JPH06252495A - Nonlinear optical laser element - Google Patents

Nonlinear optical laser element

Info

Publication number
JPH06252495A
JPH06252495A JP3386393A JP3386393A JPH06252495A JP H06252495 A JPH06252495 A JP H06252495A JP 3386393 A JP3386393 A JP 3386393A JP 3386393 A JP3386393 A JP 3386393A JP H06252495 A JPH06252495 A JP H06252495A
Authority
JP
Japan
Prior art keywords
laser
bab
crystal
wavelength conversion
laser oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3386393A
Other languages
Japanese (ja)
Other versions
JP2570497B2 (en
Inventor
Hikari Kouda
光 古宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5033863A priority Critical patent/JP2570497B2/en
Publication of JPH06252495A publication Critical patent/JPH06252495A/en
Application granted granted Critical
Publication of JP2570497B2 publication Critical patent/JP2570497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the size of a device and curtail the processes of the alignment between elements, by performing a laser oscillation and a wavelength conversion through one element. CONSTITUTION:By the single crystal of alpha-BaB2O4 itself, any laser oscillation and any wavelength conversion are impossible, but by the doping of a laser activating element, its laser oscillation is made possible. On the other hand, beta-BaB2O4 is a nonlinear optical material whereby any laser oscillation is not possible, but a wavelength conversion is possible. Therefore, the single crystal of alpha-BaB2O4 is so made to be one with beta-BaB2O4 that the orientation wherein the phase matching of beta-BaB2O4 with the oscillation light emitted from alpha-BaB2O4 is made possible can be obtained. Thereby, the nonlinear optical laser element wherein the laser oscillation and wavelength conversion can be performed concurrently by one element can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はバリウムボレイト単結
晶を用いた非線形光学レーザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical laser device using a barium borate single crystal.

【0002】[0002]

【従来の技術】レーザ材料と非線形光学材料を使用した
LD励起短波長固体レーザは光ディスクの書き込み等に
利用されている。
2. Description of the Related Art An LD-excited short wavelength solid-state laser using a laser material and a non-linear optical material is used for writing on an optical disk.

【0003】従来レーザ発振材料は母結晶にイットリウ
ムアルミニウムガーネット(YAG)やイットリウムバ
ナデイト(YVO4 )等の材料が用いられ、レーザ活性
元素をドープして使用されていた。これらのレーザ材料
から発振されたレーザ光の波長変換を行なう場合、通常
はレーザ発振材料の他に非線形光学材料を用いるため、
別々の2個の素子が必要であった。
Conventionally, as a laser oscillation material, a material such as yttrium aluminum garnet (YAG) or yttrium vanadate (YVO 4 ) is used as a mother crystal, and it is used after being doped with a laser active element. When performing wavelength conversion of the laser light oscillated from these laser materials, usually a nonlinear optical material is used in addition to the laser oscillation material,
Two separate elements were needed.

【0004】非線形光学材料であるベータバリウムボレ
イト(以下β−BaB2 4 と略記する)はレーザ光の
波長変換を効率良く行なうことのできる非線形光学材料
であり、特にレーザ光に対する破壊しきい値が大きいた
め高出力レーザの波長変換に使用されているが、同様に
レーザ発振素子と、β−BaB2 4 よりなる波長変換
素子の2個の素子が用いられた。
Beta barium borate (hereinafter abbreviated as β-BaB 2 O 4 ) which is a non-linear optical material is a non-linear optical material capable of efficiently performing wavelength conversion of laser light, and particularly has a breakage threshold for laser light. Since it has a large value, it is used for wavelength conversion of a high-power laser, but similarly, two elements, a laser oscillation element and a wavelength conversion element made of β-BaB 2 O 4, were used.

【0005】[0005]

【発明が解決しようとする課題】レーザ光の波長変換を
行なう場合、従来用いられていたNd:YVO4 とベー
タバリウムボレイトの素子を用いた共振器長は素子間に
約3mmの隙間があったため13mmであった。また素
子どうしのアラインメントを取るのに約5時間の行程を
必要としていた。従って、レーザ発振材料と非線形光学
材料の2個の素子が一体化された非線形光学レーザ素子
が実現されれば装置の小型化が可能となり、また素子ど
うしのアラインメントの必要も無くなることより、β−
BaB2 4 とレーザ材料とを一体化させることの出来
るレーザ材料が望まれていた。しかし、YAGやYVO
4 レーザ材料とβ−BaB2 4 を一体化させようとし
ても、結晶構造や融点、格子定数等が大きく異なるため
一体化は困難であった。
When wavelength conversion of laser light is performed, the cavity length using elements of Nd: YVO 4 and beta barium borate, which has been conventionally used, has a gap of about 3 mm between the elements. The thickness was 13 mm. Also, it took about 5 hours to align the elements. Therefore, if a non-linear optical laser device in which two elements of a laser oscillation material and a non-linear optical material are integrated is realized, the size of the device can be reduced, and the need for alignment between the elements is eliminated.
A laser material capable of integrating BaB 2 O 4 and a laser material has been desired. However, YAG and YVO
4 Even if an attempt was made to integrate β-BaB 2 O 4 with a laser material, the integration was difficult because the crystal structures, melting points, lattice constants, etc. differed greatly.

【0006】本発明の目的は、レーザ発振可能であり、
β−BaB2 4 と一体化可能な、レーザ活性元素を添
加したアルファバリウムボレイト(以下α−BaB2
4 と略す)と、波長変換素子のβ−BaB2 4 をひと
つの素子にすることで装置の小型化をはかり、またアラ
インメントの工数を削減してコストダウンを図ることで
ある。
An object of the present invention is to enable laser oscillation,
Alpha barium borate (hereinafter α-BaB 2 O) added with a laser active element, which can be integrated with β-BaB 2 O 4.
(Abbreviated as 4 ), the β-BaB 2 O 4 of the wavelength conversion element is used as a single element to reduce the size of the apparatus and reduce the number of alignment steps to reduce the cost.

【0007】[0007]

【課題を解決するための手段】BaB2 4 単結晶は結
晶構造にα相(高温相)のα−BaB2 4 とβ相(低
温相)のβ−BaB2 4 の2種類を持っている。これ
らの結晶は共に6方晶系に属し、結晶構造も類似してい
る。しかし、β−BaB2 4 は波長変換素子として応
用できるが、レーザ発振材料には使用出来ない。一方、
β−BaB2 4 と組成、結晶系が同じで結晶の対称性
が違うために非線形光学活性で無いα−BaB2 4
Nd等のレーザ活性元素を添加することが出来、レーザ
発振材料として利用出来ることが認められた。さらに、
これらの結晶構造は類似しているため、レーザ活性元素
をドープしたα−BaB2 4 とβ−BaB2 4 とを
一体化させ、非線形光学レーザ素子を作成することが可
能であることが明らかになった。
BaB 2 O 4 single crystal [Summary of] the two types of beta-BaB 2 O 4 of the α-BaB 2 O 4 and beta-phase alpha-phase crystalline structure (high temperature phase) (low-temperature phase) have. Both of these crystals belong to the hexagonal system and have similar crystal structures. However, β-BaB 2 O 4 can be used as a wavelength conversion element, but cannot be used as a laser oscillation material. on the other hand,
β-BaB 2 O 4 and composition, nonlinear optically active a not α-BaB 2 O 4 is able to add a laser active element such as Nd in the crystal system is different symmetry of the same crystal, lasing material It was recognized that it can be used as. further,
Since these crystal structures are similar to each other, it is possible to make a nonlinear optical laser device by integrating α-BaB 2 O 4 and β-BaB 2 O 4 doped with a laser active element. It was revealed.

【0008】α−BaB2 4 の結晶構造とβ−BaB
2 4 の結晶構造を図1(a)、(b)に示した。単位
格子の大きさには差があるが、両相とも構成単位はリン
グ状のB3 6 リングとBaから成り立っている。図1
(a)のα−BaB2 4 の方がBaサイトが僅かに大
きいためNd、Er、Tm等の希土類元素やTi、Cr
等の遷位金属をレーザ活性元素としてドープすることが
可能である。BaB24 組成粉末とレーザ活性元素、
レーザ活性元素の電荷を補償するための元素(CsやR
b等の一価のアルカリ金属等)を混合し焼結させること
で、予めレーザ活性元素等とBaB2 4 との間に化学
結合を持つことが出来、原料を融解してからもこの結合
が融液中に保存され、結晶中にNd等の活性元素が入っ
たα−BaB2 4 の高品質な結晶育成が可能となる。
図2にNdを0.3%ドープしたα−BaB2 4 の吸
収スペクトルを示す。これより、キセノンランプ等のフ
ラッシュランプでα−BaB2 4 にドープされたNd
元素を励起し、Ndの蛍光スペクトルである1.3、
1.06、0,94μm等のレーザ発振が可能となるこ
とがわかる。従ってこの材料は、β−BaB2 4 と一
体化して素子を作成して用いることはもちろん、単独で
レーザ発振材料としても用いることが可能である。
Crystal structure of α-BaB 2 O 4 and β-BaB
The crystal structure of 2 O 4 is shown in FIGS. 1 (a) and 1 (b). Although there are differences in the size of the unit cell, the constituent units of both phases are composed of ring-shaped B 3 O 6 rings and Ba. Figure 1
Since α-BaB 2 O 4 of (a) has a slightly larger Ba site, rare earth elements such as Nd, Er, and Tm, and Ti and Cr.
It is possible to dope a transition metal such as a laser active element. BaB 2 O 4 composition powder and laser active element,
Elements for compensating the charge of laser active elements (Cs and R
By mixing and sintering a monovalent alkali metal such as b) and sintering, it is possible to have a chemical bond between the laser active element and BaB 2 O 4 in advance. Is preserved in the melt, and high quality crystal growth of α-BaB 2 O 4 containing an active element such as Nd in the crystal becomes possible.
FIG. 2 shows an absorption spectrum of α-BaB 2 O 4 doped with 0.3% of Nd. As a result, Nd doped in α-BaB 2 O 4 with a flash lamp such as a xenon lamp is obtained.
The element is excited to emit Nd fluorescence spectrum of 1.3,
It can be seen that laser oscillation of 1.06, 0.94 μm, etc. is possible. Therefore, this material can be used not only as a laser oscillation material, but also as an element by being integrated with β-BaB 2 O 4 to form an element.

【0009】複合素子の作成法としては、α−BaB2
4 を種結晶としてβ−BaB2 4 、もしくはその逆
で結晶を育成することにより、α−BaB2 4 とβ−
BaB2 4 を一体化させた素子を作成することが出来
る。種結晶の方位をα−BaB2 4 が発振する波長に
対してβ−BaB2 4 が波長変換出来る方位となるよ
うに種結晶の方位を設定して育成し、研磨加工すること
により、ひとつの素子でレーザ発振と波長変換を行なう
ことの出来る非線形光学レーザ素子が実現される。この
素子を利用すれば素子間の間隙が必要となくなるため装
置の小型化が可能であり、また素子間のアラインメント
を取る行程が必要い。
As a method for producing the composite element, α-BaB 2
By growing crystals with β-BaB 2 O 4 or vice versa using O 4 as a seed crystal, α-BaB 2 O 4 and β-
A device in which BaB 2 O 4 is integrated can be produced. The orientation of the seed crystal is set so that β-BaB 2 O 4 can be wavelength-converted with respect to the wavelength oscillated by α-BaB 2 O 4 , the orientation of the seed crystal is grown, and polishing is performed. A nonlinear optical laser device that can perform laser oscillation and wavelength conversion with a single device is realized. When this element is used, the gap between the elements is not required, so that the device can be downsized, and the step of aligning the elements is not required.

【0010】[0010]

【実施例】(実施例1)BaB2 4 組成粉末にNd2
3 粉末を約1mol%混合した。この粉末を1090
℃で10時間加熱し、粉末の粒子同士を焼結させ、結晶
性の良い原料とした。この焼結させた粉末約180gを
直径40mmの白金坩堝に充填し、高周波引上炉を使用
し、α−BaB2 4 の種結晶を用いて引上法で育成を
行なった。Ndの偏析係数が約0.3なため、育成され
たα−BaB2 4 の結晶中には約0.3%molのN
dが混入していた。この単結晶を厚さ3mmに加工・研
磨し、吸収スペクトルを測定したところ、図2のように
Ndの吸収ピークが確認され、結晶の色もNdの呈する
紫色をしていた。この結晶をφ3mm、長さ3mmのロ
ッド状に加工し、単面に1.06μmの無反射コート膜
を蒸着した。レーザ発振実験のためのキャビティー内に
結晶を配置し、キセノンランプで励起して発振実験を行
なったことろ、1.06μmの発振光が確認された。 (実施例2)BaB2 4 粉末にNd2 3 と約1mo
l%電荷補償及び体積補償のためのCs2 Oを1mol
%を混入させた粉末を実施例1と同様に焼結させ、育成
を試みたところ、Nd濃度0.5%のα−BaB2 4
単結晶が育成された。Csで電荷補償したことにより、
Ndの偏析係数が0.3から0.5に上昇することが解
った。この結晶を用い、レーザ発振実験を行なったとこ
ろ、1.06μmのNdの発振光が確認された。 (比較例1)BaB2 4 粉末にNd2 3 を1mol
%混合し、焼結させないでそのまま粉末を坩堝に充填
し、融解して引上法で育成したところ、Nd元素がBa
2 4 とうまく混入されていないため、またBaB2
4 組成の元素と結合を予め持っていないためにNdが
結晶中にうまく取り込まれることが出来ず、Ndの偏析
係数は0.05以下であった。またNd2 3 のインク
ルージョンが結晶中に混入する場合が多かった。実施例
1と同様にレーザ発振の実験を試みたがNd濃度が薄い
ためにレーザ発振を確認出来なかった。 (実施例3)BaB2 4 組成融液から直径15mm、
長さ30mmのベータバリウムボレイト単結晶を引上法
で育成した。この単結晶から1.06μmのレーザ光の
第2高調波が得られるc軸から23°の方位になるよう
に直径5mm、長さ20mmの単結晶を切りだした。こ
れを種結晶に用い、BaB2 4 組成融液にNdを1%
添加した融液からNdが0.3%添加されたアルファバ
リウムボレイトを引上法で育成した。育成された結晶を
図3のようになるように加工し、3mm角の素子を作製
した。この素子の画面に1.06、0.53μmに対す
る無反射コーティングを施した後、1.06μmが共振
して0.53μmの光が出力するように設定された図4
の共振器中にこの素子を置、レーザダイオードの809
nmの光を素子の端面から入射したとろこ、α相中のN
d元素がこの809nmの光を吸収して1.06μmの
光を発振し、この光の第2高調波がβ相中で発生して共
振器からは0.53μmの光が出力され、非線形光学レ
ーザ素子が実現された。共振器長は約10mmとなっ
た。また素子どうしのアラインメントを取る行程は必要
ない。 (実施例4)BaB2 4 組成にNdを3mol%添加
した融液からNdが1%添加されたα相の単結晶を引上
法で育成した。この結晶上にβ相の結晶がc軸から約2
3°で育成するように、Ndを添加したα相の単結晶を
c軸から23°の方位を一辺に持つ3mm角に種結晶を
作製した。BaB2 4 組成原料にフラックスとしてN
2 O粉末を25%混入して900°で融解し、種結晶
を融液中に入れて融液温度右を1℃/日で降下させ、α
相の種結晶上にβ相を約5mm程度成長させた。この結
晶から図3の構成になるように3mm角の素子を切り出
し、実施例3と同様に図4の共振器中で発振実験を行っ
たところ、実施例1と同様の共振器長で0.53μmの
光が出力された。
Example 1 Example 1 Nd 2 was added to BaB 2 O 4 composition powder.
O 3 powder was mixed at about 1 mol%. 1090 this powder
The powder particles were heated at 10 ° C. for 10 hours to sinter the powder particles to each other to obtain a raw material having good crystallinity. About 180 g of this sintered powder was filled in a platinum crucible having a diameter of 40 mm and grown by a pulling method using a high-frequency pulling furnace and a seed crystal of α-BaB 2 O 4 . Since the segregation coefficient of Nd is about 0.3, about 0.3% mol of N in the grown α-BaB 2 O 4 crystal.
d was mixed. When this single crystal was processed and polished to have a thickness of 3 mm and the absorption spectrum was measured, an absorption peak of Nd was confirmed as shown in FIG. 2 and the color of the crystal was purple, which is the color of Nd. This crystal was processed into a rod shape having a diameter of 3 mm and a length of 3 mm, and a 1.06 μm antireflection coating film was vapor-deposited on a single surface. The crystal was placed in the cavity for the laser oscillation experiment, and the oscillation experiment was performed by exciting the crystal with a xenon lamp. As a result, oscillation light of 1.06 μm was confirmed. (Example 2) BaB 2 O 4 powder and Nd 2 O 3 and about 1 mo
1% of Cs 2 O for 1% charge compensation and volume compensation
% Was mixed in the same manner as in Example 1, and an attempt was made to grow it. As a result, α-BaB 2 O 4 having an Nd concentration of 0.5% was obtained.
A single crystal was grown. By charge compensation with Cs,
It was found that the segregation coefficient of Nd increased from 0.3 to 0.5. When a laser oscillation experiment was performed using this crystal, Nd oscillation light of 1.06 μm was confirmed. (Comparative Example 1) 1 mol of Nd 2 O 3 was added to BaB 2 O 4 powder.
%, The powder was directly packed in a crucible without being sintered and melted and grown by a pulling method.
Since B 2 O 4 and not well mixed, also BaB 2
Nd could not be taken into the crystal well because it had no bond with the element of O 4 composition in advance, and the segregation coefficient of Nd was 0.05 or less. Further, inclusion of Nd 2 O 3 was often mixed in the crystal. An experiment of laser oscillation was tried as in Example 1, but laser oscillation could not be confirmed because the Nd concentration was low. (Example 3) 15 mm in diameter from a BaB 2 O 4 composition melt,
A beta barium borate single crystal having a length of 30 mm was grown by the pulling method. A single crystal having a diameter of 5 mm and a length of 20 mm was cut out so as to be oriented at 23 ° from the c-axis from which the second harmonic of the laser beam of 1.06 μm was obtained from this single crystal. Using this as a seed crystal, 1% of Nd was added to the BaB 2 O 4 composition melt.
Alpha barium borate containing 0.3% Nd was grown from the added melt by the pulling method. The grown crystal was processed as shown in FIG. 3 to produce a 3 mm square element. After the antireflection coating for 1.06 and 0.53 μm was applied to the screen of this device, 1.06 μm was set to resonate and output 0.53 μm light.
This element is placed in the resonator of the laser diode 809
nm light incident from the end face of the device, N in the α phase
The element d absorbs this 809 nm light and oscillates 1.06 μm light, the second harmonic of this light is generated in the β phase, and 0.53 μm light is output from the resonator. A laser device has been realized. The resonator length was about 10 mm. In addition, the process of aligning elements is not required. Example 4 An α-phase single crystal containing 1% of Nd was grown by a pulling method from a melt obtained by adding 3 mol% of Nd to the composition of BaB 2 O 4 . On this crystal, β-phase crystal is about 2 from the c-axis.
A seed crystal was prepared by growing an α-phase single crystal to which Nd was added so as to grow at 3 ° in a 3 mm square having an orientation of 23 ° from the c-axis on one side. BaB 2 O 4 composition raw material with N as a flux
a 2 O powder was mixed at 25% and melted at 900 °, a seed crystal was put into the melt, and the right side of the melt temperature was lowered by 1 ° C / day.
The β phase was grown on the seed crystal of the phase by about 5 mm. A 3 mm square element was cut out from this crystal so as to have the configuration of FIG. 3, and an oscillation experiment was performed in the resonator of FIG. 4 as in Example 3. Light of 53 μm was output.

【0011】なお、本実施例においてはレーザ活性元素
としてNdを、電荷補償元素としてCsを用いたときの
み示したが、他の元素を用いても同様な結果が得られ
た。
Although Nd is used as the laser active element and Cs is used as the charge compensating element in this embodiment, similar results were obtained even if other elements were used.

【0012】[0012]

【発明の効果】本発明によれば、ベータバリウムボレイ
ト単結晶を用いてレーザ光の波長変換を行なう際に、通
常2個必要な結晶が1個ですむために装置の小型化に貢
献する。また素子のアラインメント工数の削減ができ
る。
According to the present invention, when performing wavelength conversion of laser light using a beta barium borate single crystal, normally only two crystals are required, which contributes to downsizing of the device. In addition, the number of element alignment steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】α−BaB2 4 単結晶とβ−BaB2 4
結晶の結晶構造を示す図である。
FIG. 1 is a diagram showing crystal structures of an α-BaB 2 O 4 single crystal and a β-BaB 2 O 4 single crystal.

【図2】Ndを0.3mol%混入させたα−BaB2
4 単結晶の吸収スペクトルを示す図である。
FIG. 2 α-BaB 2 mixed with 0.3 mol% of Nd
O 4 is a diagram showing the absorption spectrum of a single crystal.

【図3】本発明の非線形光学レーザ素子を用いたLD励
起レーザ装置を示す図である。
FIG. 3 is a diagram showing an LD pump laser device using a nonlinear optical laser device of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザダイオード 2 共振器 3 非線形光学レーザ材料(Nd:α−BaB2 4
β−BaB2 4 ) 4 励起光(820nm) 5 発振光(532nm) 6 ミラー
1 Laser diode 2 Resonator 3 Non-linear optical laser material (Nd: α-BaB 2 O 4 ,
β-BaB 2 O 4 ) 4 Excitation light (820 nm) 5 Oscillation light (532 nm) 6 Mirror

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発振と波長変換を一つの結晶で行
うことのできる複合素子であって、レーザ発振材料とし
てのアルファバリウムボレイト単結晶部分と、波長変換
材料としてのベータバリウムボレイト単結晶部分を一つ
の素子中にもつことを特徴とする非線形光学レーザ素
子。
1. A composite element capable of performing laser oscillation and wavelength conversion with a single crystal, wherein an alpha barium borate single crystal portion as a laser oscillation material and a beta barium borate single crystal as a wavelength conversion material. A non-linear optical laser device characterized by having a part in one device.
【請求項2】 レーザ発振材料がレーザ活性元素をドー
プしたアルファバリウムボレイトであることを特徴とす
る請求項1記載の非線形光学レーザ素子。
2. The nonlinear optical laser device according to claim 1, wherein the laser oscillation material is alpha barium borate doped with a laser active element.
【請求項3】 レーザ発振材料がレーザ活性元素とレー
ザ活性元素の電荷補償、体積補償をするための元素をド
ープしたアルファバリウムボレイトであることを特徴と
する請求項1記載の非線形光学レーザ素子。
3. The nonlinear optical laser device according to claim 1, wherein the laser oscillation material is alpha barium borate doped with a laser active element and an element for charge compensation and volume compensation of the laser active element. .
JP5033863A 1993-02-24 1993-02-24 Nonlinear optical laser device Expired - Fee Related JP2570497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033863A JP2570497B2 (en) 1993-02-24 1993-02-24 Nonlinear optical laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033863A JP2570497B2 (en) 1993-02-24 1993-02-24 Nonlinear optical laser device

Publications (2)

Publication Number Publication Date
JPH06252495A true JPH06252495A (en) 1994-09-09
JP2570497B2 JP2570497B2 (en) 1997-01-08

Family

ID=12398343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033863A Expired - Fee Related JP2570497B2 (en) 1993-02-24 1993-02-24 Nonlinear optical laser device

Country Status (1)

Country Link
JP (1) JP2570497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919852A1 (en) * 1997-11-26 1999-06-02 Nec Corporation Wavelength converter and method for generating optical harmonics of incident laser light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242495A (en) * 1988-03-24 1989-09-27 Toshiba Corp Method for growing beta-bab2o4 single crystal
JPH0426559U (en) * 1990-06-28 1992-03-03
JPH04171781A (en) * 1990-11-05 1992-06-18 Nec Corp Nonlinear optical material for laser and growth method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242495A (en) * 1988-03-24 1989-09-27 Toshiba Corp Method for growing beta-bab2o4 single crystal
JPH0426559U (en) * 1990-06-28 1992-03-03
JPH04171781A (en) * 1990-11-05 1992-06-18 Nec Corp Nonlinear optical material for laser and growth method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919852A1 (en) * 1997-11-26 1999-06-02 Nec Corporation Wavelength converter and method for generating optical harmonics of incident laser light
US6215580B1 (en) 1997-11-26 2001-04-10 Nec Corporation Wavelength converter for generating optical harmonics of incident laser light at high efficiency and method for varying wavelength of incident laser light

Also Published As

Publication number Publication date
JP2570497B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
Lu et al. Promising ceramic laser material: Highly transparent Nd 3+: Lu 2 O 3 ceramic
Lu et al. 110 W Ceramic Nd 3+: Y 3 Al 5 O 12 Laser
Zharikov et al. Double tungstate and molybdate crystals for laser and nonlinear optical applications
US20120114543A1 (en) Method and structure for non-linear optics
Doualan et al. Latest developments of bulk crystals and thin films of rare-earth doped CaF2 for laser applications
US5173911A (en) Mixed silicates of yttrium and lanthanide and laser using monocrystals of these silicates
Samtleben et al. LiCaAlF6 and LiSrAlF6: tunable solid state laser host materials
CN114108072A (en) Rare earth ion doped GdScO3Laser crystal preparation and application thereof
EP0516116A2 (en) Solid-state tunable pulse laser
CN109023524B (en) Erbium-holmium-praseodymium tri-doped lead fluoride mid-infrared laser crystal and preparation method thereof
JP2570497B2 (en) Nonlinear optical laser device
US4765925A (en) Solid state laser hosts
US5402434A (en) Er:YVO4 laser oscillator, solid-state laser material and method for manufacturing the same
Sato et al. Tailored Spectral Designing of Layer-by-Layer Type Composite Nd: Y $ _ {3} $ ScAl $ _ {4} $ O $ _ {12} $/Nd: Y $ _ {3} $ Al $ _ {5} $ O $ _ {12} $ Ceramics
Wu et al. Growth and characterization of Nd: Lu3ScxGa5− xO12 series laser crystals
Ehrentraut et al. Epitaxial growth and spectroscopic investigation of BaSO4: Mn6+ layers
CN111101198B (en) Neodymium-doped zinc bismuth borate self-frequency-doubling crystal material, cut type, preparation method and application thereof
Aka et al. Ca4REO (BO3) 3 crystals for green and blue microchip laser generation: from crystal growth to laser and nonlinear optical properties
CN109428257B (en) Erbium ion doped silicate crystal and 1.5 micron wave band laser device thereof
Kim et al. Tm-doped Langasite (La3Ga5SiO14) crystals grown by the Czochralski method for optical applications
Yomogida et al. Float zone growth and anisotropic spectral properties of Nd: LaVO4 single crystals
CN113067245B (en) Terbium activated borate crystal and 544nm or 586nm band laser
EP4083276A1 (en) Absorbing material based on samarium-doped garnet for suppression of amplified spontaneous emission of the active medium of solid-state laser, use of this material, method of its production and monolithic element containing this absorbing material
Normani et al. Spectroscopy of erbium-doped LiYF4 crystalline layers grown by liquid phase epitaxy
Bensalah et al. Growth and laser performance of Ce-doped LiCaAlF6 and LiSr0. 8Ca0. 2AIF6 single crystals for UV laser applications

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827

LAPS Cancellation because of no payment of annual fees