温型鍛造に用いるこ
とができれば、設備および金型コストと生産効率面で非
常に有利となる。On the other hand, the nickel-base heat-resistant superalloy integrated mold is said to be usable in a constant temperature atmospheric atmosphere near 1000 ° C. If it can be used for constant temperature die forging at 1100 ° C. or higher, equipment And it is very advantageous in terms of mold cost and production efficiency.
【0008】しかし、ニッケル基耐熱超合金製の金型
は、1000℃以上では被鍛造材との間に焼付が生じ易くな
り、これが金型の耐用寿命および製品の品質を低下させ
るので、1100℃以上の恒温型鍛造に適用するには、金型
と被鍛造材との焼付を防止することが必要となるが、そ
の焼付を防止する方法を具体的に示したものは未だ知ら
れてない。例えば、従来ニッケル基耐熱超合金製の金型
を用いた1000℃近傍の大気雰囲気下での恒温型鍛造にお
いて、金型と被鍛造材との焼付を防止するために、通
常、ガラス系潤滑剤が用いられていたが、それらガラス
系潤滑剤は、1000℃を超えると発熱して飛散すると同時
に変質する傾向を示し、かつ1100℃以上の大気雰囲気下
では、ニッケル基耐熱超合金と化学反応を起こし、金型
の酸化腐食を促進して耐用寿命を著しく低下させるの
で、これを1100℃以上の大気雰囲気下で潤滑剤として使
用することができない。However, a die made of a nickel-base heat-resistant superalloy easily seizes with the material to be forged at 1000 ° C. or higher, which deteriorates the useful life of the die and the quality of the product. In order to apply the above isothermal die forging, it is necessary to prevent seizure between the die and the material to be forged, but a concrete method for preventing the seizure has not yet been known. For example, in a constant temperature die forging in the atmospheric atmosphere near 1000 ° C. using a die made of a conventional nickel-base heat-resistant superalloy, in order to prevent seizure between the die and the material to be forged, a glass-based lubricant is usually used. However, these glass-based lubricants tend to heat up and scatter at 1000 ° C and to be transformed at the same time, and in the air atmosphere at 1100 ° C or higher, they chemically react with the nickel-base heat-resistant superalloy. Since it causes the oxidative corrosion of the mold and significantly shortens the service life, it cannot be used as a lubricant in the atmosphere of 1100 ° C or higher.
【0009】更にまた、ニッケル基耐熱超合金は、モリ
ブデン基合金やファインセラミックスと同様に、通常の
熱間型用鋼より高い熱脆性を有するので、昇温に際する
熱応力によって割れが生じ易く、ニッケル基耐熱超合金
からなる金型を恒温型鍛造に適用するには、室温から11
00℃以上の高温域まで昇温する際の金型割れを防止する
ことが必要となるが、その割れを確実に防止する方法を
定量的に示したものは未だ知られていない。Furthermore, the nickel-base heat-resistant superalloy, like the molybdenum-base alloys and fine ceramics, has a higher thermal embrittlement than ordinary hot die steels, so that cracks easily occur due to thermal stress during temperature rise. To apply a mold made of nickel-base heat-resistant superalloy to isothermal die forging, from room temperature to 11
It is necessary to prevent mold cracking when the temperature is raised to a high temperature range of 00 ° C or higher, but a quantitative method for surely preventing the cracking has not yet been known.
【0010】すなわち、1100℃〜1200℃の温度範囲の大
気雰囲気下での恒温型鍛造において、ニッケル基耐熱超
合金からなる金型を用い、これにより設備および金型コ
ストの低減と生産効率の向上とを図るについては、金型
と被鍛造材との焼付を潤滑剤ないし離型剤によって防止
し、かつ、それら潤滑剤ないし離型剤と金型との化学反
応を抑えて金型の酸化腐食を防止する方法と、その金型
を室温から1100℃以上の高温域まで、熱応力割れを発生
させることなく昇温する方法とを新たに定める必要があ
る。That is, in isothermal forging in a constant temperature die forging in the temperature range of 1100 ° C to 1200 ° C, a die made of a nickel-base heat-resistant superalloy is used, which reduces equipment and die costs and improves production efficiency. To prevent this, seizure between the mold and the material to be forged is prevented by a lubricant or mold release agent, and the chemical reaction between the lubricant or mold release agent and the mold is suppressed to prevent oxidative corrosion of the mold. It is necessary to newly define a method for preventing the above, and a method for raising the temperature of the mold from room temperature to a high temperature range of 1100 ° C. or higher without causing thermal stress cracking.
【0011】本発明は、上記課題を解決すべくなされた
もので、ニッケル基耐熱合金からなる金型を用い、かつ
金型と被鍛造材との焼付を潤滑剤ないし離型剤の塗布に
より防止してなお、その潤滑剤や離型剤と金型との化学
反応を抑えて金型の酸化腐食を防止でき、もって1100℃
〜1200℃の温度範囲の大気雰囲気下での恒温型鍛造を高
い生産効率のもとで達成できる恒温型鍛造方法の提供
と、ニッケル基耐熱合金からなる金型を、室温から1100
℃以上の高温域まで割れを発生させることなく昇温させ
ることができ、それにより1100℃〜1200℃の温度範囲の
大気雰囲気下での恒温型鍛造を安定して達成できる恒温
型鍛造方法の提供とを目的する。The present invention has been made to solve the above-mentioned problems, and uses a die made of a nickel-base heat-resistant alloy, and prevents seizure between the die and the material to be forged by applying a lubricant or a release agent. In addition, the chemical reaction between the lubricant and mold release agent and the mold can be suppressed to prevent oxidative corrosion of the mold.
Providing a constant temperature die forging method that can achieve constant temperature die forging with high production efficiency in the atmospheric temperature range of up to 1,200 ° C, and a die made of a nickel-base heat-resistant alloy from room temperature to 1100
A constant temperature die forging method that can raise the temperature to a high temperature range of ℃ or higher without generating cracks, and can stably achieve constant temperature die forging in the atmosphere of the temperature range of 1100 ° C to 1200 ° C. And aim.
【0012】[0012]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成とされている。すなわち、第
1の発明に係る恒温型鍛造方法は、ニッケル基耐熱合金
からなる金型を用いて恒温型鍛造するに際して、その金
型にグラファイト系潤滑剤ないしは窒化硼素系離型剤を
塗布し、1100℃〜1200℃の温度範囲の大気雰囲気下で恒
温型鍛造することを特徴とする。In order to achieve the above object, the present invention has the following constitution. That is, the isothermal die forging method according to the first invention, when isothermal die forging is performed using a die made of a nickel-base heat-resistant alloy, a graphite-based lubricant or a boron nitride-based release agent is applied to the die, It is characterized by constant temperature die forging in an air atmosphere in the temperature range of 1100 ° C to 1200 ° C.
【0013】また、第2の発明に係る恒温型鍛造方法
は、ニッケル基耐熱合金からなる金型を用いて恒温型鍛
造するに際して、その金型を、最大 250℃昇温する都度
にその昇温温度で最低30分間保持する昇温条件のもと
で、室温から1100℃〜1200℃の温度範囲まで階段的に昇
温させた後に、1100℃〜1200℃の温度範囲の大気雰囲気
下で恒温型鍛造することを特徴とする。The isothermal die forging method according to the second aspect of the invention is such that, when the isothermal die forging is performed using a die made of a nickel-base heat-resistant alloy, the die temperature is raised every 250 ° C. at maximum. Under the temperature rising condition of keeping the temperature for at least 30 minutes, the temperature is raised stepwise from room temperature to the temperature range of 1100 ° C to 1200 ° C, and then a constant temperature type is set in the atmosphere of the temperature range of 1100 ° C to 1200 ° C. Characterized by forging.
【0014】[0014]
【作用】ニッケル基耐熱合金からなる金型を用い、1100
℃〜1200℃の温度範囲の大気雰囲気下で恒温型鍛造する
場合、その金型と被鍛造材との焼付を防止するために用
いる潤滑剤ないし離型剤としては、まず、上記高温域で
金型と化学反応を起こして金型の酸化腐食を促進するも
のは、金型の耐用寿命を低下させるだけでなく、製品品
質を低下させるので忌避する必要がある。本発明者等
は、この観点から各種の潤滑剤および離型剤について検
討を加え、それら内から高温域でも化学的に安定なグラ
ファイト系の潤滑剤と窒化硼素系の離型剤を、適用可能
な潤滑剤ないし離型剤の候補として挙げた。[Function] 1100 using a mold made of nickel-base heat-resistant alloy
In the case of constant temperature forging in the atmospheric temperature range of ℃ ~ 1200 ℃, as a lubricant or mold release agent used to prevent seizure between the mold and the material to be forged, Those that cause a chemical reaction with the mold to accelerate the oxidative corrosion of the mold not only reduce the service life of the mold but also reduce the product quality, and therefore must be avoided. The present inventors have studied various lubricants and mold release agents from this viewpoint, and can apply a graphite-based lubricant and a boron nitride-based mold release agent, which are chemically stable even in a high temperature range. It is listed as a candidate for various lubricants or release agents.
【0015】そして、これらについて、金型用材として
のニッケル基耐熱合金材との高温域における化学反応を
確認すべく、Mo:約10wt%(その他、W :約12wt%、A
l:約6wt%)含有し、残部実質的にNiからなり、かつγ
相が30〜 75vol%、γ’相が25〜 60vol%、α相が 2.5
〜 11vol%の相を有して、金型用材として高温強度特性
を高めたニッケル基超耐熱合金材からなる試験片(厚さ
10mm、幅10mm、長さ50mm、表面粗さ 6S)を複数準備
し、それらの試験片に、グラファイト系潤滑剤および窒
化硼素系離型剤を塗布して、大気雰囲気下で試験片の加
熱腐食についての実験を行った。また、比較ために、同
試験片にガラス系潤滑剤を塗布して同条件の実験を行っ
た。グラファイト系潤滑剤および窒化硼素系離型剤はス
プレー塗布にて、またガラス系潤滑剤は刷毛塗りにて試
験片全面に塗布し、これらを大気雰囲気下で1100℃と12
00℃の温度に加熱して約4時間保持後に放冷し、しかる
後、それぞれの試験片の表面状態を精査した。In order to confirm the chemical reaction of these with the nickel-base heat-resistant alloy material as the die material in the high temperature range, Mo: about 10 wt% (others, W: about 12 wt%, A
l: about 6 wt%), the balance consists essentially of Ni, and γ
Phase is 30-75vol%, γ'phase is 25-60vol%, α phase is 2.5
A test piece made of nickel-base super heat-resistant alloy material having a phase of ~ 11 vol% and improved high-temperature strength characteristics as a die material (thickness
10 mm, width 10 mm, length 50 mm, surface roughness 6S) are prepared, and graphite lubricant and boron nitride release agent are applied to these test pieces, and the test pieces are heated and corroded in the atmosphere. Experiment was conducted. For comparison, a glass-based lubricant was applied to the test piece and an experiment under the same conditions was performed. Graphite-based lubricant and boron nitride-based release agent are applied by spray coating, and glass-based lubricant is applied by brush coating on the entire surface of the test piece.
After heating to a temperature of 00 ° C. and holding for about 4 hours, it was allowed to cool, and then the surface condition of each test piece was examined closely.
【0016】その結果、ガラス系潤滑剤を塗布した試験
片の表面には付着物が生成されており、その付着物を除
去した後の試験片の表面粗さは加熱前よりも著しく増加
していた。また、その付着物は試験片の主要成分の酸化
物と同定され、このことから同潤滑剤は、高温加熱によ
って、そのほとんどが発熱して飛散する一方、試験片と
の間に酸化腐食を助長する化学反応を生じることが確認
された。As a result, deposits were formed on the surface of the test piece coated with the glass-based lubricant, and the surface roughness of the test piece after removing the deposit was significantly increased as compared with that before heating. It was Also, the deposit was identified as an oxide of the main component of the test piece, and from this fact, most of the lubricant was heated and scattered when heated at high temperature, while promoting oxidative corrosion with the test piece. It was confirmed that a chemical reaction of
【0017】これに対して、グラファイト系潤滑剤を塗
布した試験片の表面には、緻密で薄い膜層が形成されて
残留しており、その薄膜層を除去した後の試験片の表面
粗さは加熱前とほとんど変化していなかった。また、そ
の薄膜層は同潤滑剤の主要成分であるグラファイトから
なるものと同定され、このことから同潤滑剤は、高温加
熱によって、その一部が発熱して飛散するものの、一部
がグラファイトからなる薄膜層を形成して試験片表面に
残留し、かつ試験片との間に化学反応を生じないことが
確認された。また、窒化硼素系離型剤を塗布した試験片
の表面には、同離型剤の塗布膜層があまり変化せずに残
留し、かつその膜層を除去した後の試験片の表面粗さは
加熱前とほとんど変化しておらず、このことから同離型
剤は、高温加熱によって、試験片との間に化学反応を生
じないことが確認された。また、その膜層は、グラファ
イト系潤滑剤を塗布した例で形成された薄膜層よりも格
段に容易に剥離した。すなわち、グラファイト系の潤滑
剤と窒化硼素系の離型剤は、高温域の大気雰囲気下でニ
ッケル基超耐熱合金とほとんど化学反応せずに膜層を形
成するので、ニッケル基超耐熱合金からなる金型を用い
て1100℃〜1200℃の温度範囲の大気雰囲気下で恒温型鍛
造するについて、その金型と被鍛造材との焼付を防止す
る潤滑剤ないし離型剤としての役割を充分に果たし得る
ものであることが判った。On the other hand, a dense and thin film layer is formed and remains on the surface of the test piece coated with the graphite-based lubricant, and the surface roughness of the test piece after the thin film layer is removed. Was almost unchanged from before heating. In addition, the thin film layer was identified as consisting of graphite, which is the main component of the lubricant, and from this fact, the lubricant was partly heated by high-temperature heating and scattered, but partly from graphite. It was confirmed that a thin film layer was formed to remain on the surface of the test piece and no chemical reaction occurred with the test piece. On the surface of the test piece coated with the boron nitride release agent, the coating film layer of the same release agent remained without much change, and the surface roughness of the test piece after the film layer was removed. Was almost unchanged from that before heating, and it was confirmed from this that the same release agent did not cause a chemical reaction with the test piece by high temperature heating. Further, the film layer peeled off much more easily than the thin film layer formed in the example in which the graphite-based lubricant was applied. That is, since the graphite-based lubricant and the boron nitride-based mold release agent form a film layer with almost no chemical reaction with the nickel-base superheat-resistant alloy in the air atmosphere in the high temperature region, they are made of the nickel-base superheat-resistant alloy. When performing constant temperature die forging in an air atmosphere in the temperature range of 1100 ° C to 1200 ° C using a die, it plays a sufficient role as a lubricant or mold release agent that prevents seizure between the die and the material to be forged. It turned out to be a reward.
【0018】第1の発明は、上記実験により把握された
条件に基づいて完成されたものであって、ニッケル基耐
熱合金からなる金型に、グラファイト系の潤滑剤ないし
は窒化硼素系の離型剤を塗布することによって、その潤
滑剤や離型剤と金型との化学反応を抑えて金型の酸化腐
食を防止できると共に、金型と被鍛造材との焼付を防止
でき、もって1100℃〜1200℃の温度範囲の大気雰囲気下
での恒温型鍛造を達成することができる。The first invention was completed based on the conditions grasped by the above experiment, and a mold made of a nickel-base heat-resistant alloy is provided with a graphite-based lubricant or a boron nitride-based release agent. By applying, it is possible to suppress the chemical reaction between the lubricant and mold release agent and the mold to prevent oxidative corrosion of the mold, and also to prevent seizure between the mold and the forged material. It is possible to achieve isothermal die forging in the atmospheric atmosphere in the temperature range of 1200 ° C.
【0019】なお、第1の発明における上記グラファイ
ト系の潤滑剤としては、その主組成分がグラファイトで
あって、その他、K、Si、Na、S、Cl、Al等を
単独ないし複合して含有してなるものが用いられ、ま
た、上記窒化硼素系の離型剤としては、その主組成分が
窒化硼素であって、その他、O、Al、C等を単独ない
し複合して含有してなるものが用いられる。The graphite-based lubricant in the first invention is mainly composed of graphite, and additionally contains K, Si, Na, S, Cl, Al, etc. alone or in combination. The above-mentioned boron nitride-based mold release agent is mainly composed of boron nitride, and further contains O, Al, C, etc. alone or in combination. Things are used.
【0020】一方、昇温による金型の破壊は、その昇温
中における過大な引張熱応力の発生に起因し、また、昇
温に際して発生する熱応力値は、金型を予熱する各熱履
歴における最大昇温値と、各昇温段階における最低保持
時間値との設定によって低く制御することができる。本
発明者等は、この観点に基づく適性な昇温条件を定量化
すべく、Mo:約10wt%(その他、W :約12wt%、Al:約
6wt%)含有し、残部実質的にNiからなり、かつγ相が
30〜 75vol%、γ’相が25〜 60vol%、α相が 2.5〜 1
1vol%の相を有して、金型用材として高温強度特性を高
めたニッケル基超耐熱合金材からなる一体型の上下金型
を用い、その昇温による破壊実験およびその熱応力の数
値解析を行った。On the other hand, the destruction of the mold due to the temperature rise is caused by the generation of excessive tensile thermal stress during the temperature rise, and the thermal stress value generated during the temperature rise is the heat history for preheating the mold. It is possible to control the temperature to be low by setting the maximum temperature rise value in 1) and the minimum holding time value in each temperature rise stage. In order to quantify the suitable temperature rising conditions based on this viewpoint, the present inventors have determined that Mo: about 10 wt% (others: W: about 12 wt%, Al: about
6 wt%), the balance consists essentially of Ni, and the γ phase is
30-75vol%, γ'phase 25-60vol%, α phase 2.5-1
Using the integrated upper and lower molds made of nickel-base super heat-resistant alloy material with 1vol% phase and improved high-temperature strength characteristics as a mold material, fracture experiments by its temperature rise and numerical analysis of its thermal stress were performed. went.
【0021】それら金型に対する昇温および各昇温段階
における保持時間の設定値を種々に変化させて、室温か
ら1100℃〜1200℃の温度までの昇温を繰り返し行い、各
熱履歴後の金型内面における亀裂の有無を精査したとこ
ろ、一段階での最大昇温値を300℃以上とした場合で
は、亀裂の発生頻度が高く実操業に適用し難く、これに
対して 250℃以下とした場合では、亀裂の発生頻度が低
下して実用に十分耐え得ることが判明した。また、その
金型内部に生じた熱応力を求めたところ、一段階での最
大昇温値を 250℃以下とし、かつその昇温温度で30分間
保持すれば、その一段階での昇温によって生じた熱応力
が殆ど全て開放緩和されて、次の昇温段階に残留しない
ことが解明した。The temperature of the mold is raised and the set value of the holding time in each temperature raising stage is variously changed, and the temperature is raised from room temperature to 1100 ° C. to 1200 ° C. repeatedly. When the presence or absence of cracks on the inner surface of the mold was scrutinized, when the maximum temperature rise value in one step was 300 ° C or higher, the frequency of cracking was high and it was difficult to apply it to actual operation. In some cases, it was found that the frequency of occurrence of cracks decreased and it could withstand practical use. Also, when the thermal stress generated inside the mold was determined, the maximum temperature rise value in one step was 250 ° C or less, and if the temperature was maintained for 30 minutes, the temperature rise in that step It was revealed that almost all of the generated thermal stress was released and relaxed and did not remain in the next heating step.
【0022】第2の発明は、上記金型の昇温破壊実験お
よび熱応力の解析により把握された条件に基づいて完成
されたものであって、ニッケル基耐熱合金からなる金型
を用いて恒温型鍛造するに際して、その金型を、最大 2
50℃昇温する都度にその昇温温度で最低30分間保持する
昇温条件のもとで、室温から1100℃〜1200℃の温度範囲
まで階段的に昇温させることによって、各昇温段階で金
型に生じる熱応力を割れの生じない低いレベルに抑える
と共に、生じた熱応力をそれぞれの昇温段階において開
放緩和させることができ、もって当該金型の昇温による
割れを防いで、1100℃〜1200℃の温度範囲の大気雰囲気
下での恒温型鍛造を安定して達成することができる。The second invention is completed based on the conditions grasped by the temperature rising fracture test of the mold and the analysis of the thermal stress, and is performed at a constant temperature using a mold made of a nickel-base heat-resistant alloy. When forging a die, the die can be
Under each temperature raising condition, each time the temperature is raised by 50 ° C, the temperature is maintained at that temperature for at least 30 minutes, and the temperature is raised stepwise from room temperature to 1100 ° C to 1200 ° C. The thermal stress generated in the mold can be suppressed to a low level that does not cause cracking, and the generated thermal stress can be released and relaxed at each temperature rising stage, thus preventing cracking due to the temperature rise of the mold, resulting in 1100 ° C. It is possible to stably achieve isothermal die forging in an air atmosphere in the temperature range of up to 1200 ° C.
【0023】[0023]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。〔図1〕は本発明の実施例の恒温型鍛造方
法に用いた金型および恒温鍛造装置の概要構成を示す図
面である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a drawing showing a schematic configuration of a mold and a constant temperature forging apparatus used in the constant temperature forging method of the embodiment of the present invention.
【0024】〔図1〕において、(1) は上金型、(2) は
下金型であって、これら上・下金型(1),(2) は、特にM
o:約10wt%(その他、W :約12wt%、Al:約 6wt%)
含有し、残部実質的にNiからなり、かつγ相が30〜 75v
ol%、γ’相が25〜 60vol%、α相が 2.5〜 11vol%の
相を有して、高温強度特性を高めたニッケル基超耐熱合
金材からなり、通常の密閉型鍛造に用いられる形態のも
ので、対向するキス面側に型鍛造品(本例では、タービ
ンディスク)を成形する対のインプレッションを設けた
ものである。In FIG. 1, (1) is an upper mold, (2) is a lower mold, and these upper and lower molds (1) and (2) are especially M
o: about 10 wt% (others, W: about 12 wt%, Al: about 6 wt%)
Contained, the balance consisting essentially of Ni, and the γ phase of 30-75v
ol%, γ'phase is 25 to 60vol%, α phase is 2.5 to 11vol%, and it is made of nickel-base super heat-resistant alloy material with improved high temperature strength characteristics, and is used for normal closed die forging. In this example, a pair of impressions for molding a die-forged product (in this example, a turbine disk) is provided on the opposing kiss surface sides.
【0025】(3) は恒温鍛造装置であって、この恒温鍛
造装置(3) は、その作業部を囲撓するヒータ(4) を備え
た大気開放型のプレス装置である。ここで、下金型(2)
は、この恒温鍛造装置(3) の下アンビル(3b)に取り付け
られて、ヒータ(4) の内下部に位置させられ、一方、上
金型(1) は、圧下アンビル(3a)に取り付けられて下金型
(2) に向けて圧下され、ヒータ(4) による恒温下におい
て、下金型(2) との間のインプレッション内に配置され
た被鍛造材(M) を低歪速度で加圧成形する。また、ヒー
タ(4) は、ここでは図示を省略した入力制御装置に連結
されており、その入力制御装置により出力を制御される
ことで、上・下金型(1),(2) を所定条件で昇温させると
共に、所定高温域の恒温に保持できるものとされてい
る。Reference numeral (3) is a constant temperature forging apparatus, and this constant temperature forging apparatus (3) is an open-air type pressing apparatus provided with a heater (4) for surrounding and bending the working portion. Where lower mold (2)
Is attached to the lower anvil (3b) of this isothermal forging device (3) and is located inside and below the heater (4), while the upper die (1) is attached to the reduction anvil (3a). Lower mold
The material to be forged (M) placed in the impression with the lower die (2) is pressed at a low strain rate while being pressed toward (2) and under constant temperature by the heater (4). Further, the heater (4) is connected to an input control device (not shown here), and the output is controlled by the input control device so that the upper and lower molds (1) and (2) are predetermined. It is said that the temperature can be raised under the conditions and can be maintained at a constant temperature in a predetermined high temperature range.
【0026】本実施例では上記構成のもとで、ニッケル
基粉末超合金からなる被鍛造材(M)を、大気雰囲気下で
恒温型鍛造して、所期のタービンデイスク材に成形した
が、その恒温型鍛造に先立ち、次の金型昇温実験を行っ
た。In the present embodiment, under the above-mentioned constitution, the forging material (M) made of the nickel-base powder superalloy was isothermally forged in the atmosphere to form the desired turbine disk material. Prior to the isothermal die forging, the following die temperature raising experiment was conducted.
【0027】まず、下金型(2) 上にニッケル基粉末超合
金からなるモデル材を配すると共に、上金型(1) を降下
させて両者閉じる一方、上記図外の入力制御装置を介し
てヒータ(4) に入力して、その上・下金型(1),(2) を大
気雰囲気下で昇温させ、室温から1100℃、1150℃および
1175℃までの昇温実験をそれぞれ行った。また、それら
の昇温実験では、上・下金型(1),(2) が 250℃昇温する
都度に、その昇温温度で30分間保持する昇温条件のもと
で上記各設定温度まで階段的に昇温させた。First, a model material made of nickel-base powder superalloy is placed on the lower die (2), and the upper die (1) is lowered to close both, while an input control device (not shown) is used. To the heater (4) to heat the upper and lower molds (1) and (2) in the atmosphere, and from room temperature to 1100 ℃, 1150 ℃ and
Each heating experiment up to 1175 ° C was conducted. In addition, in these heating experiments, each time the upper and lower molds (1) and (2) were heated by 250 ° C, the above set temperature was maintained for 30 minutes at that temperature. The temperature was raised stepwise.
【0028】そして数次の昇温実験を繰り返すと共に、
各昇温実験後の上・下金型について割れの有無を精査し
たが、それら上・下金型は数次の昇温実験を繰り返した
後においても極めて良好な状態に保たれており、それら
結果から、金型を最大 250℃昇温する都度にその昇温温
度で最低30分間保持する昇温条件のもとで、室温から11
00℃〜1200℃の温度範囲まで階段的に昇温させる本発明
方法の優れた効果を確認することができた。Then, while repeating several temperature rising experiments,
The upper and lower molds were thoroughly examined for cracks after each heating experiment.The upper and lower molds were kept in a very good condition even after repeating several heating tests. From the results, each time the mold was heated up to 250 ° C, the temperature was raised from room temperature to
It was possible to confirm the excellent effect of the method of the present invention in which the temperature was raised stepwise to the temperature range of 00 ° C to 1200 ° C.
【0029】次いで、第1例として、上・下金型(1),
(2) のインプレッション面と被鍛造材(M) の全面とに、
グラファイト系潤滑剤(本例では、主成分として結晶性
のグラファイトを99wt%、その他、K: 0.2wt%、S
i: 0.2wt%、Na: 0.2wt%、S: 0.1wt%、Cl:
0.1wt%、Al: 0.1wt%を含有してなる潤滑剤)をそ
れぞれスプレー塗布して恒温型鍛造を行った。Next, as a first example, the upper and lower molds (1),
On the impression surface of (2) and the entire surface of the material to be forged (M),
Graphite lubricant (in this example, 99 wt% crystalline graphite as the main component, K: 0.2 wt%, S
i: 0.2 wt%, Na: 0.2 wt%, S: 0.1 wt%, Cl:
Lubricants containing 0.1 wt% and Al: 0.1 wt% were spray-coated to perform isothermal die forging.
【0030】また、第2例として、上・下金型(1),(2)
のインプレッション面には窒化硼素系離型剤(本例で
は、主成分として窒化硼素を86wt%、その他、O: 5.4
wt%、Al: 4.1wt%、C: 3.1wt%を含有してなる離
型剤)を、被鍛造材(M) の全面には上記と同じグラファ
イト系潤滑剤をそれぞれスプレー塗布して恒温型鍛造を
行った。As a second example, the upper and lower molds (1), (2)
A boron nitride-based mold release agent (in this example, 86 wt% of boron nitride as the main component, O: 5.4
wt%, Al: 4.1 wt%, C: 3.1 wt%), and the same graphite lubricant as above is spray-coated on the entire surface of the material to be forged (M). Forged.
【0031】また、それら恒温型鍛造における被鍛造材
(M) の加圧成形は、10-2〜10-4/sec範囲内から選ばれた
低歪速度に設定する一方、ヒータ(4) による加圧成形時
の保持温度は1100℃、1150℃および1175℃と変化させた
が、それら恒温型鍛造によって得られたタービンデイス
ク材は、全て形状が良好で、かつ金型との焼付も一切な
く表面状態が極めて滑らかであり、また、数次の恒温型
鍛造を繰り返した後の金型にも酸化腐食等の異常がなく
健全な状態に保たれており、これらのことから本発明方
法の優れた効果を確認することができた。Further, the materials to be forged in the constant temperature forging
The pressure molding of (M) is set to a low strain rate selected from the range of 10 -2 to 10 -4 / sec, while the holding temperature during pressure molding by the heater (4) is 1100 ° C and 1150 ° C. The temperature was changed to 1175 ° C and the temperature was changed to 1175 ° C, but all of the turbine disk materials obtained by constant temperature die forging had a good shape, and the surface condition was extremely smooth without any seizure with the die. The mold after repeating the isothermal die forging was also kept in a healthy state without any abnormality such as oxidative corrosion. From these facts, it was possible to confirm the excellent effect of the method of the present invention.
【0032】なお、以上の2実施例では、被鍛造材にグ
ラファイト系潤滑剤を塗布したが、これは金型と被鍛造
材との焼付をより確実に防止するためであって、金型に
グラファイト系潤滑剤ないしは窒化硼素系離型剤が塗布
されている限り、被鍛造材にグラファイト系潤滑剤を塗
布することを省略しても、本発明の効果が損なわれるも
のでないことは言うまでもない。In the above two examples, the graphite-based lubricant was applied to the material to be forged, but this is to prevent seizure between the die and the material to be forged more reliably. As long as the graphite-based lubricant or the boron nitride-based release agent is applied, needless to say, the application of the graphite-based lubricant to the material to be forged can be omitted without impairing the effects of the present invention.
【0033】[0033]
【発明の効果】以上に述べたように、本発明に係る恒温
型鍛造方法によれば、ニッケル基耐熱合金からなる金型
を用い、かつ金型と被鍛造材との焼付を潤滑剤ないし離
型剤の塗布により防止してなお、その潤滑剤や離型剤と
金型との化学反応を抑えて金型の酸化腐食を防止でき、
もって1100℃〜1200℃の温度範囲の大気雰囲気下での恒
温型鍛造を高い生産効率のもとで達成でき、また一方、
その金型を室温から1100℃以上の高温域まで割れを発生
させることなく昇温させることができ、それにより1100
℃〜1200℃の温度範囲の大気雰囲気下での恒温型鍛造を
安定して達成でき、よって難塑性加工性のニッケル基合
金や金属間化合物等からなる耐熱高合金部材の恒温型鍛
造に適用して、その生産性の向上に大きく寄与すること
ができる。As described above, according to the constant temperature die forging method of the present invention, a die made of a nickel-base heat-resistant alloy is used, and seizure between the die and the material to be forged is prevented by a lubricant or separation. It is possible to prevent oxidation corrosion of the mold by suppressing the chemical reaction between the lubricant and mold release agent and the mold while preventing it by applying the mold agent.
Therefore, constant temperature die forging can be achieved with high production efficiency in the air atmosphere in the temperature range of 1100 ° C to 1200 ° C.
The mold can be heated from room temperature to a high temperature range of 1100 ° C or higher without cracking.
The constant temperature die forging can be stably achieved in the atmosphere of the temperature range of ℃ to 1200 ℃, so it can be applied to the constant temperature die forging of heat resistant high alloy members made of nickel-base alloys and intermetallic compounds that have poor plastic workability. And can greatly contribute to the improvement of the productivity.
【図1】本発明の実施例の恒温型鍛造方法に用いた金型
および恒温鍛造装置の概要構成を示す面図である。FIG. 1 is a plan view showing a schematic configuration of a die and a constant temperature forging apparatus used in a constant temperature die forging method according to an embodiment of the present invention.
(1) --上金型 (2) --下金型 (3) --恒温鍛造装置 (3a)--上アンビル (3b)--下アンビル (4) --ヒータ。 (1) --Upper mold (2) --Lower mold (3) --Constant temperature forging machine (3a)-Upper anvil (3b)-Lower anvil (4) --Heater.
Claims (2)
て恒温型鍛造するに際して、その金型にグラファイト系
潤滑剤ないしは窒化硼素系離型剤を塗布し、1100℃〜12
00℃の温度範囲の大気雰囲気下で恒温型鍛造することを
特徴とする恒温型鍛造方法。1. At the time of constant temperature forging using a die made of a nickel-base heat-resistant alloy, a graphite-based lubricant or a boron nitride-based release agent is applied to the die, and the temperature is 1100 ° C. to 12 ° C.
A constant temperature die forging method characterized by performing constant temperature die forging in an atmosphere of a temperature range of 00 ° C.
て恒温型鍛造するに際して、その金型を、最大 250℃昇
温する都度にその昇温温度で最低30分間保持する昇温条
件のもとで、室温から1100℃〜1200℃の温度範囲まで階
段的に昇温させた後に、1100℃〜1200℃の温度範囲の大
気雰囲気下で恒温型鍛造することを特徴とする恒温型鍛
造方法。2. When performing constant temperature die forging using a die made of a nickel-base heat-resistant alloy, the die must be kept at the elevated temperature for a minimum of 30 minutes each time the temperature is raised to a maximum of 250 ° C. In the above, the isothermal die forging method is characterized in that after the temperature is raised stepwise from room temperature to a temperature range of 1100 ° C to 1200 ° C, the isothermal die forging is performed in the atmosphere of the temperature range of 1100 ° C to 1200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12705093A JP3227269B2 (en) | 1993-01-07 | 1993-05-28 | Constant temperature forging method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-1279 | 1993-01-07 | ||
JP127993 | 1993-01-07 | ||
JP12705093A JP3227269B2 (en) | 1993-01-07 | 1993-05-28 | Constant temperature forging method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06254648A true JPH06254648A (en) | 1994-09-13 |
JP3227269B2 JP3227269B2 (en) | 2001-11-12 |
Family
ID=26334478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12705093A Expired - Lifetime JP3227269B2 (en) | 1993-01-07 | 1993-05-28 | Constant temperature forging method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3227269B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016215275A (en) * | 2015-05-22 | 2016-12-22 | 株式会社神戸製鋼所 | Hot forging method and glass lubricant |
US9909200B2 (en) | 2014-09-29 | 2018-03-06 | Hitachi Metals, Ltd. | Method of manufacturing Ni-base superalloy |
WO2018117226A1 (en) | 2016-12-21 | 2018-06-28 | 日立金属株式会社 | Method for producing hot-forged material |
WO2021241585A1 (en) | 2020-05-26 | 2021-12-02 | 日立金属株式会社 | Ni-based alloy for hot die, and hot-forging die using same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065542A1 (en) * | 2017-09-29 | 2019-04-04 | 日立金属株式会社 | Method for manufacturing hot forging material |
WO2019065543A1 (en) * | 2017-09-29 | 2019-04-04 | 日立金属株式会社 | Method for producing hot-forging material |
-
1993
- 1993-05-28 JP JP12705093A patent/JP3227269B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9909200B2 (en) | 2014-09-29 | 2018-03-06 | Hitachi Metals, Ltd. | Method of manufacturing Ni-base superalloy |
JP2016215275A (en) * | 2015-05-22 | 2016-12-22 | 株式会社神戸製鋼所 | Hot forging method and glass lubricant |
WO2018117226A1 (en) | 2016-12-21 | 2018-06-28 | 日立金属株式会社 | Method for producing hot-forged material |
US11919065B2 (en) | 2016-12-21 | 2024-03-05 | Proterial, Ltd. | Method for producing hot-forged material |
WO2021241585A1 (en) | 2020-05-26 | 2021-12-02 | 日立金属株式会社 | Ni-based alloy for hot die, and hot-forging die using same |
Also Published As
Publication number | Publication date |
---|---|
JP3227269B2 (en) | 2001-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4098450A (en) | Superalloy article cleaning and repair method | |
US6283356B1 (en) | Repair of a recess in an article surface | |
JP5904431B1 (en) | Method for producing Ni-base superalloy | |
US5451142A (en) | Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface | |
CN107427896B (en) | The manufacturing method of Ni base superalloy | |
US10875080B2 (en) | Method of producing forged product | |
EP2484806A2 (en) | Surface treatment method and repair method | |
US2206395A (en) | Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof | |
JPH07166802A (en) | Turbine blade and manufacture of turbine blade thereof | |
JPH05169323A (en) | Method for joining and repairing of forged article | |
JP6660573B2 (en) | Manufacturing method of hot forgings | |
JP7452172B2 (en) | Method for manufacturing hot forged materials | |
JPH06254648A (en) | Thermostatic die forging method | |
JP6108260B1 (en) | Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die | |
JP3829388B2 (en) | TiAl turbine rotor | |
JP4175209B2 (en) | High temperature components for gas turbines | |
JP6566255B2 (en) | Hot forging die | |
JP3227223B2 (en) | Constant temperature forging method | |
JPH11151581A (en) | Joining method for steel material and manufacture of metallic mold | |
JP2002283030A (en) | Member for light alloy injection molding machine | |
RU2785111C1 (en) | Method for hot forging of workpieces from hard to deform metals and alloys | |
JP3217401B2 (en) | How to repair van lag | |
JP3837230B2 (en) | Method for producing heat-resistant Al alloy structural member | |
JPS5839228B2 (en) | Composite hot tool material and its manufacturing method | |
JPS62146237A (en) | Highly heat-resistant sintered hard alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070831 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080831 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080831 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090831 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090831 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20100831 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120831 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |