JPH06252848A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JPH06252848A
JPH06252848A JP5036913A JP3691393A JPH06252848A JP H06252848 A JPH06252848 A JP H06252848A JP 5036913 A JP5036913 A JP 5036913A JP 3691393 A JP3691393 A JP 3691393A JP H06252848 A JPH06252848 A JP H06252848A
Authority
JP
Japan
Prior art keywords
polarization
output
light
polarized light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5036913A
Other languages
Japanese (ja)
Other versions
JPH07112174B2 (en
Inventor
Kiyoshi Fukuchi
清 福知
Shuntaro Yamazaki
俊太郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5036913A priority Critical patent/JPH07112174B2/en
Publication of JPH06252848A publication Critical patent/JPH06252848A/en
Publication of JPH07112174B2 publication Critical patent/JPH07112174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To receive a signal without mistake even when a polarized state of the signal light is fluctuated at a high speed by adopting the configuration such that a device to control a polarized state is not used for the receiver when a signal light subject to polarized modulation with a binary digital signal is received. CONSTITUTION:A power of an incident signal light to the receiver is divided equally into three by a 3-branch circuit 1. A 1st output 2 is given to a 1st polarized light separate element 6. A 2nd output 3 is given to a 2nd polarized light separate element 7, and the major axis of the 2nd polarized light separate element 7 is tilted by 45 deg. to the major axis of the 1st polarized light separate element 7. A 3rd output 4 is given to a 1/4 wavelength plate 5, and its output is given to the 3rd polarized light separate element 8. Two outputs from the three polarized light separate elements are received by two photodetectors 15 and electric outputs from them are decoded by a delay decoder 19, an amplitude adjustment device 26 makes the signal amplitude constant and an identification device 27 is used for identification. By this constitution, the polarized light modulation optical receiver unnecessitating a polarized light controller is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本考案は、偏光変調方式を用いた
光ファイバ通信等で用いられる光受信回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiver circuit used in optical fiber communication using a polarization modulation method.

【0002】[0002]

【従来の技術】従来の光ファイバ通信では、信号光の強
度に情報を割り当て、光検出器で直接強度を検出する強
度変調ー直接検波方式が用いられてきた。しかしなが
ら、この方式で信号光を伝送すると、光ファイバ内で生
じる非線形光学効果、特に自己位相変調効果や相互位相
変調効果が、伝送品質の劣化を引き起こすことが知られ
ている。この自己位相変調効果および相互位相変調効果
は、信号光の強度変化に起因するものである。
2. Description of the Related Art In conventional optical fiber communication, an intensity modulation-direct detection system has been used in which information is assigned to the intensity of signal light and the intensity is directly detected by a photodetector. However, it is known that when the signal light is transmitted by this method, the non-linear optical effect generated in the optical fiber, particularly the self-phase modulation effect or the cross-phase modulation effect causes deterioration of the transmission quality. The self-phase modulation effect and the cross-phase modulation effect are due to the intensity change of the signal light.

【0003】この2つの効果を回避する通信方式とし
て、偏光変調方式が挙げられる。偏光変調方式とは、伝
送される光の偏光状態に情報を割り当てて信号を伝送す
る方式である。このような、偏光変調光ファイバ通信方
式では、送信光の強度分布が一定となるので、自己位相
変調効果や相互位相変調効果が生じにくく、伝送劣化が
少ないという特徴が有る。偏光変調方式を用いた2値デ
ジタル通信装置の構成として、すでに「光通信方式」な
る名称で特許出願されているものがある(深谷、特開平
1ー208920)。この「光通信方式」の送信器にお
いては、伝送される”0”,”1”ビットが、送信光の
直交関係にある2つの偏光に割り当てられる。これは、
2偏光間の直交関係がファイバ中で常に保たれるので、
伝送後の符号間相互干渉が最も少なくなるからである。
また受信器では、まず信号光の偏光を偏光制御器により
直接偏光に変換し、偏光分離素子により0,1に対応す
る2つの偏光を分離する。偏光分離素子の後の2つの光
は相補的な強度変調信号(一方がオン状態の時には、も
う一方はオフ状態)になっている。これらの2つの信号
光をレンズで集光した後、2つの受光器(光検出器)に
より光電変換し、得られた2つの電気信号の差成分を検
出する。
A polarization modulation method can be cited as a communication method for avoiding these two effects. The polarization modulation method is a method of transmitting information by allocating information to the polarization state of transmitted light. In such a polarization modulation optical fiber communication system, since the intensity distribution of the transmitted light is constant, the self-phase modulation effect and the mutual phase modulation effect are less likely to occur, and the transmission deterioration is small. As a configuration of a binary digital communication device using a polarization modulation system, there is one that has been applied for a patent under the name of "optical communication system" (Fukaya, JP-A-1-208920). In this "optical communication" transmitter, the transmitted "0" and "1" bits are assigned to two polarizations of transmitted light that are in an orthogonal relationship. this is,
Since the orthogonal relationship between the two polarizations is always maintained in the fiber,
This is because the mutual interference between codes after transmission is minimized.
In the receiver, first, the polarization of the signal light is directly converted into the polarized light by the polarization controller, and the two polarized lights corresponding to 0 and 1 are separated by the polarization separating element. The two lights after the polarization separation element are complementary intensity modulation signals (when one is in the on state, the other is in the off state). After these two signal lights are condensed by a lens, they are photoelectrically converted by two light receivers (photodetectors), and a difference component between the obtained two electric signals is detected.

【0004】[0004]

【発明が解決しようとする課題】前記の構成を有する偏
光変調光受信器では、何らかの偏光制御装置を必要とす
る。現在、自動制御を可能とする偏光制御装置として、
光ファイバにスクイーザによって応力を印加して偏光状
態を制御するもの(清水他、Journal of L
ightwave Technology LTー9
No.10 p.1217)、ニオブ酸リチウム基板状
に形成された光導波路上に制御電圧を印加して、電気光
学効果により導波光の偏光状態を制御するもの(F.ハ
イスマン他、Photonics Technolog
y Letter PTLー4 No.5 p.50
3)が提案されている。しかし、いずれの装置において
も、偏光制御の速度が制御用のフィードバック回路によ
り制限されており、この速度以上で変動する光の偏光状
態を完全に制御することはできない。したがって、この
制御速度を越えて変動する偏光を前記の光受信器で受信
すると、”0”,”1”に対応する2つの偏光を完全に
分離することができなくなるために、伝送データに符号
誤りが生じる。
The polarization modulation optical receiver having the above structure requires some kind of polarization control device. Currently, as a polarization control device that enables automatic control,
Controlling the polarization state by applying stress to an optical fiber with a squeezer (Shimizu et al., Journal of L
lightwave Technology LT-9
No. 10 p. 1217), which controls the polarization state of guided light by an electro-optic effect by applying a control voltage on an optical waveguide formed on a lithium niobate substrate (F. Heissmann et al., Photonics Technology).
y Letter PTL-4 No. 5 p. Fifty
3) is proposed. However, in any of these devices, the speed of polarization control is limited by the feedback circuit for control, and the polarization state of light that fluctuates at or above this speed cannot be completely controlled. Therefore, when the above-mentioned optical receiver receives the polarization that fluctuates over the control speed, it becomes impossible to completely separate the two polarizations corresponding to "0" and "1". There is an error.

【0005】[0005]

【課題を解決するための手段】以上に示した課題を解決
するために、本発明が提供する光受信装置は、受信光を
三等分する光分岐回路と、この光分岐回路の出力のうち
の一つの偏光の状態を変換する4分の1波長板と、光分
岐回路の出力のうち一つからの出力光を2つの偏光に分
離する第1の偏光分離素子と、光分岐回路の出力の残り
の一つからの出力光を第1の偏光分離素子の偏光分離軸
に対して45度傾いた軸で2つの偏光に分離する第2の
偏光分離素子と、4分の1波長板からの出力光を2つの
偏光方向に分離する第3の偏光分離素子と、第1,第2
及び第3の偏光分離素子それぞれから2つずつ出力され
る信号光をそれぞれ受光するために該第1,第2及び第
3の偏光分離素子の各々に対応して設けられた第1及び
第2の光検出器とを有することを特徴とする。
In order to solve the above-mentioned problems, an optical receiving apparatus provided by the present invention is an optical branch circuit for dividing received light into three equal parts, and an output of this optical branch circuit. Quarter-wave plate that converts the state of one polarization of the optical splitter, a first polarization splitting element that splits the output light from one of the outputs of the optical splitting circuit into two polarizations, and the output of the optical splitting circuit From the second polarization splitting element that splits the output light from the other one of the two polarizations into two polarizations with the axis inclined by 45 degrees with respect to the polarization splitting axis of the first polarization splitting element, and the quarter wavelength plate. A third polarization separation element that separates the output light of the second polarization direction into two polarization directions;
And first and second polarization detectors provided corresponding to each of the first, second and third polarization separation elements for receiving two signal lights respectively output from the second polarization separation element and the third polarization separation element. And a photodetector.

【0006】[0006]

【作用】まず、図2(a)に示す偏光状態の光Zが、図
2(b)に示す偏光分離素子6に入射し、この偏光分離
素子6の2つの出力X,Yが2つの光検出器15からな
る光検出回路に入射するときを考える。ここで、図2
(b)中のX,Yアームは、それぞれ図2(b)中での
X,Y方向の偏光を切り出した出力である。この光検出
回路では、検出される光電流Izが、Xアーム側の受光
パワーとYアーム側の受光パワーとの差で与えられる。
ここで、偏光Zが、ポアンカレ球上で、図2(c)に示
す点で表されるとすると、前記Izは次式で与えられ
る。
First, the light Z having the polarization state shown in FIG. 2 (a) enters the polarization separation element 6 shown in FIG. 2 (b), and the two outputs X and Y of the polarization separation element 6 are two lights. Consider the time when the light enters the photodetector circuit including the detector 15. Here, FIG.
The X and Y arms in (b) are outputs obtained by cutting out the polarized light in the X and Y directions in FIG. 2 (b), respectively. In this photodetector circuit, the detected photocurrent Iz is given by the difference between the received light power on the X arm side and the received light power on the Y arm side.
Here, assuming that the polarized light Z is represented by the points shown in FIG. 2C on the Poincare sphere, Iz is given by the following equation.

【0007】Iz=kz×Io ここで、Ioは図2(a)のX方向の直線偏光が入射し
たときに検出される光電流値であり、kzは、図2
(c)中のX点を1、Y点をー1としたときでの、Z点
からXーY軸への正射影点の座標である。このように、
この光検出回路で偏光変調光を受信するときの出力信号
は、ポアンカレ球上で入射偏光状態を与える点から、偏
光分離素子の与える軸(この場合ではXーY軸)への正
射影点として表される。
Iz = kz × Io Here, Io is a photocurrent value detected when linearly polarized light in the X direction of FIG. 2A is incident, and kz is shown in FIG.
It is the coordinates of the orthographic projection point from the Z point to the XY axis when the X point in (c) is 1 and the Y point is -1. in this way,
The output signal when the polarization-modulated light is received by this photodetector circuit is as an orthogonal projection point from the point that gives the incident polarization state on the Poincare sphere to the axis (in this case, the XY axis) given by the polarization separation element. expressed.

【0008】次に、本発明の光受信装置により、偏光状
態が切り換わるとき”1”を、偏光状態が変わらないと
きに”0”となる偏光変調光を受信する場合を考える。
この信号光は、伝送路において偏光状態を任意に変えら
れるが、直交関係にある2つの偏光成分は、伝送後にお
いても直交関係を維持する。従って、光受信装置への入
射光に含まれる2つの偏光成分は、ポアンカレ球上で
は、図3中のZーZ’点のように、相対する2つの点で
表される。この光受信装置では、図2(b)の光検出回
路を3つ用いており、前記の構成とすることで、第1、
第2、第3の偏光分離素子を含む光検出回路により、そ
れぞれポアンカレ球上において互いに直交する3つの軸
方向で偏光状態を検出する。この結果、この光受信装置
への入射偏光がどの様な状態であっても、必ず1つ以上
の光検出回路からの検出信号に、偏光の切り替わりが検
出される。このように、本発明では光受信装置内に偏光
制御器を用いる必要がないから、偏光変動に対する応答
速度が偏光制御器により制限されなくなり、偏光変動に
対する応答速度が大幅に改善する。理論的には、1タイ
ムスロット内で偏光が直交状態へ変化する速度の1/2
以下であれば、正しく符号を認識することが可能であ
る。
Next, let us consider a case where the optical receiver of the present invention receives polarization-modulated light which becomes "1" when the polarization state is switched and "0" when the polarization state is not changed.
Although the polarization state of this signal light can be arbitrarily changed in the transmission path, the two polarization components in the orthogonal relationship maintain the orthogonal relationship even after transmission. Therefore, the two polarization components contained in the incident light to the light receiving device are represented by two opposing points on the Poincare sphere, such as the ZZ 'point in FIG. This optical receiving device uses three photodetector circuits shown in FIG. 2B. With the above configuration,
The photodetector circuit including the second and third polarization separation elements detects the polarization state in three axial directions that are orthogonal to each other on the Poincare sphere. As a result, regardless of the state of the polarized light incident on the light receiving device, the switching of the polarized light is always detected in the detection signals from one or more photodetection circuits. As described above, in the present invention, since it is not necessary to use the polarization controller in the optical receiving device, the response speed to the polarization fluctuation is not limited by the polarization controller, and the response speed to the polarization fluctuation is significantly improved. Theoretically, half the speed at which the polarization changes to the orthogonal state within one time slot.
It is possible to correctly recognize the code if:

【0009】[0009]

【実施例】図1は本発明の一実施例の構成を示す図であ
る。この実施例の光受信装置に入射ファイバ30で入射
された信号光は、三分岐回路1によりそのパワーが三等
分される。分岐回路1からの第1の出力2は、第1の偏
光分離素子6に角度0度で入射する。ここで、角度と
は、入力ファイバ30へある直線偏光を入射したときに
分岐出力で観測される直線偏光の向きと、偏光分離素子
の主軸方向とがなす角度のことを指す。分岐回路1から
の第2の出力3は、第2の偏光分離素子7に角度45度
で入射する。分岐回路1からの第3の出力4は、4分の
1波長板5に入射した後、第3の偏光分離素子8に入射
する。このとき、4分の1波長板5の主軸(円偏光が入
射したときに出力される直線偏光の向く方向)と偏光分
離素子8の主軸のなす角度が0度となるように、2つの
素子を接続する。偏光分離素子6,7,8それぞれから
2つずつ出力される信号光は、2つの光検出器15によ
りそれぞれ受光され、光検出器15の差出力は電気信号
16,17,18として出力される。3つの電気信号1
6,17,18は、遅延復号化器19においてそれぞ
れ、1ビット遅延器20からの出力と、排他的論理和回
路21で排他論理和を取られる。変換された3つの電気
信号22,23,24の和を加算器25により取った
後、振幅調整器26により信号振幅を一定として、識別
器27により信号を識別する。
1 is a diagram showing the configuration of an embodiment of the present invention. The signal light that has entered the optical receiver of this embodiment through the entrance fiber 30 is divided into three equal powers by the three-branching circuit 1. The first output 2 from the branch circuit 1 is incident on the first polarization separation element 6 at an angle of 0 degree. Here, the angle refers to the angle formed by the direction of the linearly polarized light observed in the branched output when a certain linearly polarized light is incident on the input fiber 30 and the principal axis direction of the polarization separation element. The second output 3 from the branch circuit 1 enters the second polarization separation element 7 at an angle of 45 degrees. The third output 4 from the branch circuit 1 enters the quarter-wave plate 5 and then enters the third polarization separation element 8. At this time, the two elements are arranged so that the angle formed by the principal axis of the quarter-wave plate 5 (the direction in which the linearly polarized light output when circularly polarized light is incident) and the principal axis of the polarization separation element 8 is 0 degree. Connect. Two signal lights output from each of the polarization separation elements 6, 7, and 8 are respectively received by the two photodetectors 15, and the differential outputs of the photodetectors 15 are output as electrical signals 16, 17, and 18. . Three electrical signals 1
6, 17 and 18 are exclusive ORed with the output from the 1-bit delay unit 20 in the delay decoder 19 and the exclusive OR circuit 21. After the sum of the three converted electric signals 22, 23, 24 is taken by the adder 25, the signal amplitude is made constant by the amplitude adjuster 26, and the signal is discriminated by the discriminator 27.

【0010】光送信装置側では、図4に示す回路を用い
てあらかじめ変調信号に符号化が施され、”0”に対し
ては偏光状態が変わらず、”1”に対して偏光が切り替
わるよう変調される。光受信機で、図1中のアーム9に
最も強く光が出力されるような受信機入射偏光を、図3
中のX点とする。すると、図3に示すY,P,Q,S,
R点で示される偏光が入射するとき、それぞれ、図1に
符号10,11,12,13,14で示されるアーム
に、最も強く光が出力される。この光受信機で、図1中
の16,17,18の各ポートには、図3のXY、P
Q、SR軸方向での検出信号が出力される。
On the optical transmitter side, the modulated signal is encoded in advance using the circuit shown in FIG. 4, so that the polarization state does not change for "0" and the polarization changes for "1". Is modulated. In the optical receiver, the receiver incident polarized light that outputs the strongest light to the arm 9 in FIG.
Let it be the X point inside. Then, Y, P, Q, S, shown in FIG.
When the polarized light indicated by the point R is incident, the strongest light is output to the arms indicated by reference numerals 10, 11, 12, 13, and 14 in FIG. 1, respectively. In this optical receiver, the ports XY, P of FIG.
Detection signals in the Q and SR axis directions are output.

【0011】図3に示すようなZーZ’間を切り替わる
偏光変調光が光受信機に入射する場合、図5(a)に示
すように、16,17,18の3つのポートのすべての
出力信号の符号が反転する。ここで、各ポートからの信
号を、遅延復号化器19により復号すると、偏光状態が
切り替わるとき、22,23,24の各ポートで出力
が”1”となり、切り替わらないとき、すべての出力振
幅が”0”となる。この後、全出力を加算し、振幅調整
をした後識別することにより、信号を得ることができ
る。
When the polarization-modulated light switching between ZZ 'as shown in FIG. 3 is incident on the optical receiver, as shown in FIG. 5 (a), all three ports of 16, 17, 18 are provided. The sign of the output signal is inverted. Here, when the signal from each port is decoded by the delay decoder 19, the output becomes “1” at each port of 22, 23 and 24 when the polarization state is switched, and when not switched, all output amplitudes are It becomes "0". After that, a signal can be obtained by adding all the outputs, adjusting the amplitude, and then identifying.

【0012】また、特殊な場合として、図5(b)のよ
うに、ZーZ’が図3のS,R点となるときを考える。
この場合、偏光状態が切り替わるとき、ポート16,1
7には信号の切り替わりが検出されないが、ポート18
で切り替わりを検出することができる。従って、復号後
論理和をとることにより、正しい信号を得ることができ
る。図6は、この光受信装置を用いて、実際に光ファイ
バを通して送られてくる偏光変調光を受信したときの、
受信装置各点での波形、及び受信装置出力信号を測定し
たものである。この実験の際に伝送されてきた信号光の
偏光状態は、図6(a)に示すように変化していた。し
かし、図6(b)に示すように受信光に偏光状態によら
ず3つの光検出回路のうちいずれか1つ以上により必ず
偏光状態の切り替わりが検出されており、送信符号を正
しく受信することができた。このように、本実施例の光
受信機を用いることによって、光受信機への入射偏光に
よらず正しい信号を受信することができた。
As a special case, let us consider a case where ZZ 'is the S and R points in FIG. 3 as shown in FIG. 5 (b).
In this case, when the polarization state switches, the ports 16, 1
No signal switching detected on port 7, but port 18
Switching can be detected with. Therefore, a correct signal can be obtained by taking the logical sum after decoding. FIG. 6 shows a case where polarization-modulated light actually sent through an optical fiber is received using this optical receiving device.
The waveforms at each point of the receiver and the output signal of the receiver are measured. The polarization state of the signal light transmitted during this experiment was changed as shown in FIG. However, as shown in FIG. 6B, the switching of the polarization state is always detected by any one or more of the three photodetection circuits regardless of the polarization state of the received light, and the transmission code must be received correctly. I was able to. As described above, by using the optical receiver of the present embodiment, it was possible to receive a correct signal regardless of the polarized light incident on the optical receiver.

【0013】[0013]

【発明の効果】以上に詳しく述べたように、本発明の構
成を用いることにより、偏光制御器を用いることなく偏
光変調信号光を受信できるから、偏光変動に対する応答
速度を大幅に改善できる。
As described in detail above, by using the configuration of the present invention, the polarization modulated signal light can be received without using the polarization controller, so that the response speed to the polarization fluctuation can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】光受信回路の動作原理を説明するための図。FIG. 2 is a diagram for explaining an operation principle of an optical receiving circuit.

【図3】受信偏光変調光の偏光状態を表すためのポアン
カレ球を示す図。
FIG. 3 is a diagram showing a Poincare sphere for representing the polarization state of received polarization-modulated light.

【図4】符号化を施す光送信機の構成図。FIG. 4 is a configuration diagram of an optical transmitter that performs encoding.

【図5】図1の実施例における各点での出力信号振幅を
示す図。
5 is a diagram showing the output signal amplitude at each point in the embodiment of FIG.

【図6】偏光状態が変動している信号光を受信した場合
における光受信機の出力の実験結果を示す図。
FIG. 6 is a diagram showing an experimental result of the output of the optical receiver in the case of receiving the signal light whose polarization state is changed.

【符号の説明】[Explanation of symbols]

1 三分岐光分岐回路 2 光分岐回路の第1の出力 3 光分岐回路の第2の出力 4 光分岐回路の第3の出力 5 4分の1波長板 6 第1の偏光分離素子 7 第2の偏光分離素子 8 第3の偏光分離素子 9 Xアーム 10 Yアーム 11 Pアーム 12 Qアーム 13 Sアーム 14 Rアーム 15 光検出器 16 第1の出力信号 17 第2の出力信号 18 第3の出力信号 19 遅延復号化器 20 1ビット遅延器 21 排他論理和回路 22 第1の復号出力 23 第2の復号出力 24 第3の復号出力 25 加算器 26 振幅調整器 27 識別器 28 ポアンカレ球 1 Three-branch optical branch circuit 2 First output of optical branch circuit 3 Second output of optical branch circuit 4 Third output of optical branch circuit 5 Quarter wave plate 6 First polarization separation element 7 Second Polarization separation element 8 Third polarization separation element 9 X-arm 10 Y-arm 11 P-arm 12 Q-arm 13 S-arm 14 R-arm 15 Photodetector 16 First output signal 17 Second output signal 18 Third output Signal 19 Delay decoder 20 1-bit delay device 21 Exclusive OR circuit 22 First decoding output 23 Second decoding output 24 Third decoding output 25 Adder 26 Amplitude adjuster 27 Discriminator 28 Poincare sphere

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受信光を三等分する光分岐回路と、この
光分岐回路の第一の出力からの光を2つの偏光に分離す
る第1の偏光分離素子と、前記光分岐回路の第2の出力
からの光を第1の偏光分離素子の偏光分離軸に対して4
5度傾いた軸で2つ偏光に分離する第2の偏光分離素子
と、前記光分岐回路の第3の出力からの光の偏光状態を
変換する4分の1波長板と、この4分の1波長板からの
出力光を2つの偏光方向に分離する第3の偏光分離素子
と、前記第1,第2及び第3の偏光分離素子それぞれか
ら2つずつ出力される信号光をそれぞれ受光するために
該第1,第2及び第3の偏光分離素子の各々に対応して
設けられた第1及び第2の光検出器とを有することを特
徴とする光受信装置。
1. An optical branching circuit that divides received light into three equal parts, a first polarization splitting element that splits light from a first output of the optical branching circuit into two polarizations, and a first polarization splitting circuit of the optical splitting circuit. The light from the output of 2 is 4 with respect to the polarization splitting axis of the first polarization splitting element.
A second polarization splitting element that splits the light into two polarized lights with an axis inclined by 5 degrees, a quarter-wave plate that converts the polarization state of light from the third output of the optical branching circuit, and the quarter wavelength plate. A third polarization separation element that separates the output light from the one-wave plate into two polarization directions, and two signal lights that are output from each of the first, second, and third polarization separation elements are received. Therefore, the optical receiving device is provided with a first photodetector and a second photodetector provided corresponding to each of the first, second and third polarization separation elements.
【請求項2】 前記第1及び第2の光検出器の出力の差
を遅延復号化器で復号し、前記第1,第2及び第3の偏
光分離素子にそれぞれ対応する3つの前記遅延復号化器
の出力を加算器で加算し、該加算器の出力を識別器で識
別することにより、前記受信光の復号をすることを特徴
とする請求項1に記載の光受信装置。
2. A delay decoder for decoding the difference between the outputs of the first and second photodetectors, and three delay decoding elements corresponding to the first, second and third polarization separation elements, respectively. The optical receiving apparatus according to claim 1, wherein the received light is decoded by adding the outputs of the digitizers with an adder and identifying the outputs of the adders with an identifier.
JP5036913A 1993-02-25 1993-02-25 Optical receiver Expired - Lifetime JPH07112174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036913A JPH07112174B2 (en) 1993-02-25 1993-02-25 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036913A JPH07112174B2 (en) 1993-02-25 1993-02-25 Optical receiver

Publications (2)

Publication Number Publication Date
JPH06252848A true JPH06252848A (en) 1994-09-09
JPH07112174B2 JPH07112174B2 (en) 1995-11-29

Family

ID=12483013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036913A Expired - Lifetime JPH07112174B2 (en) 1993-02-25 1993-02-25 Optical receiver

Country Status (1)

Country Link
JP (1) JPH07112174B2 (en)

Also Published As

Publication number Publication date
JPH07112174B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US6823142B1 (en) Polarization mode dispersion compensating apparatus
Martinelli et al. Polarization stabilization in optical communications systems
EP1330054B1 (en) System and method for multi-level phase modulated communication
US8200087B2 (en) Method and device for stabilizing the state of polarization of a polarization multiplexed optical radiation
US4831663A (en) Digital signal transmission/reception using differential polarization modulation/demondulation
US11245474B2 (en) Pluggable optical module and optical communication system
US8488979B2 (en) Multi-level polarization multi-level phase modulator
US9236940B2 (en) High bandwidth demodulator system and method
CN105794129A (en) Polarisation-independent coherent optical receiver
US11606148B2 (en) Polarization processing apparatus, optical transceiver, and optical polarization processing method
US11646800B2 (en) Optical transmitter and method for controller optical transmitter
US20190179163A1 (en) Method and circuit for endless phase and polarization control
WO2022143254A1 (en) Coherent optical receiver, optical communication device and system
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
JPH06252848A (en) Optical receiver
JP2677289B2 (en) Optical communication system
Noé et al. LiNbO3-based endless optical polarization control
JP2000324054A (en) Optical transmitter and optical transmitter system using it
JP2819636B2 (en) Optical communication device using optical modulation
US20230275670A1 (en) Optical transmission device and system
JP2625393B2 (en) Optical frequency stabilization circuit
CA1337438C (en) Digital signal transmission/reception using differential polarization modulation/demodulation
JPH04263215A (en) Method for controlling optical modulator
JPH07162370A (en) Method and device for receiving polarization modulated light and light receiving equipment
JP2000228648A (en) Optical communication method and system difficult in tapping, optical transmitter and optical receiver used therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806