JPH06252734A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPH06252734A
JPH06252734A JP5033455A JP3345593A JPH06252734A JP H06252734 A JPH06252734 A JP H06252734A JP 5033455 A JP5033455 A JP 5033455A JP 3345593 A JP3345593 A JP 3345593A JP H06252734 A JPH06252734 A JP H06252734A
Authority
JP
Japan
Prior art keywords
circuit
current
output
reference voltage
voltage generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5033455A
Other languages
Japanese (ja)
Inventor
Tomoaki Kawamura
智明 川村
Masao Suzuki
正雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5033455A priority Critical patent/JPH06252734A/en
Publication of JPH06252734A publication Critical patent/JPH06252734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To provide a reference voltage generating circuit able to generate a logic threshold level used to compensate an accuracy error due to manufacture dispersion in an LSI. CONSTITUTION:The generating circuit includes a characteristic output circuit 4 outputting a predetermined current in response to an output current characteristic of a transmission circuit 2 and a voltage generating circuit 5 receiving a current from the characteristic output circuit 4 and controlling a reference voltage to decide a logic threshold level of a reception circuit in response to a current. Or the generating circuit includes a characteristic output circuit 4 as a drive current source of a current changeover circuit of the transmission circuit 2 and a voltage generating circuit 5 formed by replacing only a resistance of a receiver of a current voltage conversion circuit of a reception circuit 3 with a required resistance, and an output of the characteristic output circuit 4 is inputted to the voltage generating circuit 5 and an output of the voltage generating circuit 5 is used for an output of a reference voltage generating circuit 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基準電圧発生回路に係
り、特に、プリント板やハイブリッドIC基板上で信号
を送信、受信する信号伝達回路の受信回路における論理
閾値を決める基準電圧発生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference voltage generating circuit, and more particularly to a reference voltage generating circuit for determining a logical threshold value in a receiving circuit of a signal transmitting circuit for transmitting and receiving signals on a printed board or a hybrid IC board. .

【0002】[0002]

【従来の技術】従来、プリント基板上のIC間や、ハイ
ブリッド基板上のIC間でデジタル信号を送受する方法
として、TTL(transistor-transistor logic)やEC
L(emitter coupled logic) インターフェースのような
電圧モードで動作するものや、電流の有無または、大小
で送受する電流モードで動作する回路がある。
2. Description of the Related Art Conventionally, as a method of transmitting and receiving a digital signal between ICs on a printed circuit board or ICs on a hybrid circuit board, TTL (transistor-transistor logic) or EC is used.
There are circuits that operate in a voltage mode, such as an L (emitter coupled logic) interface, and circuits that operate in a current mode that transmits / receives depending on the presence / absence of a current or the magnitude.

【0003】高速ディジタル信号を送受するには、EC
Lインターフェースが優れていることが知られている
が、その動作電流は大きく、低電力化には向かないとい
う問題がある。
To send and receive high speed digital signals, EC
It is known that the L interface is excellent, but its operating current is large and it is not suitable for low power consumption.

【0004】一方、電流モードで動作する回路として
は、例えば、“アナログ集積回路”(近代科学社、昭和
55年2月発行p.257)に記載されているようなカ
スコード接続型の回路がある。この回路では電流信号の
流れる経路に挿入されたベース接地型トランジスタによ
り、送受信間を接続する布線の電位はベース印加電圧か
らベースエミッタ間電圧VBEだけ低くなった電位で略
一定に保たれるため、布線容量の充放電電流をかなり抑
制することができる。そのため、電流をさほど大きくせ
ずに高速動作させることができる。
On the other hand, as a circuit which operates in the current mode, for example, there is a cascode connection type circuit as described in "Analog Integrated Circuit" (Modern Science Co., Ltd., issued February 1979, p.257). . In this circuit, the grounded-type transistor inserted in the path through which the current signal flows keeps the potential of the wiring connecting the transmitter and receiver at a potential lower than the voltage applied to the base by the voltage VBE between the base and the emitter, so that the potential is kept substantially constant. The charge / discharge current of the wiring capacity can be considerably suppressed. Therefore, it is possible to operate at high speed without increasing the current so much.

【0005】図7は従来の基準電圧発生回路の構成例を
示す。同図に示す構成は、高電位側電源端子VCC,低
電位側電源端子VEE,負荷抵抗RC,電流源I1,I
2,基準電圧出力端子VR,トランジスタQにより構成
される。この回路では、電流源I1,I2を流れる電流
値と負荷抵抗RCの値により基準電圧が決まっている。
トランジスタQのベースエミッタ間順方向バイアス電圧
をVBEとすると、出力端子の電位VRは VR=VCC−(RC×I2)−VBE となる。
FIG. 7 shows a configuration example of a conventional reference voltage generating circuit. The configuration shown in the figure has a high-potential-side power supply terminal VCC, a low-potential-side power supply terminal VEE, a load resistance RC, and current sources I1 and I.
2, a reference voltage output terminal VR, and a transistor Q. In this circuit, the reference voltage is determined by the value of the current flowing through the current sources I1 and I2 and the value of the load resistance RC.
When the forward bias voltage between the base and the emitter of the transistor Q is V BE , the potential VR of the output terminal is VR = VCC− (RC × I2) −V BE .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来のカスコード接続型の回路は、送信回路と受信回路は
一般に異なるICで構成されるので、電流値や抵抗値は
製造ばらつきのために、それぞれランダムに数10%も
変動することがあり、そのため、受信回路の出力振幅も
ICの組み合わせによってランダムに変動することにな
る。
However, in the above-mentioned conventional cascode connection type circuit, since the transmission circuit and the reception circuit are generally composed of different ICs, the current value and the resistance value are random due to manufacturing variations. In some cases, the output amplitude of the receiving circuit also changes randomly depending on the combination of ICs.

【0007】従って、最悪の組み合わせでも所要の出力
を得られるようにするためには、設計値としての電流値
や抵抗値を大きめに設定する必要があるが、そのように
設定すると、消費電流が増大し、また、出力振幅が大き
めに変動した場合には、トランジスタが飽和して、高速
動作ができなくなってしまうという問題がある。
Therefore, in order to obtain the required output even in the worst combination, it is necessary to set the current value and the resistance value as design values to a large value. Further, when the output amplitude increases and the output amplitude fluctuates to a large extent, there is a problem that the transistor is saturated and high-speed operation cannot be performed.

【0008】さらに、受信回路における論理閾値をIC
内部に組み込んだ基準電圧発生回路で決める場合、製造
ばらつきにより、この基準電圧が変動するという問題も
ある。論理閾値を決める基準電圧が設計値からずれる
と、受信回路の出力電位が設計通りだったとしても、ク
ロック信号のデューティー比が変わってしまったり、ゲ
ート遅延時間のばらつきが大きくなる等の問題が出てく
る。このように、従来の基準電圧発生回路を用いた場合
は、通常のLSIでは抵抗の値の精度はおよそ10%程
度であり、同程度の閾値の変動は避けられない。
Further, the logical threshold value in the receiving circuit is set to IC.
If the reference voltage generation circuit incorporated inside determines the voltage, there is also a problem that the reference voltage fluctuates due to manufacturing variations. If the reference voltage that determines the logic threshold deviates from the design value, the duty ratio of the clock signal may change and the gate delay time may increase even if the output potential of the receiver circuit is as designed. Come on. As described above, when the conventional reference voltage generating circuit is used, the accuracy of the resistance value of an ordinary LSI is about 10%, and the threshold value fluctuations of the same degree cannot be avoided.

【0009】本発明は上記の点に鑑みなされたもので、
上記従来の問題点を解決し、LSIの製造ばらつきによ
る精度誤差を補償する論理閾値を発生することができる
基準電圧発生回路を提供することを目的とする。
The present invention has been made in view of the above points,
An object of the present invention is to provide a reference voltage generation circuit that solves the above-mentioned conventional problems and can generate a logical threshold value that compensates for an accuracy error due to a manufacturing variation of an LSI.

【0010】[0010]

【課題を解決するための手段】図1は本発明の基準電圧
回路の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a reference voltage circuit according to the present invention.

【0011】本発明は、与えられたディジタル信号を電
流の有無または、大小によって伝送する電流信号に変換
して送出する送信回路2と、電流信号を入力し、元のデ
ィジタル信号に変換して出力する受信回路3とを備えた
信号伝達回路の論理閾値を決める基準電圧発生回路1に
おいて、送信回路2の出力電流特性に応じて所定の電流
値を出力する特性出力回路4と、特性出力回路4からの
電流値を入力し、電流値に応じて受信回路の論理閾値を
決める基準電圧を制御する電圧発生回路5とを含む。
According to the present invention, a transmission circuit 2 for converting a given digital signal into a current signal to be transmitted according to the presence or absence of a current or the magnitude of the current and transmitting the current signal, and inputting the current signal, converting it to an original digital signal and outputting it. In the reference voltage generation circuit 1 that determines the logical threshold value of the signal transmission circuit including the reception circuit 3, the characteristic output circuit 4 that outputs a predetermined current value according to the output current characteristic of the transmission circuit 2, and the characteristic output circuit 4 A voltage generating circuit 5 for controlling a reference voltage for inputting a current value from the input terminal and determining a logical threshold value of the receiving circuit according to the current value.

【0012】また、本発明は、エミッタ結合論理回路型
の電流切り換え回路のコレクタを出力とする送信回路2
と、抵抗若しくはベース接地側電流電圧変換回路で構成
される電流電圧変換回路を備えた受信回路から構成され
る信号伝達回路の論理閾値を決める基準電圧発生回路1
において、送信回路2の電流切り換え回路の駆動電流源
を直接出力端子につないだ構成の特性出力回路4と、受
信回路3の電流電圧変換回路の抵抗値のみを所要の値に
換えた構成の電圧発生回路5とを備え、特性出力回路4
の出力を電圧発生回路5に入力し、電圧発生回路5の出
力を基準電圧発生回路1の出力とする。
Further, according to the present invention, a transmitter circuit 2 having a collector of an emitter-coupled logic circuit type current switching circuit as an output.
And a reference voltage generation circuit 1 for determining a logical threshold value of a signal transmission circuit including a reception circuit including a current-voltage conversion circuit including a resistance or a grounded side current-voltage conversion circuit.
In the above, in the characteristic output circuit 4 having a configuration in which the drive current source of the current switching circuit of the transmission circuit 2 is directly connected to the output terminal, and in the configuration in which only the resistance value of the current-voltage conversion circuit of the reception circuit 3 is changed to a required value A generation circuit 5 and a characteristic output circuit 4
Is output to the voltage generating circuit 5, and the output of the voltage generating circuit 5 is used as the output of the reference voltage generating circuit 1.

【0013】また、本発明はソース結合FET論理回路
型の電流切り替え回路のドレインを出力とする送信回路
2と抵抗もしくはゲート接地型電流電圧変換回路で構成
される電流電圧変換回路を備えた受信回路3から構成さ
れる信号伝達回路の論理閾値を決める基準電圧発生回路
1において、送信回路2の電流切り替え回路の駆動電流
源を直接出力端子につないだ構成の特性出力回路4と、
さらに受信回路3の電流電圧変換回路の抵抗値のみを所
要の値に換えた構成の電圧発生回路5とを備え、特性出
力回路4の出力を電圧発生回路5に入力し、電圧発生回
路5の出力を基準電圧発生回路1の出力とする。
Further, the present invention is a receiver circuit having a current-voltage conversion circuit composed of a transmission circuit 2 having a drain of a source-coupled FET logic circuit type current switching circuit as an output and a resistor or a grounded gate type current-voltage conversion circuit. In the reference voltage generation circuit 1 for determining the logical threshold value of the signal transmission circuit composed of 3, a characteristic output circuit 4 having a configuration in which the drive current source of the current switching circuit of the transmission circuit 2 is directly connected to the output terminal,
Further, a voltage generating circuit 5 having a configuration in which only the resistance value of the current-voltage converting circuit of the receiving circuit 3 is changed to a required value is provided, and the output of the characteristic output circuit 4 is input to the voltage generating circuit 5 so that the voltage generating circuit 5 outputs The output is the output of the reference voltage generating circuit 1.

【0014】[0014]

【作用】本発明は、送信回路の電気特性を電流値として
出力する特性出力回路から電流値が入力され、その電流
値に応じて受信回路の論理閾値を決める基準電圧を制御
する電圧発生回路を設けることにより、LSIの製造ば
らつきによる精度誤差を補償するような論理閾値を発生
できる。
The present invention provides a voltage generating circuit for controlling a reference voltage which receives a current value from a characteristic output circuit which outputs electric characteristics of a transmitting circuit as a current value and which determines a logical threshold of a receiving circuit according to the current value. By providing the logic threshold value, it is possible to generate a logical threshold value that compensates for an accuracy error due to manufacturing variations of the LSI.

【0015】[0015]

【実施例】以下、図面と共に本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は本発明の一実施例の基準電圧回路の
構成を示すブロック図である。同図に示す基準電圧回路
は、特性出力回路4、電圧発生回路5、特性出力回路4
の電流出力端子14、電圧発生回路5の電流入力端子1
5、特性出力回路4と電圧発生回路5を接続する布線6
より構成される基準電圧発生回路1と、送信回路2、送
信回路2に入力するためのディジタル信号の入力端子、
送信回路2の電流信号出力端子8、受信回路3、受信回
路3の電流信号入力端子9、受信回路3のディジタル信
号出力端子10、受信回路3の論理閾値入力端子11、
基準電圧発生回路1の電圧出力端子13、受信回路3の
論理識閾入力端子11と基準電圧発生回路1の電圧出力
端子13を接続する布線16により構成される。
FIG. 1 is a block diagram showing the configuration of a reference voltage circuit according to an embodiment of the present invention. The reference voltage circuit shown in the figure includes a characteristic output circuit 4, a voltage generation circuit 5, and a characteristic output circuit 4.
Current output terminal 14, current input terminal 1 of voltage generation circuit 5
5, wiring 6 for connecting the characteristic output circuit 4 and the voltage generation circuit 5
A reference voltage generating circuit 1, a transmitting circuit 2, an input terminal for a digital signal to be input to the transmitting circuit 2,
A current signal output terminal 8 of the transmitter circuit 2, a receiver circuit 3, a current signal input terminal 9 of the receiver circuit 3, a digital signal output terminal 10 of the receiver circuit 3, a logical threshold value input terminal 11 of the receiver circuit 3,
It is composed of a voltage output terminal 13 of the reference voltage generating circuit 1, a logic threshold input terminal 11 of the receiving circuit 3, and a wiring 16 connecting the voltage output terminal 13 of the reference voltage generating circuit 1.

【0017】図1の送信回路2、受信回路3、布線1
2、16及び送受信回路の各入出力端子7、8、9、1
0、11は伝送すべきディタル信号に応じて必要な数だ
け設けられる。
The transmitting circuit 2, the receiving circuit 3 and the wiring 1 of FIG.
2, 16 and input / output terminals 7, 8, 9, 1 of the transmission / reception circuit
0 and 11 are provided in the required number according to the digital signal to be transmitted.

【0018】以下、上記の基準電圧回路の動作を説明す
る。
The operation of the above reference voltage circuit will be described below.

【0019】特性出力回路4は、送信回路2の電気的特
性を有する電流信号出力に応じたある一定の電流を出力
する。電圧発生回路5は特性出力回路4からの電流入力
を電圧値に変換し、受信回路3の論理閾値電圧を発生す
る。
The characteristic output circuit 4 outputs a certain constant current according to the current signal output having the electric characteristic of the transmission circuit 2. The voltage generation circuit 5 converts the current input from the characteristic output circuit 4 into a voltage value and generates the logical threshold voltage of the reception circuit 3.

【0020】ここで、特性出力回路4を送信回路2側の
LSI、電圧発生回路5を受信回路3側のLSIの内部
におき、以下のように設計しておけば、製造ばらつきに
よるディジタル信号の設計値からのずれを論理閾値の自
動調整により補償することができる。
If the characteristic output circuit 4 is placed inside the LSI on the transmitting circuit 2 side and the voltage generating circuit 5 is placed inside the LSI on the receiving circuit 3 side and the following design is made, the digital signal due to manufacturing variations will be generated. Deviation from the design value can be compensated by automatic adjustment of the logical threshold.

【0021】1.送信回路2からの電流信号出力が製造
ばらつきにより変動した場合、特性出力回路4からの電
流出力も同様に変動するように構成すること。
1. When the current signal output from the transmission circuit 2 changes due to manufacturing variations, the current output from the characteristic output circuit 4 also changes.

【0022】2.電圧発生回路5及び受信回路3の電流
電圧変換部(図示せず、図2以降で詳述)を同等な構成
にすること。
2. The voltage-generating circuit 5 and the current-voltage converting unit (not shown, which will be described in detail from FIG. 2) of the receiving circuit 3 have the same configuration.

【0023】3.受信回路3に基準電圧発生回路1から
の出力電圧をリファレンスとする差動増幅回路(図示せ
ず、図2以降で詳述)を設けること。
3. The receiver circuit 3 should be provided with a differential amplifier circuit (not shown, which will be described later in detail in FIG. 2) using the output voltage from the reference voltage generator circuit 1 as a reference.

【0024】以下、本発明の実施例の具体的な回路例を
示す。図2は本発明の第1の実施例の具体的な回路図を
示す。同図中、図1と同一構成部分には同一符号を付
し、その説明を省略する。
A specific circuit example of the embodiment of the present invention will be shown below. FIG. 2 shows a concrete circuit diagram of the first embodiment of the present invention. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0025】送信回路2が電流源I2及び差動対トラン
ジスタQ21,Q22からなるECL電流スイッチによ
り構成され、受信回路3がトランジスタQ3、プルダウ
ン抵抗REF3からなるエミッタフォロアの前段に抵抗
RC3を設けた構成になっている送受信回路において、
基準電圧発生回路1の特性出力回路4は電流源I4で構
成され、電圧発生回路5はトランジスタQ5、プルダウ
ン抵抗REF5からなるエミッタフォロアの前段に抵抗
RC5を設けた構成になっている。
The transmitting circuit 2 is composed of an ECL current switch consisting of a current source I2 and a differential pair of transistors Q21 and Q22, and the receiving circuit 3 is composed of a transistor Q3 and a resistor RC3 in front of an emitter follower consisting of a pull-down resistor REF3. In the transmitting and receiving circuit that is
The characteristic output circuit 4 of the reference voltage generation circuit 1 is composed of a current source I4, and the voltage generation circuit 5 is structured such that a resistor RC5 is provided in front of an emitter follower composed of a transistor Q5 and a pull-down resistor REF5.

【0026】送信回路2の入力信号DがHIGHレベル
のとき、電流源I2の電流はトランジスタQ21側に流
れ、トランジスタQ22側には殆ど流れない。一方、入
力信号DがLOWレベルの時は、逆に電流源I2の電流
は殆どQ22側に流れ、Q21側には殆ど流れない。従
って、受信回路の抵抗RC3に流れる電流は、入力信号
DがHIGHレベルの時には殆どゼロ、入力信号DがL
OWレベルのときには、電流源I2の電流値と略同じ電
流値となる。よって、受信回路3のトランジスタQ3の
ベース電位VBBQ3は、送信回路の入力信号DがHIGH
レベルの時: VBBQ3(High)=VCC (1) 入力信号DがLOWレベルの時: VBBQ3(Low) =VCC−(RC3×I2) (2) となり、送信回路2のエミッタフォロア出力VEEQ3はト
ランジスタQ3のベースエミッタ間順方向バイアス電圧
をVBEQ3とすると、送信回路2の入力信号DがHIGH
レベルの時: VEEQ3(High)=VCC−VBEQ3 (3) 入力信号DがLOWレベルの時: VEEQ3(Low) =VCC−(RC3×I2)−VBEQ3 (4) となる。
When the input signal D of the transmission circuit 2 is at the HIGH level, the current of the current source I2 flows to the transistor Q21 side and hardly flows to the transistor Q22 side. On the other hand, when the input signal D is at the LOW level, on the contrary, the current of the current source I2 almost flows to the Q22 side and hardly flows to the Q21 side. Therefore, the current flowing through the resistor RC3 of the receiving circuit is almost zero when the input signal D is at the HIGH level, and the input signal D is at the L level.
At the OW level, the current value is substantially the same as the current value of the current source I2. Therefore, the base potential V BBQ3 of the transistor Q3 of the receiving circuit 3 is high when the input signal D of the transmitting circuit is HIGH.
Level: V BBQ3 (High) = VCC (1) When the input signal D is LOW level: V BBQ3 (Low) = VCC- (RC3 × I2) (2), and the emitter follower output V EEQ3 of the transmitter circuit 2 becomes When the forward bias voltage between the base and emitter of the transistor Q3 is V BEQ3 , the input signal D of the transmission circuit 2 becomes HIGH.
When the level is: V EEQ3 (High) = VCC-V BEQ3 (3) When the input signal D is at the LOW level: V EEQ3 (Low) = VCC- (RC3 × I2) -V BEQ3 (4)

【0027】また、特性出力回路4の電流源I4を送信
回路2の電流源I2と同じ構成とし、電圧発生回路5の
プルダウン抵抗REF5を受信回路3の抵抗RC3の半
分の値にすると、電圧発生回路5のトランジスタQ5の
ベースの電位VBBQ5は, VBBQ5 =VCC−(RC5×I4) =VCC−(RC/2×I2) (5) となるので、電圧発生回路5のトランジスタQ5のベー
スエミッタ間順方向バイアス電圧VBEQ5とすると、基準
電圧発生回路1の出力電位VRは、 VR=VBBQ5−VBEQ5 =VCC−(RC3/2×I2)−VBEQ5 (6) となる。ここで、受信回路3のトランジスタQ3と電圧
発生回路Q5を同じ値にすることができるため、出力電
位VRは受信回路2のエミッタフォロア出力のHIGH
レベルとLOWレベルのほぼ真中の値となるので、これ
を論理閾値とすることができる。
Further, if the current source I4 of the characteristic output circuit 4 has the same configuration as the current source I2 of the transmission circuit 2 and the pull-down resistance REF5 of the voltage generation circuit 5 is set to half the value of the resistance RC3 of the reception circuit 3, the voltage generation will occur. Since the potential V BBQ5 of the base of the transistor Q5 of the circuit 5 becomes V BBQ5 = VCC- (RC5 × I4) = VCC- (RC / 2 × I2) (5), the base emitter of the transistor Q5 of the voltage generating circuit 5 When the forward bias voltage V BEQ5 is set, the output potential VR of the reference voltage generating circuit 1 becomes VR = V BBQ5 −V BEQ5 = VCC− (RC3 / 2 × I2) −V BEQ5 (6). Here, since the transistor Q3 of the receiving circuit 3 and the voltage generating circuit Q5 can have the same value, the output potential VR is HIGH of the emitter follower output of the receiving circuit 2.
Since it is a value approximately in the middle between the level and the LOW level, this can be used as a logical threshold value.

【0028】送信回路2の電流源I2の電流値が製造ば
らつきにより変動すると、受信回路3のトランジスタQ
3のベースの電位が設計値からずれる。また、特性出力
回路4の電流源I4は送信回路2の電流源I2と同じで
あるから、電圧発生回路5のトランジスタQ5のベース
の電位も受信回路3と同様に設計値からずれる。仮に送
信回路2の電流源I2の電流値がΔIだけずれたとする
と,受信回路3のトランジスタQ3のベースの電位V
BBQ3は、送信回路2の入力信号DがHIGHレベルの
時: VBBQ3(High)=VCC (7) 入力信号DがLOWレベルの時: VBBQ3(Low) =VCC−(RC3×(I2+ΔI)) (8) となり、この時の受信回路3のエミッタフォロワ出力の
電位VEEQ3は、送信回路2の入力信号DがHIGHレベ
ルの時 VEEQ3(High)=VCC−VBEQ3 (9) 入力信号DがLOWレベルの時 VEEQ3=VCC−(RC3×(I2+ΔI))−VBEQ3 (10) となる。一方、電圧発生回路5のトランジスタQ5のベ
ース電位VBBQ5は VBBQ3=VCC−(RC5×(I2+ΔI)) =VCC−(RC3/2×(I2+ΔI)) (11) であり、電圧発生回路5の出力VRは、 VR=VCC−(RC5×(I2+ΔI))−VBEQ5 =VCC−(RC3/2・(I2+ΔI)−VBEQ5) (12) となる。従って、電流源I2のずれた電流値ΔIの大き
さによらず、常に基準電圧発生回路5の出力電位VRは
受信回路3のエミッタフォロア出力のHIGHレベルと
LOWレベルの略真中の値となり、送信回路2側の製造
ばらつきを補償できることが判る。
When the current value of the current source I2 of the transmitter circuit 2 fluctuates due to manufacturing variations, the transistor Q of the receiver circuit 3 is changed.
The electric potential of the base of 3 deviates from the design value. Further, since the current source I4 of the characteristic output circuit 4 is the same as the current source I2 of the transmission circuit 2, the base potential of the transistor Q5 of the voltage generation circuit 5 deviates from the designed value like the reception circuit 3. If the current value of the current source I2 of the transmission circuit 2 is deviated by ΔI, the potential V of the base of the transistor Q3 of the reception circuit 3 is changed.
BBQ3 is when the input signal D of the transmission circuit 2 is HIGH level: V BBQ3 (High) = VCC (7) When the input signal D is LOW level: V BBQ3 (Low) = VCC- (RC3 × (I2 + ΔI)) (8) and the potential V EEQ3 of the emitter follower output of the receiving circuit 3 at this time is V EEQ3 (High) = VCC-V BEQ3 (9) when the input signal D of the transmitting circuit 2 is HIGH level. At the LOW level, V EEQ3 = VCC- (RC3 × (I2 + ΔI))-V BEQ3 (10). On the other hand, the base potential V BBQ5 of the transistor Q5 of the voltage generating circuit 5 is V BBQ3 = VCC− (RC5 × (I2 + ΔI)) = VCC− (RC3 / 2 × (I2 + ΔI)) (11), The output VR is VR = VCC- (RC5 × (I2 + ΔI))-V BEQ5 = VCC- (RC3 / 2 · (I2 + ΔI) -V BEQ5 ) (12). Therefore, the output potential VR of the reference voltage generating circuit 5 is always a value approximately in the middle between the HIGH level and the LOW level of the emitter follower output of the receiving circuit 3 regardless of the magnitude of the shifted current value ΔI of the current source I2, and the transmission is performed. It can be seen that manufacturing variations on the circuit 2 side can be compensated.

【0029】さらに、受信回路3側の製造ばらつきにつ
いて検討すると、受信回路3の抵抗RC3及び抵抗RC
5の変動が、受信回路3及び電圧発生回路5の出力VR
を変動させることは前出の式より明らかである。しか
し、抵抗比「RC3/RC5=2」が変化しなければ、
基準電圧発生回路5の出力電位VRは常に受信回路3の
エミッタフォロア出力のHIGHレベルとLOWレベル
のほぼ真中の値となることも前出の式により明らかであ
る。抵抗の絶対値の精度をあげることは難しいが、抵抗
比の精度をあげることは製造上比較的容易にできるの
で、製造のばらつきにより抵抗の絶対値が変動した場合
でも抵抗値の精度は確保できるようにLSIを設計する
ことにより、受信回路3側での製造ばらつきも補償する
ことができる。
Further, considering manufacturing variations on the receiving circuit 3 side, the resistors RC3 and RC of the receiving circuit 3 are considered.
5 changes the output VR of the receiving circuit 3 and the voltage generating circuit 5
It is clear from the above equation that V is varied. However, if the resistance ratio “RC3 / RC5 = 2” does not change,
It is also apparent from the above equation that the output potential VR of the reference voltage generating circuit 5 is always at the value approximately in the middle between the HIGH level and the LOW level of the emitter follower output of the receiving circuit 3. Although it is difficult to improve the accuracy of the absolute value of the resistance, it is relatively easy to improve the accuracy of the resistance ratio in manufacturing, so the accuracy of the resistance value can be secured even if the absolute value of the resistance fluctuates due to manufacturing variations. By designing the LSI in this way, manufacturing variations on the receiving circuit 3 side can be compensated.

【0030】図3は本発明の第2の実施例の具体的な回
路図を示す。同図中、図1と同一構成部分には同一符号
を付し、その説明を省略する。
FIG. 3 shows a concrete circuit diagram of the second embodiment of the present invention. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0031】送信回路2が電流源I2及び差動対トラン
ジスタQ21,Q22からなるECL電流スイッチによ
り構成され、受信回路2がトランジスタQ31、プルダ
ウン抵抗REF3からなるエミッタフォロアの前段に、
トランジスタQ32,抵抗RC3からなる回路を設けた
構成になっている送受信回路において、基準電圧発生回
路1の特性出力回路4は電流源I4で構成され、電圧発
生回路5 はトランジスタQ51、抵抗REF5からなる
エミッタフォロアの前段にトランジスタQ52,抵抗R
C5からなる回路を設けた構成になっている。
The transmitting circuit 2 is composed of an ECL current switch composed of a current source I2 and a differential pair of transistors Q21 and Q22, and the receiving circuit 2 is provided in front of an emitter follower composed of a transistor Q31 and a pull-down resistor REF3.
In a transmission / reception circuit having a circuit including a transistor Q32 and a resistor RC3, the characteristic output circuit 4 of the reference voltage generating circuit 1 is constituted by a current source I4, and the voltage generating circuit 5 is constituted by a transistor Q51 and a resistor REF5. Transistor Q52 and resistor R in front of the emitter follower
It has a configuration in which a circuit including C5 is provided.

【0032】受信回路3のトランジスタQ32、抵抗R
C3は送信回路2のトランジスタQ22と布線を介して
ベース接地のカスケード接続を構成し、電圧発生回路5
のトランジスタQ52,抵抗RC5は特性出力回路4の
電流源I4と布線を介してベース接地のカスケード接続
を構成しているが、抵抗RC3及びRC5に流れる電流
は図2の例と同様である。
Transistor Q32 and resistor R of the receiving circuit 3
C3 forms a cascade connection with the transistor Q22 of the transmission circuit 2 via a wiring and grounded base, and the voltage generation circuit 5
The transistor Q52 and the resistor RC5 form a cascade connection with the current source I4 of the characteristic output circuit 4 via the wiring and the grounding of the base, but the current flowing through the resistors RC3 and RC5 is the same as in the example of FIG.

【0033】従って、受信回路3及び電圧発生回路5の
出力も図2の例と全く同様であり、製造ばらつきにより
電流値や抵抗値が変動してもそれを補償するような論理
閾値VRを発生できることが判る。
Therefore, the outputs of the receiving circuit 3 and the voltage generating circuit 5 are exactly the same as those in the example of FIG. 2, and even if the current value or the resistance value fluctuates due to manufacturing variations, a logical threshold VR is generated. I know what I can do.

【0034】図4は本発明の第3の実施例の具体的な回
路図を示す。同図中、図1と同一構成部分には同一符号
を付し、その説明を省略する。
FIG. 4 shows a concrete circuit diagram of the third embodiment of the present invention. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0035】送信回路2が電流源I2、差動対トランジ
スタQ21,Q22からなるECL電流スイッチ及び抵
抗RC2により構成され、受信回路3がトランジスタQ
3,抵抗REF3からなるエミッタフォロアの前段に抵
抗RC3を設けた構成になっている送受信回路におい
て、基準電圧発生回路1の特性出力回路4は、電流源I
4及び抵抗RC4で構成され、電圧発生回路5は、トラ
ンジスタQ5、抵抗REF5からなるエミッタフォロア
の前段に抵抗RC51及びRC52を設けた構成になっ
ている。
The transmitter circuit 2 is composed of a current source I2, an ECL current switch composed of differential pair transistors Q21 and Q22, and a resistor RC2, and the receiver circuit 3 is composed of a transistor Q2.
In the transmitter / receiver circuit in which the resistor RC3 is provided in front of the emitter follower including the resistor REF3, the characteristic output circuit 4 of the reference voltage generation circuit 1 is the current source I
4 and a resistor RC4, the voltage generation circuit 5 has a configuration in which resistors RC51 and RC52 are provided in front of an emitter follower including a transistor Q5 and a resistor REF5.

【0036】受信回路3の抵抗RC3に流れる電流は、
入力信号DがHIGHレベルの時には殆どゼロ、入力信
号DがLOWレベルの時には、送受信回路の高電位側電
源端子VCCの電位が同じであれば、
The current flowing through the resistor RC3 of the receiving circuit 3 is
When the input signal D is HIGH level, it is almost zero, and when the input signal D is LOW level, if the potential of the high potential side power supply terminal VCC of the transmission / reception circuit is the same,

【数1】 となる。よって、受信回路3のトランジスタQ3のベー
スの電位VBBQ3は、送信回路2の入力信号DがHIGH
レベルの時 VBBQ3(High)=VCC (14) 入力信号DがLOWレベルの時
[Equation 1] Becomes Therefore, the potential V BBQ3 of the base of the transistor Q3 of the receiving circuit 3 is high when the input signal D of the transmitting circuit 2 is HIGH.
At level V BBQ3 (High) = VCC (14) When input signal D is at LOW level

【数2】 となり、送信回路2のエミッタフォロア出力VEEQ3はト
ランジスタQ3のベースエミッタ間順方向バイアス電圧
をVBEQ3とすると、送信回路2の入力信号DがHIGH
レベルの時: VEEQ3(High)=VCC−VBEQ3 入力信号DがLOWレベルの時
[Equation 2] Next, the emitter follower output V EEQ3 of the transmission circuit 2 is the base emitter forward bias voltage of the transistors Q3 and V BEQ3, input signal D of the transmission circuit 2 is HIGH
At the time of level: V EEQ3 (High) = When VCC-V BEQ3 input signal D is at the LOW level

【数3】 となる。[Equation 3] Becomes

【0037】また、特性出力回路4の電流源I4を送信
回路2の電流源I2と同じ構成とし、特性出力回路4の
抵抗RC4を送信回路2の抵抗RC2と同じ値とし、ま
た、電圧発生回路5の抵抗RC51及びRC52を受信
回路3の抵抗RC3の半分の値にすると、トランジスタ
Q5のベースの電位VBBQ5は、
Further, the current source I4 of the characteristic output circuit 4 has the same configuration as the current source I2 of the transmission circuit 2, the resistance RC4 of the characteristic output circuit 4 has the same value as the resistance RC2 of the transmission circuit 2, and the voltage generation circuit When the resistances RC51 and RC52 of 5 are set to half the value of the resistance RC3 of the receiving circuit 3, the potential V BBQ5 of the base of the transistor Q5 becomes

【数4】 となるので、電圧発生回路5のトランジスタQ5のベー
スエミッタ間順方向バイアス電圧をVBBQ5とすると基準
電圧発生回路1の出力電位VRは、
[Equation 4] Therefore, assuming that the base-emitter forward bias voltage of the transistor Q5 of the voltage generation circuit 5 is V BBQ5 , the output potential VR of the reference voltage generation circuit 1 is

【数5】 となる。ここで、受信回路3のトランジスタQ3と電圧
発生回路5のトランジスタQ5を同じ特性を持つトラン
ジスタにすることにより電位VBEQ3とVBEQ5を略同じ値
にすることができるため、出力電位VRは受信回路3の
エミッタフォロア出力のHIGHレベルとLOWレベル
の略真中の値となるので、これを論理閾値とすることが
できる。
[Equation 5] Becomes Here, since the potentials V BEQ3 and V BEQ5 can be made to have substantially the same value by making the transistor Q3 of the receiving circuit 3 and the transistor Q5 of the voltage generating circuit 5 have the same characteristics, the output potential VR is the same as that of the receiving circuit. Since it is a value approximately in the middle between the HIGH level and the LOW level of the emitter follower output of No. 3, it can be used as a logical threshold value.

【0038】また、以上の式により、送信回路2の電流
源I2の電流値が製造ばらつきにより変動しても、それ
を補償するような論理閾値VRを発生できることは明ら
かである。
Further, from the above equation, it is clear that even if the current value of the current source I2 of the transmission circuit 2 fluctuates due to manufacturing variations, it is possible to generate the logical threshold value VR to compensate for it.

【0039】抵抗値のばらつきについては、まず、送信
回路2側の抵抗のばらつきについて検討すると、前述の
式により、
Regarding the variation in the resistance value, first, the variation in the resistance on the transmission circuit 2 side will be examined.

【数6】 であるから抵抗比[Equation 6] Therefore, the resistance ratio

【数7】 が変化しなければ、負荷抵抗RC2及びRC4が変動し
ても電圧発生回路5の出力電位VRは常に受信回路3の
エミッタフォロア出力のHIGHレベルとLOWレベル
の略真中の値となることがわかる。
[Equation 7] It can be seen that the output potential VR of the voltage generation circuit 5 is always at a value approximately in the middle between the HIGH level and the LOW level of the emitter follower output of the reception circuit 3 if the load resistances RC2 and RC4 are not changed.

【0040】一方、受信回路側の抵抗値のばらつきにつ
いて検討すると、前述の式により、
On the other hand, considering variations in the resistance value on the receiving circuit side, according to the above equation,

【数8】 であるから、抵抗比[Equation 8] Therefore, the resistance ratio

【数9】 が変化しなければ、負荷抵抗RC3,RC51及びRC
52が変動しても電圧発生回路5の出力電位VRは受信
回路のエミッタフォロア出力のHIGHレベルとLOW
レベルの略真中の値となることがわかる。
[Equation 9] Does not change, load resistances RC3, RC51 and RC
Even if 52 fluctuates, the output potential VR of the voltage generating circuit 5 remains LOW and HIGH level of the emitter follower output of the receiving circuit.
It can be seen that the value is approximately in the middle of the level.

【0041】以上説明したように、図4の構成例でも製
造ばらつきにより電流値や抵抗値が変動してもそれを補
償するような論理閾値VRを発生することができる。
As described above, even in the configuration example of FIG. 4, it is possible to generate the logical threshold value VR that compensates for variations in current value and resistance value due to manufacturing variations.

【0042】図5は本発明の第4の実施例の具体的な回
路図である。同図中、図1と同一構成部分には同一符号
を付し、その説明を省略する。
FIG. 5 is a concrete circuit diagram of the fourth embodiment of the present invention. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0043】送信回路2が電流源I2、差動対トランジ
スタQ21,Q22からなるECL電流スイッチ及び抵
抗RC2により構成され、受信回路3がトランジスタQ
31,抵抗REF3からなるエミッタフォロアの前段に
トランジスタQ32,抵抗RC3からなる回路を設けた
構成になっている送受信回路において、基準電圧発生回
路1の特性出力回路4は、電流源I4及び抵抗RC4で
構成され、電圧発生回路5はトランジスタQ51、抵抗
REF5からなるエミッタフォロアの前段にトランジス
タQ52、抵抗RC5からなる回路を設けた構成になっ
ている。
The transmitter circuit 2 is composed of a current source I2, an ECL current switch composed of differential pair transistors Q21 and Q22, and a resistor RC2, and the receiver circuit 3 is composed of a transistor Q2.
In a transmission / reception circuit having a configuration in which a circuit including a transistor Q32 and a resistor RC3 is provided in front of an emitter follower including a resistor 31 and a resistor REF3, the characteristic output circuit 4 of the reference voltage generating circuit 1 includes a current source I4 and a resistor RC4. The voltage generating circuit 5 is configured such that a circuit including a transistor Q52 and a resistor RC5 is provided in the preceding stage of an emitter follower including a transistor Q51 and a resistor REF5.

【0044】受信回路3のトランジスタQ32,抵抗R
C3は送信回路2のトランジスタQ22と布線を介して
ベース接地のカスケード接続を構成し、電圧発生回路5
のトランジスタQ52、抵抗RC5は、特性出力回路4
の電流源I4と布線を介してベース接地のカスケード接
続を構成している。また、VBBはカスケード接続用の
基準電圧であり、VRCは、抵抗RC2,RC4に流れ
る電流を制御する負荷抵抗電流制御電源である。
Transistor Q32 and resistor R of the receiving circuit 3
C3 forms a cascade connection with the transistor Q22 of the transmission circuit 2 via a wiring and grounded base, and the voltage generation circuit 5
Of the transistor Q52 and the resistor RC5 of the characteristic output circuit 4
The base connection is made in cascade connection with the current source I4 and the wiring. VBB is a reference voltage for cascade connection, and VRC is a load resistance current control power supply that controls the current flowing through the resistors RC2 and RC4.

【0045】VRC≧VBBとすると、受信回路3の抵
抗RC3に流れる電流は、入力信号DがHIGHレベル
の時には、殆どゼロ、入力信号DがLOWレベルの時に
は、トランジスタQ32のベースエミッタ間順方向バイ
アスをVBEQ32 とすると、
When VRC ≧ VBB, the current flowing through the resistor RC3 of the receiving circuit 3 is almost zero when the input signal D is HIGH level, and the base-emitter forward bias of the transistor Q32 when the input signal D is LOW level. Is V BEQ32 ,

【数10】 となる。よって、トランジスタQ3のベースの電位V
BBQ3は送信回路2の入力信号DがHIGHレベルの時: VBBQ31(High) =VCC 入力信号DがLOWレベルの時:
[Equation 10] Becomes Therefore, the potential V of the base of the transistor Q3
BBQ3 is when the input signal D of the transmission circuit 2 is HIGH level: V BBQ31 (High) = When the VCC input signal D is LOW level:

【数11】 となり、送信回路2のエミッタフォロア出力V
EEQ31 は、トランジスタQ31のベースエミッタ間順方
向バイアス電圧をVBEQ31 とすると、送信回路2の入力
信号DがHIGHレベルの時: VEEQ31(High) =VCC−VBEQ31 入力信号DがLOWレベルの時:
[Equation 11] And the emitter follower output V of the transmission circuit 2 becomes
EEQ31 , when the base-emitter forward bias voltage of the transistor Q31 is V BEQ31 , when the input signal D of the transmission circuit 2 is at a high level: V EEQ31 (High) = VCC-V BEQ31 When the input signal D is at a low level. :

【数12】 となる。[Equation 12] Becomes

【0046】また、特性出力回路4の電流源I4を送信
回路2の電流源I2と同じ構成とし、特性出力回路4の
抵抗RC4を送信回路2の抵抗RC2と同じ値とし、ま
た、電圧発生回路5の抵抗RC5を受信回路3の抵抗R
C3の半分の値にすると、トランジスタQ51のベース
の電位VBBQ51 は、
Further, the current source I4 of the characteristic output circuit 4 has the same configuration as the current source I2 of the transmission circuit 2, the resistance RC4 of the characteristic output circuit 4 has the same value as the resistance RC2 of the transmission circuit 2, and the voltage generation circuit. 5 is a resistance RC5 of the receiving circuit 3
When the value is half of C3, the potential V BBQ51 of the base of the transistor Q51 becomes

【数13】 となる。但し、VBEQ52 は、電圧発生回路5のトランジ
スタQ52のベースエミッタ間順方向バイアス電圧であ
る。また、トランジスタQ51のベースエミッタ間順方
向バイアス電圧をVBEQ51 とすると基準電圧発生回路1
の出力電位VRは、
[Equation 13] Becomes However, V BEQ52 is a forward bias voltage between the base and the emitter of the transistor Q52 of the voltage generating circuit 5. Further, assuming that the forward bias voltage between the base and the emitter of the transistor Q51 is V BEQ51 , the reference voltage generating circuit 1
The output potential VR of

【数14】 となる。ここで、受信回路3のトランジスタQ31,Q
32及び電圧発生回路5のトランジスタQ51,Q52
を同じ特性を持つトランジスタにすることにより、トラ
ンジスタQ31のベース電位VBEQ31 ,トランジスタQ
32のベース電位VBEQ32 、及びトランジスタQ51の
ベース電位VBEQ52 を略同じ値にすることができるた
め、基準電圧発生回路1の出力電位VRは受信回路のエ
ミッタフォロア出力のHIGHレベルとLOWレベルの
略真中の値となるので、これを論理閾値とすることがで
きる。
[Equation 14] Becomes Here, the transistors Q31, Q of the receiving circuit 3
32 and transistors Q51 and Q52 of the voltage generation circuit 5
Are transistors having the same characteristics, the base potential V BEQ31 of the transistor Q31 and the transistor Q31
32 of the base potential V BEQ32, and since the base potential V BEQ52 transistor Q51 can substantially be the same value, the reference voltage generating circuit 1 of the output potential VR stands for HIGH level and LOW level of the emitter follower output of the receiver circuit Since it is a value in the middle, it can be used as a logical threshold.

【0047】また、以上の式により、送信回路2の電流
源I2の電流値が製造ばらつきにより変動しても、それ
を補償するような論理閾値VRを発生できることは明ら
かである。さらに、抵抗値のばらつきについても、抵抗
Further, from the above equation, it is clear that even if the current value of the current source I2 of the transmission circuit 2 fluctuates due to manufacturing variations, the logical threshold value VR can be generated to compensate for it. Furthermore, regarding the variation in resistance value, the resistance ratio

【数15】 が変化しなければ、製造ばらつきにより抵抗値が変動し
てもそれを補償するような論理閾値VRを発生できるこ
とが判る。
[Equation 15] It will be understood that if the value does not change, a logical threshold value VR can be generated so as to compensate for the change in the resistance value due to manufacturing variations.

【0048】以上、4つの具体的な回路例について述べ
たが、本発明は、上記実施例に限定されることなく、本
発明の主旨を逸脱しない範囲で変更が可能である。
Although four specific circuit examples have been described above, the present invention is not limited to the above-described embodiments, and modifications can be made without departing from the spirit of the present invention.

【0049】例えば、以下のような応用も含む。For example, the following applications are also included.

【0050】1.本発明の実施例で述べた電流源は全て
抵抗、あるいは、特定のインピーダンスに置き換えるこ
とができる。
1. All of the current sources described in the embodiments of the present invention can be replaced with resistors or specific impedances.

【0051】2.上記の実施例では、主に、NPN型の
バイポーラトランジスタを用いた回路について述べた
が、PNP型のバイポーラトランジスタを用いても同様
な動作をすることは容易に判る。また、バイポーラトラ
ンジスタをFETに置き換えても同様な動作をする。
2. In the above embodiment, the circuit mainly using the NPN type bipolar transistor has been described, but it is easily understood that the same operation is performed even if the PNP type bipolar transistor is used. Moreover, even if the bipolar transistor is replaced with an FET, the same operation is performed.

【0052】ここで、FETを用いた場合には、送信回
路2のエミッタ結合論理回路型の電流切り替え回路を、
ソース結合FET論理回路型の電流切り替え回路に置き
換え、受信回路及び電圧発生回路のベース接地型電流電
圧変換回路及びエミッタフォロアをゲート接地型電流電
圧変換回路及びソースフォロアに置き換えることによ
り、同様な動作が可能となる。例えば、図3の実施例を
FETに置き換えると、図6に示す構成となる。
Here, when the FET is used, the emitter switching logic circuit type current switching circuit of the transmission circuit 2 is
The same operation can be achieved by replacing the source-coupled FET logic circuit type current switching circuit with the grounded-ground type current-voltage conversion circuit and the emitter follower of the reception circuit and the voltage generation circuit replaced with the grounded-gate type current-voltage conversion circuit and the source follower. It will be possible. For example, if the embodiment of FIG. 3 is replaced with an FET, the structure shown in FIG. 6 is obtained.

【0053】図6は本発明の他の実施例のFETを用い
た場合の回路図である。同図中、図3と同一構成部分に
は同一符号を付し、その説明を省略する。同図におい
て、図3と異なるのは、トランジスタが全てFETに置
き換えられているのみであり、回路動作は図3と全く同
様である。
FIG. 6 is a circuit diagram when an FET according to another embodiment of the present invention is used. In the figure, parts that are the same as the parts shown in FIG. 3 are given the same reference numerals, and descriptions thereof will be omitted. In the figure, the only difference from FIG. 3 is that all the transistors are replaced by FETs, and the circuit operation is exactly the same as in FIG.

【0054】また、上記実施例では、受信回路と電圧発
生回路の抵抗比が2になるような場合だけを説明した
が、抵抗比は2に限定されるものではなく、目的に応じ
て任意の値を持たせることができる。
Further, in the above-mentioned embodiment, only the case where the resistance ratio of the receiving circuit and the voltage generating circuit is 2 has been described, but the resistance ratio is not limited to 2 and may be arbitrary according to the purpose. Can have a value.

【0055】これら以外に本発明の概念に基づいて様々
な構成が考えられる。
Other than these, various configurations can be considered based on the concept of the present invention.

【0056】[0056]

【発明の効果】上述のように、本発明の基準電圧発生回
路は、送信回路の電気的特性を電流値として出力する特
性出力回路を備え、さらに上記特性出力回路からの電流
値を入力し、その電流値に応じて受信回路の論理閾値を
決める基準電圧を制御する電圧発生回路を備えているた
め、製造ばらつきを補償するような論理閾値を供給する
ことができる。
As described above, the reference voltage generating circuit of the present invention comprises the characteristic output circuit for outputting the electric characteristic of the transmitting circuit as a current value, and further inputs the current value from the characteristic output circuit, Since the voltage generating circuit that controls the reference voltage that determines the logical threshold value of the receiving circuit according to the current value is provided, it is possible to supply the logical threshold value that compensates for manufacturing variations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基準電圧回路の構成を示すブロック図
である。
FIG. 1 is a block diagram showing a configuration of a reference voltage circuit of the present invention.

【図2】本発明の第1の実施例の具体的な回路図であ
る。
FIG. 2 is a specific circuit diagram of the first embodiment of the present invention.

【図3】本発明の第2の実施例の具体的な回路図であ
る。
FIG. 3 is a specific circuit diagram of the second embodiment of the present invention.

【図4】本発明の第3の実施例の具体的な回路図であ
る。
FIG. 4 is a specific circuit diagram of the third embodiment of the present invention.

【図5】本発明の第4の実施例の具体的な回路図であ
る。
FIG. 5 is a specific circuit diagram of the fourth embodiment of the present invention.

【図6】本発明の他の実施例のFETを用いた場合の回
路図である。
FIG. 6 is a circuit diagram when an FET according to another embodiment of the present invention is used.

【図7】従来の基準電圧発生回路の構成図である。FIG. 7 is a configuration diagram of a conventional reference voltage generation circuit.

【符号の説明】[Explanation of symbols]

1 基準電圧発生回路 2 送信回路 3 受信回路 4 特性出力回路 5 電圧発生回路 6 布線 7 ディジタル信号入力端子 8 電流信号出力端子 9 電流信号入力端子 10 ディジタル信号出力端子 11 論理閾値入力端子 12,16 布線 13 電圧出力端子 14 電流出力端子 15 電流入力端子 Q3,Q5,Q21,Q22,Q31,Q32,Q5
1,Q52,Q トランジスタ RC2,RC3,RC4,RC5,RC51,RC5
2,RC 負荷抵抗 REF3,REF5,REF プルダウン抵抗 I2,I4,I1 電流源 AMP 差動増幅回路 VR 基準電圧出力端子 VBB カスケード接続用基準電圧端子 VRC 負荷抵抗電流制御電源端子 VCC 高電位側電源端子 VEE 低電位側電源端子 D,D’ 信号
1 Reference voltage generation circuit 2 Transmission circuit 3 Reception circuit 4 Characteristic output circuit 5 Voltage generation circuit 6 Wiring 7 Digital signal input terminal 8 Current signal output terminal 9 Current signal input terminal 10 Digital signal output terminal 11 Logical threshold input terminal 12, 16 Wiring 13 Voltage output terminal 14 Current output terminal 15 Current input terminal Q3, Q5, Q21, Q22, Q31, Q32, Q5
1, Q52, Q transistor RC2, RC3, RC4, RC5, RC51, RC5
2, RC load resistance REF3, REF5, REF pull-down resistance I2, I4, I1 current source AMP differential amplifier circuit VR reference voltage output terminal VBB cascade reference voltage terminal VRC load resistance current control power supply terminal VCC high potential side power supply terminal VEE Low-potential side power supply terminal D, D'signal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 与えられたディジタル信号を電流の有無
または、大小によって伝送する電流信号に変換して送出
する送信回路と、該電流信号を入力し、元のディジタル
信号に変換して出力する受信回路とを備えた信号伝達回
路の論理閾値を決める基準電圧発生回路において、 該送信回路の出力電流特性に応じて所定の電流値を出力
する特性出力回路と、 該特性出力回路からの電流値を入力し、該電流値に応じ
て受信回路の論理閾値を決める基準電圧を制御する電圧
発生回路とを含むことを特徴とする基準電圧発生回路。
1. A transmission circuit for converting a given digital signal into a current signal to be transmitted according to the presence or absence of a current or its magnitude and transmitting the current signal, and a receiver for receiving the current signal and converting it into an original digital signal for output. In a reference voltage generating circuit that determines a logical threshold value of a signal transmission circuit including a circuit, a characteristic output circuit that outputs a predetermined current value according to the output current characteristic of the transmission circuit, and a current value from the characteristic output circuit A reference voltage generating circuit for controlling a reference voltage which is input and which determines a logical threshold value of the receiving circuit according to the current value.
【請求項2】 エミッタ結合論理回路型の電流切り換え
回路のコレクタを出力とする送信回路と、抵抗若しくは
ベース接地側電流電圧変換回路で構成される電流電圧変
換回路を備えた受信回路から構成される信号伝達回路の
論理閾値を決める基準電圧発生回路において、 該送信回路の電流切り換え回路の駆動電流源を直接出力
端子につないだ構成の特性出力回路と、該受信回路の電
流電圧変換回路の抵抗値のみを所要の値に換えた構成の
電圧発生回路とを備え、該特性出力回路の出力を該電圧
発生回路に入力し、電圧発生回路の出力を該基準電圧発
生回路の出力とすることを特徴とする基準電圧発生回
路。
2. A transmitter circuit having a collector of an emitter-coupled logic circuit type current switching circuit as an output, and a receiver circuit having a current-voltage converter circuit composed of a resistor or a grounded-base current-voltage converter circuit. In a reference voltage generation circuit that determines a logical threshold value of a signal transmission circuit, a characteristic output circuit having a configuration in which a drive current source of a current switching circuit of the transmission circuit is directly connected to an output terminal, and a resistance value of a current-voltage conversion circuit of the reception circuit. And a voltage generating circuit having a configuration in which only the required value is changed to a required value, the output of the characteristic output circuit is input to the voltage generating circuit, and the output of the voltage generating circuit is used as the output of the reference voltage generating circuit. Reference voltage generating circuit.
【請求項3】 ソース結合FET論理回路型の電流切り
替え回路のドレインを出力とする送信回路と抵抗もしく
はゲート接地型電流電圧変換回路で構成される電流電圧
変換回路を備えた受信回路から構成される信号伝達回路
の論理閾値を決める基準電圧発生回路において、 送信回路の電流切り替え回路の駆動電流源を直接出力端
子につないだ構成の特性出力回路と、該受信回路の電流
電圧変換回路の抵抗値のみを所要の値に換えた構成の電
圧発生回路とを備え、該特性出力回路の出力を該電圧発
生回路に入力し、該電圧発生回路の出力を該基準電圧発
生回路の出力とすることを特徴とする基準電圧発生回
路。
3. A source-coupled FET logic circuit type current switching circuit comprising a transmission circuit having the drain as an output and a receiving circuit having a current-voltage conversion circuit composed of a resistor or a grounded-gate type current-voltage conversion circuit. In the reference voltage generation circuit that determines the logical threshold of the signal transmission circuit, only the characteristic output circuit in which the drive current source of the current switching circuit of the transmission circuit is directly connected to the output terminal and the resistance value of the current-voltage conversion circuit of the reception circuit And a voltage generation circuit having a configuration in which is changed to a required value, the output of the characteristic output circuit is input to the voltage generation circuit, and the output of the voltage generation circuit is used as the output of the reference voltage generation circuit. Reference voltage generating circuit.
JP5033455A 1993-02-23 1993-02-23 Reference voltage generating circuit Pending JPH06252734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033455A JPH06252734A (en) 1993-02-23 1993-02-23 Reference voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033455A JPH06252734A (en) 1993-02-23 1993-02-23 Reference voltage generating circuit

Publications (1)

Publication Number Publication Date
JPH06252734A true JPH06252734A (en) 1994-09-09

Family

ID=12387019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033455A Pending JPH06252734A (en) 1993-02-23 1993-02-23 Reference voltage generating circuit

Country Status (1)

Country Link
JP (1) JPH06252734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050060A (en) * 1996-07-25 1998-02-20 Texas Instr Inc <Ti> Device and method for data bus using non-differential current mode technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132026A (en) * 1986-11-25 1988-06-04 Kasai Kogyo Co Ltd Laminate and its molding process
JPH03126619U (en) * 1990-03-31 1991-12-20
JPH04341823A (en) * 1991-05-17 1992-11-27 Kasai Kogyo Co Ltd Pressure contacting method and pressure contacting device of decorative sheet in trim parts for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132026A (en) * 1986-11-25 1988-06-04 Kasai Kogyo Co Ltd Laminate and its molding process
JPH03126619U (en) * 1990-03-31 1991-12-20
JPH04341823A (en) * 1991-05-17 1992-11-27 Kasai Kogyo Co Ltd Pressure contacting method and pressure contacting device of decorative sheet in trim parts for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050060A (en) * 1996-07-25 1998-02-20 Texas Instr Inc <Ti> Device and method for data bus using non-differential current mode technology

Similar Documents

Publication Publication Date Title
KR100290725B1 (en) Emitter coupled logic-bipolar complementary metal oxide semiconductor / complementary metal oxide semiconductor translators
KR930000636B1 (en) Logic level conversion circuit
US4782251A (en) Level conversion circuit
EP0231062A1 (en) Level conversion circuit
US4939393A (en) ECL to TTL/CMOS translator using a single power supply
US5317214A (en) Interface circuit having differential signal common mode shifting means
JPS60500987A (en) TTL-ECL input conversion circuit with AND/NAND function
IE903199A1 (en) Signal level converter
US5371421A (en) Low power BiMOS amplifier and ECL-CMOS level converter
US6255857B1 (en) Signal level shifting circuits
US6323683B1 (en) Low distortion logic level translator
US6873660B2 (en) High bandwidth low power differential transmitter
JPH06252734A (en) Reference voltage generating circuit
US5869994A (en) Level converter circuit converting input level into ECL-level against variation in power supply voltage
US6703864B2 (en) Buffer circuit
US5644217A (en) Emitter coupled logic output circuit
US5945842A (en) Output circuit for conversion from CMOS circuit level to ECL circuit level
JP3060621B2 (en) Semiconductor level conversion circuit
US5065051A (en) Ecl-ttl level converting circuit
EP0426430B1 (en) Controllable delay logic circuit for providing variable delay time
KR910010876A (en) Semiconductor integrated circuit with ECL circuit
JP3042471B2 (en) Interface circuit
JPH04287516A (en) Device and method for converting voltage
IE76472B1 (en) Signal level converter
JP3337770B2 (en) ECL gate circuit