JPH0625032A - Production of resource energy gas - Google Patents

Production of resource energy gas

Info

Publication number
JPH0625032A
JPH0625032A JP3015923A JP1592391A JPH0625032A JP H0625032 A JPH0625032 A JP H0625032A JP 3015923 A JP3015923 A JP 3015923A JP 1592391 A JP1592391 A JP 1592391A JP H0625032 A JPH0625032 A JP H0625032A
Authority
JP
Japan
Prior art keywords
iron oxide
carbon
reaction
hydrogen
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3015923A
Other languages
Japanese (ja)
Inventor
Yutaka Tamaura
裕 玉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3015923A priority Critical patent/JPH0625032A/en
Publication of JPH0625032A publication Critical patent/JPH0625032A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a useful gas such as methanol starting from a carbon- contg. iron oxide as a raw material. CONSTITUTION:Reaction is made between a carbon-contg. iron oxide, hydrogen and water at >=300 deg.C to produce methanol useful as a raw material for polymers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、資源エネルギーガス、
特に高分子原料に有用なメタノールの製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a resource energy gas,
Particularly, it relates to a method for producing methanol which is useful as a polymer raw material.

【0002】[0002]

【従来の技術】メタノールは、ホルマリン,酢酸,メタ
クリル酸メチル,テレフタル酸ジメチホルを合成する際
の出発原料であり、有機合成化学工業における重要な役
割を果している。また近年メタノールを燃料とした内燃
機関の開発が進められるなどクリーンなエネルギー源と
して注目されている。
Methanol is a starting material for synthesizing formalin, acetic acid, methyl methacrylate, and dimethyphor terephthalate, and plays an important role in the synthetic organic chemical industry. In recent years, the development of an internal combustion engine that uses methanol as fuel has been promoted, and it has attracted attention as a clean energy source.

【0003】従来、メタノール製造は、触媒の存在下で
一酸化炭素と水素とから合成されるのが一般的である。
その原料には、石炭,石油,天然ガスなどの地球資源が
利用されている。この反応は、平衡論的に低温,高圧ほ
ど有利に進み、高活性銅触媒などを使って現在では25
0℃以下100気圧程度で製造が行われている。
Conventionally, methanol production is generally synthesized from carbon monoxide and hydrogen in the presence of a catalyst.
Earth resources such as coal, oil and natural gas are used as the raw materials. This reaction is advantageous in equilibrium at lower temperatures and higher pressures, and is currently 25 using a highly active copper catalyst.
Manufacturing is performed at 0 ° C. or less and about 100 atm.

【0004】[0004]

【発明が解決しようとする課題】ところで、天然ガス,
石油,石炭は、重要な地球資源であり、これらの埋蔵量
が有限であることは議論の余地はない。これら、地球資
源の枯渇によるエネルギー危機は人類史上最大の問題で
あると言っても過言ではない。したがって、クリーンな
エネルギー源としてメタノールからガソリン相当の炭化
水素を合成する技術(MTGプロセス)の開発が進めら
れたとしても、メタノールの原料を地球資源に求める限
り限界があると言える。また、これら地球資源をエネル
ギー源として利用すると、最終的に二酸化炭素が大気中
に放出されるという新たな問題を生ずる。二酸化炭素
は、地球温暖化現象の原因物質の一つであり、世界的規
模でこの削減計画が現在検討されている。発明者は、さ
きに環境中の二酸化炭素を分解する方法として鉄酸化物
(マグネタイト)を脱酸素処理して活性化して、活性化
した鉄酸化物に二酸化炭素を接触反応させてこれを分解
する方法を開発した(特願平1−308568号参
照)。この方法によると、反応後、炭素を含んだ鉄酸化
物が生成する。この鉄酸化物は、活性が失われ、酸素欠
陥を有していないものとなる。そのままでは利用価値は
なく、廃棄処分するほかはない。
By the way, natural gas,
Oil and coal are important global resources, and it is arguable that their reserves are finite. It is no exaggeration to say that the energy crisis caused by the depletion of global resources is the biggest problem in human history. Therefore, even if the development of a technology (MTG process) for synthesizing hydrocarbons equivalent to gasoline from methanol as a clean energy source is advanced, it can be said that there is a limit as long as a raw material of methanol is requested from global resources. In addition, the use of these earth resources as an energy source causes a new problem that carbon dioxide is finally released into the atmosphere. Carbon dioxide is one of the causative substances of the global warming phenomenon, and this reduction plan is currently under consideration on a global scale. As a method of decomposing carbon dioxide in the environment, the inventor first deoxidizes iron oxide (magnetite) to activate it, and causes carbon dioxide to catalytically react with the activated iron oxide to decompose it. A method was developed (see Japanese Patent Application No. 1-308568). According to this method, iron oxide containing carbon is produced after the reaction. This iron oxide loses its activity and becomes free of oxygen defects. There is no use value as it is, and there is no choice but to dispose of it.

【0005】本発明の目的は、炭素を含んだ鉄酸化物を
比較的低温で処理してメタノールを製造する方法を提供
することにある。
It is an object of the present invention to provide a method for producing methanol by treating iron oxide containing carbon at a relatively low temperature.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明による資源エネルギーガスの製造方法におい
ては、炭素を含有した鉄酸化物と水素と水とを反応させ
て資源エネルギーガスを製造する方法であって、炭素
は、鉄酸化物の表面に付着した粉末であり、鉄酸化物と
水素と水との反応温度は、300℃以上であり、主とし
てメタノールを生成するものである。
In order to achieve the above object, in the method for producing a resource energy gas according to the present invention, a resource energy gas is produced by reacting carbon-containing iron oxide, hydrogen and water. In the method, carbon is a powder adhered to the surface of iron oxide, the reaction temperature of iron oxide, hydrogen and water is 300 ° C. or higher, and mainly produces methanol.

【0007】[0007]

【作用】二酸化炭素の分解に用いられた活性化鉄酸化物
粒子は、その分解反応により活性が失われ、原則的には
酸素欠陥のない元の鉄酸化物粒子に戻るが、その表面に
は二酸化炭素の分解により生じた炭素の粉末が析出して
いる。この炭素析出鉄酸化物は、非常に反応性が高い。
その特性を鋭意研究の結果、炭素析出鉄酸化物を水,水
素と接触させたときにメタノールメタンなどの有効なガ
スを発生することが見出された。この反応は、常圧下、
300℃以上で起こり、温度が高くなるに従い反応効率
は上がる。
[Function] The activated iron oxide particles used for the decomposition of carbon dioxide lose their activity due to the decomposition reaction and, in principle, return to the original iron oxide particles having no oxygen deficiency. Carbon powder generated by decomposition of carbon dioxide is deposited. This carbon-deposited iron oxide is extremely reactive.
As a result of diligent research on the characteristics, it was found that when carbon-deposited iron oxide is brought into contact with water and hydrogen, an effective gas such as methanol methane is generated. This reaction is
It occurs at 300 ° C or higher, and the reaction efficiency increases as the temperature increases.

【0008】炭素が析出した鉄酸化物に水,及び水素を
接触させると、次式に従い、反応が進むと考えられる。
It is considered that when water and hydrogen are brought into contact with the iron oxide on which carbon is deposited, the reaction proceeds according to the following equation.

【0009】H2+H2O+C→CH3OHH 2 + H 2 O + C → CH 3 OH

【0010】この際、鉄酸化物は触媒として働き、常圧
下でも反応の進行が可能で反応温度は300℃以上なら
よく温度が高いほど反応収率がよい。またこの反応では
メタンが同時に生成する。
At this time, the iron oxide acts as a catalyst and the reaction can proceed even under normal pressure, and the reaction temperature may be 300 ° C. or higher. In this reaction, methane is produced at the same time.

【0011】反応原料の水素は、炭素析出マグネタイト
に水を反応させる際の昇温途中によって得られる(特願
平2−220368号参照)したがって、予め水を化学
量論から計算される量よりも過剰に加えておけば、水と
炭素とが析出した鉄酸化物を原料としてメタノールが得
られる。
Hydrogen as a reaction raw material is obtained during the temperature rise during the reaction of water with carbon-deposited magnetite (see Japanese Patent Application No. 22022068). If added in excess, methanol can be obtained from the iron oxide in which water and carbon are deposited as a raw material.

【0012】なお、以上は、二酸化炭素分解により表面
に炭素が析出し、不活性となった鉄酸化物を出発原料と
して資源エネルギーガスを製造する方法を示したが、出
発原料はこの例に限られるものではない。一般に表面に
析出した鉄酸化物は自然物として考えにくいが、鉄酸化
物の反応処理物として他の処理により生成物として生じ
ることは当然有り得ることであり、このような炭素析出
鉄酸化物であれば全く同様に本発明を適用できる。
The method for producing a resource energy gas using iron oxide, which has become inactive due to carbon deposition on the surface due to carbon dioxide decomposition, has been described above, but the starting material is not limited to this example. It is not something that can be done. Generally, iron oxides deposited on the surface are unlikely to be natural substances, but it is naturally possible that they are produced as products by other treatments as reaction products of iron oxides. The present invention can be applied in exactly the same manner.

【0013】本発明によれば、二酸化炭素分解により回
収した炭素資源を再度利用することで貴重な地球資源を
有効に利用することができる。また、本発明により製造
された資源ガスは、化学工業の出発物質となるほか燃料
としての利用が可能であるがこの際生じる二酸化炭素は
活性化した鉄酸化物により接触反応させてこれを分解す
ることが可能である。ただしこの二酸化炭素を分解する
ことなく大気に放出させても利用するエネルギー当り実
質上50%の二酸化炭素が削減できることになる。
According to the present invention, valuable earth resources can be effectively used by reusing carbon resources recovered by carbon dioxide decomposition. Further, the resource gas produced by the present invention can be used as a fuel as well as a starting material in the chemical industry, but carbon dioxide generated at this time is decomposed by catalytic reaction with activated iron oxide. It is possible. However, even if this carbon dioxide is released into the atmosphere without being decomposed, it is possible to reduce substantially 50% of carbon dioxide per energy used.

【0014】[0014]

【発明の効果】以上のように本発明によれば、低温,低
圧下でしかも簡単な処理のみによってエタノールを生産
することができる。特に注目すべきは、通常自然界に砂
鉄,鉄鉱石として、また産業界には廃水処理のスラッジ
として多量に存在する鉄酸化物を利用して温暖化の原因
物質である二酸化炭素の炭素成分から有価な資源を取り
出すことができるという効果である。
As described above, according to the present invention, ethanol can be produced at a low temperature and a low pressure and by only a simple treatment. Of particular note is the use of iron oxides, which are usually found in the natural world as sand iron and iron ores, and as sludge for wastewater treatment in the industrial world, in a large amount from carbon components of carbon dioxide, which is a causative agent of global warming. This is the effect that various resources can be taken out.

【0015】[0015]

【実施例】以下に本発明の実施例を示す。マグネタイト
(Fe34)10gを石英カラム内に充填し、300℃
まで昇温し、4時間水素ガスを通じて酸素欠陥鉄酸化物
を得た。次に二酸化炭素をカラムに導入して300℃で
反応させ、マグネタイト表面上に炭素を析出させた。こ
の反応には次の2段階反応でCO2を分解する反応であ
る。
EXAMPLES Examples of the present invention will be shown below. 10 g of magnetite (Fe 3 O 4 ) was packed in a quartz column, and the temperature was 300 ° C.
The temperature was raised to 4 and hydrogen gas was passed for 4 hours to obtain oxygen-deficient iron oxide. Next, carbon dioxide was introduced into the column and reacted at 300 ° C. to deposit carbon on the surface of magnetite. This reaction is a reaction that decomposes CO 2 in the following two-step reaction.

【0016】すなわち、 Fe34+H2→活性化マグネタイト(酸素欠陥鉄酸化
物) 活性化マグネタイト+CO2→C+Fe34(炭素析出
鉄酸化物) である。
That is, Fe 3 O 4 + H 2 → activated magnetite (oxygen-defective iron oxide) activated magnetite + CO 2 → C + Fe 3 O 4 (carbon-deposited iron oxide).

【0017】得られた鉄酸化物中には3.2%炭素が含
まれていた。炭素析出鉄酸化物5gを石英セルに充填し
た後、真空ポンプでセル内を減圧した。次いで水0.5
mlを加え、電気炉で反応セルの一部(試量保持部)を
400℃に加熱した。電気炉外に露出した反応セル部を
空冷して水を凝集,還流させた。この際反応セル内は1
気圧であった。4時間後、反応セルを冷却して内部のガ
スをガスクロマトグラフにより分析したところメタノー
ル1.1%,メタン0.2%,水素4%が得られた。反
応後、10分では水素が12%得られるが時間の経過と
共に水素が減少してエタノールが合成されるものと考え
られる。
The obtained iron oxide contained 3.2% carbon. After filling 5 g of the carbon-deposited iron oxide in a quartz cell, the pressure inside the cell was reduced by a vacuum pump. Then water 0.5
ml was added, and a part of the reaction cell (test sample holding part) was heated to 400 ° C. in an electric furnace. The reaction cell portion exposed outside the electric furnace was air-cooled to coagulate and reflux water. At this time, 1 in the reaction cell
It was atmospheric pressure. After 4 hours, the reaction cell was cooled and the gas inside was analyzed by gas chromatography to give 1.1% methanol, 0.2% methane and 4% hydrogen. After 10 minutes from the reaction, 12% of hydrogen is obtained, but it is considered that hydrogen decreases with time and ethanol is synthesized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素を含有した鉄酸化物と水素と水とを
反応させて資源エネルギーガスを製造する方法であっ
て、 炭素は、鉄酸化物の表面に付着した粉末であり、 鉄酸化物と水素と水との反応温度は、300℃以上であ
り、主としてメタノールを生成するものであることを特
徴とする資源エネルギーガスの製造方法。
1. A method for producing a resource energy gas by reacting carbon-containing iron oxide with hydrogen and water, wherein carbon is a powder adhered to the surface of iron oxide. A method for producing a resource energy gas, characterized in that the reaction temperature of hydrogen with water is 300 ° C. or higher and mainly produces methanol.
JP3015923A 1991-01-16 1991-01-16 Production of resource energy gas Pending JPH0625032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015923A JPH0625032A (en) 1991-01-16 1991-01-16 Production of resource energy gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015923A JPH0625032A (en) 1991-01-16 1991-01-16 Production of resource energy gas

Publications (1)

Publication Number Publication Date
JPH0625032A true JPH0625032A (en) 1994-02-01

Family

ID=11902306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015923A Pending JPH0625032A (en) 1991-01-16 1991-01-16 Production of resource energy gas

Country Status (1)

Country Link
JP (1) JPH0625032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894816A (en) * 1987-02-12 1990-01-16 Hitachi, Ltd. Optical information recording apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894816A (en) * 1987-02-12 1990-01-16 Hitachi, Ltd. Optical information recording apparatus

Similar Documents

Publication Publication Date Title
Klein et al. Catalytic oxidation of hydrogen sulphide on activated carbons
US20100040916A1 (en) Methods and Systems for Generating Hydrogen From a Biomass
RU2005111977A (en) METHOD FOR SUPPRESSING HYDROGENOLYSIS OF SUSPENSION OF THE CATALYST AND METHOD OF ACTIVATING THE CATALYST IN SYNTHESIS OF FISCHER-TROPH AND METHOD OF PRODUCING HYDROCARBONS FROM SYNTHESIS-GAS
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
Chandler Strong metal-support interactions: An extra layer of complexity
JP4122426B2 (en) Hydrogen production method
US7785543B2 (en) Method of processing alkali-activation exhaust gas
Feng et al. Using coal coke for N-sorption with an Al-based nitrogen carrier during chemical looping ammonia generation
Qin et al. Theoretical study on the reaction kinetics of CO oxidation by nitrogen-doped graphene catalysts with different ligand structures
JPH0625032A (en) Production of resource energy gas
CN1621498A (en) Method for preparing active semicoking H2S desulphurizer
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
Kizhakevariam et al. Coadsorption of bismuth with electrocatalytic molecules: A study of formic acid oxidation on Pt (100)
CN111013627A (en) Cu/OCN composite catalytic ozonolysis material and preparation method and application thereof
JP2000344689A (en) Synthesis of hydrocarbon-based substance from carbon dioxide and water
CN1156337C (en) Zns photocatalyst, its producing method and method for producing hydrogen using with the same catalyst
CN100453181C (en) Control method of catalyst activity
JPH0147758B2 (en)
JP4138294B2 (en) Process for producing activated carbon fiber for flue gas desulfurization
Nargesi et al. Design and Development of a promising Biochar-based Copper Catalyst.
Sato et al. Effects of pressure on the sucrose inversion over an immobilized invertase catalyst
JP2796754B2 (en) Mercury removal from liquid hydrocarbons
CN1350979A (en) Process of preparing nano carbon fibres as hydrogen-bearing material
Lenarda et al. Water gas shift reaction catalyzed by osmium carbonyls supported on zeolites
CN111068688A (en) Method for catalyzing methane cracking by using iron waste as catalyst