JPH06250122A - Optical isolator independent of polarization - Google Patents

Optical isolator independent of polarization

Info

Publication number
JPH06250122A
JPH06250122A JP5035351A JP3535193A JPH06250122A JP H06250122 A JPH06250122 A JP H06250122A JP 5035351 A JP5035351 A JP 5035351A JP 3535193 A JP3535193 A JP 3535193A JP H06250122 A JPH06250122 A JP H06250122A
Authority
JP
Japan
Prior art keywords
polarization
light
separated
birefringent plate
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5035351A
Other languages
Japanese (ja)
Other versions
JP2989984B2 (en
Inventor
Yasushi Sato
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5035351A priority Critical patent/JP2989984B2/en
Publication of JPH06250122A publication Critical patent/JPH06250122A/en
Application granted granted Critical
Publication of JP2989984B2 publication Critical patent/JP2989984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To save the handing time of alignment and to reduce the reflection and absorption losses for an ordinary ray and to improve a characteristic by arranging a birefringence plate for correcting a beam position only on one side optical path of separated beams. CONSTITUTION:This isolator is constituted so that a second birefringence plate 4 is actuated only to separated beam, and is constituted so as to be arranged in order of a first birefringence plate 2 separating the beam to two linear polarization according to a polarization direction, a Faraday rotator 3 imparting a nonreciprocal rotation to a polarization surface, the second birefringence plate 4 for correcting the beam position and a third birefringence plate 5 synthesizing a separated polarization. Then, the birefringence plate 4 is arranged on an optical path of only one side of the separated beam. The beam is separated to the normal beam fa-1 and an abnormal beam fb-1 by the birefringence plate 2 in a forward direction (A). Only the fb-2 is made incident on the birefringence substrate 4, and the position of the beam is shifted (fb-3). In a backward direction (B), the incident beam 6 is separated to the normal beam bb-1 and the abnormal ba-1, and the bb-1 is made incident on the birefringence substrate 4 and the beam position is shifted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ通信等に用
いられる光アイソレータに関するもので、より具体的に
は光ファイバ間に装着するような偏光無依存型アイソレ
ータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator used for optical fiber communication or the like, and more particularly to a polarization independent isolator mounted between optical fibers.

【0002】[0002]

【従来の技術】従来の偏光無依存型光アイソレータを図
2に示す。図において、(A)は順方向に進む光、
(B)は逆方向に進む光を表わし、1は入射光線、2は
複屈折板、例えば一軸結晶からその光軸が表面と傾く様
に切り出し平行平板に研磨したもので、この平行平板に
垂直に入射した光線を互いに垂直な2つの直線偏光に分
離する。この時、複屈折板中を直進する方の直線偏光を
常光線、複屈折を受け斜めに進むものを異常光線とい
う。なおこれらの光は複屈折板通過後は平行に伝搬す
る。3はYIG等で形成されたファラデー回転子であ
り、光の伝搬方向を軸に偏光面を45°回転させる。4
は光の伝搬方向を軸に複屈折板2と光学軸が45°の角
度を成すように設置された第2の複屈折板、5は光の伝
搬方向を軸に第1の複屈折板2の光学軸と5の光学軸が
−45°を成すよう設置された第3の複屈折板である。
2. Description of the Related Art A conventional polarization-independent optical isolator is shown in FIG. In the figure, (A) shows light traveling in the forward direction,
(B) represents light traveling in the opposite direction, 1 is an incident light beam, 2 is a birefringent plate, for example, a uniaxial crystal cut out so that its optical axis is inclined to the surface and polished into a parallel plate, which is perpendicular to the parallel plate. The light beam incident on is split into two linearly polarized lights that are perpendicular to each other. At this time, the linearly polarized light that goes straight through the birefringent plate is called an ordinary ray, and the one that receives birefringence and goes obliquely is called an extraordinary ray. These lights propagate in parallel after passing through the birefringent plate. Reference numeral 3 denotes a Faraday rotator formed of YIG or the like, which rotates the plane of polarization by 45 ° about the light propagation direction as an axis. Four
Is a second birefringent plate 2 installed so that the optical axis forms an angle of 45 ° with the birefringent plate 2 about the light propagation direction. Reference numeral 5 indicates the first birefringent plate 2 about the light propagation direction. Is a third birefringent plate installed so that the optical axis of 5 and the optical axis of 5 form −45 °.

【0003】この装置内を光が進む様子を側面から見た
のが図2(A)、(B)であり、図2中のビームの位置
と偏光方向を第1の複屈折板2の方向から見たものが図
3(A)、(B)である。矢印は偏光面の方向を表して
いる。第1の複屈折板2より光を入射した場合を順方
向、第3の複屈折板5より入射した場合を逆方向と定め
る。さらに簡単のため、2つに分離される直線偏光をそ
れぞれa、bとし、順方向はfa、fb、逆方向はb
a、bbと表す。番号は図2中の各位置に対応してい
る。
FIGS. 2A and 2B are side views of how light travels in this device. The position and polarization direction of the beam in FIG. 2 are the directions of the first birefringent plate 2. 3A and 3B are viewed from above. The arrow indicates the direction of the plane of polarization. The case where the light is incident from the first birefringent plate 2 is defined as the forward direction, and the case where the light is incident from the third birefringent plate 5 is defined as the reverse direction. For further simplification, the linearly polarized light split into two is a and b respectively, and the forward direction is fa and fb, and the reverse direction is b.
Represented as a and bb. The numbers correspond to the respective positions in FIG.

【0004】図2と図3を使ってアイソレータの動作原
理を説明する。順方向に入射した光は図2の様に互いに
垂直な2つの直線偏光になり平行して進む。fa−1が
常光で、fb−1が異常光になる。ファラデー回転子を
通過すると(fa−2)、(fb−2)偏光面が時計回
りに45°回転する。第2の複屈折板4では回転した偏
光面に対応してfa−2が常光、fb−2が異常光にな
るよう45°光学軸が回転させられ設置されているので
異常光のみ屈折を受けfb−3の様になる。第3の複屈
折板5では逆にfa−3が異常光、fb−3が常光にな
るよう光学軸が設定されいるため、2つの直交する偏光
はfa−4、fb−4のごとく合成されパワーの損失無
しに装置より出射される。
The operating principle of the isolator will be described with reference to FIGS. 2 and 3. Light incident in the forward direction becomes two linearly polarized lights which are perpendicular to each other as shown in FIG. 2 and travel in parallel. Fa-1 is the ordinary light and fb-1 is the extraordinary light. When the light passes through the Faraday rotator (fa-2), the plane of polarization (fb-2) rotates 45 ° clockwise. In the second birefringent plate 4, the optical axis is rotated by 45 ° so that fa-2 becomes ordinary light and fb-2 becomes extraordinary light corresponding to the rotated plane of polarization, so only extraordinary light is refracted. It becomes like fb-3. On the other hand, in the third birefringent plate 5, the optical axes are set so that fa-3 becomes extraordinary light and fb-3 becomes ordinary light. Therefore, two orthogonal polarized lights are combined as fa-4 and fb-4. Emitted from the device without loss of power.

【0005】一方逆方向では、第3の複屈折板5に入射
した光6は、ba−1(異常光)、bb−1(常光)の
様に直交する2つの偏光に分離される。第2の複屈折板
4の光学軸は第3の複屈折板5のそれとは直交している
のでba−1が常光線で直進しba−2に、bb−1が
異常光線となり屈折しbb−2の様になる。ファラデー
回転子により非相反な偏光面の回転を受けba−3、b
b−3になった光は第1の複屈折板2によりba−3は
異常光なので屈折しba−4になり、bb−3は常光な
ので直進しbb−4となる。よって順方向入射位置と異
なる位置に出射し順方向側の光学系と結合できず遮断さ
れる。
On the other hand, in the opposite direction, the light 6 incident on the third birefringent plate 5 is separated into two orthogonal polarizations such as ba-1 (extraordinary light) and bb-1 (ordinary light). Since the optical axis of the second birefringent plate 4 is orthogonal to that of the third birefringent plate 5, ba-1 goes straight as an ordinary ray to ba-2 and bb-1 becomes an extraordinary ray to be refracted bb. -It becomes like 2. The Faraday rotator rotates non-reciprocal polarization planes ba-3, b
The light that has become b-3 is refracted to ba-4 by the first birefringent plate 2 because ba-3 is extraordinary light and becomes bb-4 because it is an ordinary light and goes straight to bb-4. Therefore, the light is emitted at a position different from the forward incident position, cannot be coupled to the optical system on the forward side, and is blocked.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
従来技術では高価な複屈折素子を3枚用いるため全体と
して高価なものになってしまう。また複屈折素子に入出
射する際は常光と異常光の2つのビームがあるが、両者
を同時に正確にアライメントしなければならず、しかも
複屈折素子が3枚もあるためアライメントに非常に手間
がかかり、そのためコストアップにもつながる。
However, in the above-mentioned prior art, since three expensive birefringent elements are used, the cost becomes high as a whole. Further, when entering and exiting the birefringent element, there are two beams, an ordinary ray and an extraordinary ray, both of which must be accurately aligned at the same time, and since there are three birefringent elements, alignment is very troublesome. Therefore, the cost is increased.

【0007】[0007]

【課題を解決するための手段】前述のような問題点を解
決するために、従来例の図3をみると、順方向のfa−
2→fa−3、逆方向のba−1→ba−2は偏光面の
角度、ビームの位置とも何等変換を受けていないので、
この部分は複屈折素子がなくても全体の機能は変わらな
いことがわかる。そこで本発明は、第2の複屈折板4は
分離光bにのみ作用するように構造し、偏光方向により
光を2つの直線偏光に分離する第1の複屈折板と、偏光
面に非相反な回転を与えるファラデー回転子と、ビーム
位置補正用の第2の複屈折板と、分離された偏光を合成
する第3の複屈折板とをこの順に配置してなる偏光無依
存型光アイソレータであって、ビーム位置補正用の複屈
折板を分離されたビームの片方のみの光路上に配置した
偏光無依存型光アイソレータである。
In order to solve the above-mentioned problems, referring to FIG. 3 of a conventional example, a forward fa-
Since 2 → fa-3 and ba-1 → ba-2 in the opposite direction have not undergone any conversion with respect to the angle of the plane of polarization and the position of the beam,
It can be seen that the entire function of this portion does not change even without the birefringent element. Therefore, in the present invention, the second birefringent plate 4 is structured so as to act only on the separated light b, and the first birefringent plate that separates the light into two linearly polarized lights according to the polarization direction and the non-reciprocal polarization plane. A polarization-independent optical isolator in which a Faraday rotator that gives various rotations, a second birefringent plate for beam position correction, and a third birefringent plate that combines the separated polarized lights are arranged in this order. Therefore, it is a polarization-independent optical isolator in which a birefringent plate for correcting the beam position is arranged on the optical path of only one of the separated beams.

【0008】[0008]

【実施例】以下図面を用いて本発明の実施例を説明す
る。図1は本発明による偏光無依存型のアイソレータの
構造であり、第2の複屈折板4が分離光の片方にのみ作
用するよう配設されている。図1を用いて動作を説明す
ると、順方向(A)では、第1の複屈折板2によって常
光fa−1と異常光fb−1に分離される。2つのビー
ムはファラデー回転子3によってそれぞれ偏光面の回転
を受けfa−2、fb−2となる。第2の複屈折板4に
は、fb−2だけ入射し、ビームの位置がずれる(fb
−3)。fa−2はそのまま直進し、第3の複屈折板5
に入射する。複屈折板5ではfa−2が異常光、fb−
3が常光になるためfa−2のみ屈折を受け合成され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of a polarization-independent isolator according to the present invention, in which a second birefringent plate 4 is arranged so as to act on only one of the separated lights. The operation will be described with reference to FIG. 1. In the forward direction (A), the first birefringent plate 2 separates the ordinary light fa-1 and the extraordinary light fb-1. The two beams have their polarization planes rotated by the Faraday rotator 3 to become fa-2 and fb-2. Only fb-2 is incident on the second birefringent plate 4, and the position of the beam is displaced (fb
-3). fa-2 goes straight on and the third birefringent plate 5
Incident on. In the birefringent plate 5, fa-2 is extraordinary light and fb-
Since 3 becomes ordinary light, only fa-2 is refracted and combined.

【0009】一方、逆方向(B)は、入射光6は常光b
b−1と異常光ba−1に分離される。ba−1は直進
し、複屈折板4にはbb−1が入射しビーム位置がずれ
る(bb−2)。ファラデー回転子では非相反な偏光面
の回転を受け、具体的には順方向通過時と同じ方向に4
5°偏光面が回転しba−2、bb−3となる。第1の
複屈折板2に対してはba−2は異常光なので屈折し、
bb−3は常光なので直進し、ba−3、bb−4とな
り順方向入射光と軸がずれるため光は遮断される。この
ように、偏光面の回転、ビームの位置関係は従来と変わ
らない。
On the other hand, in the reverse direction (B), the incident light 6 is the ordinary light b.
It is separated into b-1 and extraordinary light ba-1. ba-1 goes straight, bb-1 is incident on the birefringent plate 4, and the beam position is displaced (bb-2). The Faraday rotator undergoes non-reciprocal rotation of the plane of polarization, and specifically, it moves in the same direction as when passing in the forward direction.
The 5 ° plane of polarization is rotated to become ba-2 and bb-3. Since ba-2 is extraordinary light with respect to the first birefringent plate 2, it is refracted,
Since bb-3 is an ordinary light, it goes straight and becomes ba-3 and bb-4, so that the light is blocked because the axis is deviated from the forward incident light. As described above, the rotation of the polarization plane and the positional relationship of the beams are the same as in the conventional case.

【0010】[0010]

【発明の効果】以上説明したように本発明の構成によれ
ば、複屈折板を小型化したことによりコストダウンがは
かられ、第2の複屈折板でのアライメントが異常光に対
してだけになり、アライメントの手間が減少し、かつ、
第2の複屈折板を通過する光が異常光だけになり、常光
線に対する反射、吸収損失が減少し特性が向上する。
As described above, according to the configuration of the present invention, the size of the birefringent plate is reduced, so that the cost can be reduced, and the alignment of the second birefringent plate can be performed only for extraordinary light. It reduces the trouble of alignment, and
The only light passing through the second birefringent plate is extraordinary light, which reduces the reflection and absorption loss of ordinary rays and improves the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光アイソレータの実施例で、(A)は
順方向入射光の動作、(B)は逆方向入射光の動作を示
す略図。
1A and 1B are schematic diagrams showing an operation of forward incident light and an operation of backward incident light, respectively, in an embodiment of an optical isolator of the present invention.

【図2】従来の偏光無依存型光アイソレータの例で、
(A)は順方向入射光、(B)は逆方向入射光に対する
動作を示す略図。
FIG. 2 shows an example of a conventional polarization-independent optical isolator,
6A is a schematic diagram showing an operation with respect to forward incident light and FIG.

【図3】従来例図2を第1の複屈折板2の方向から見た
ときの偏光方向とビーム位置を示す略図。
FIG. 3 is a schematic diagram showing a polarization direction and a beam position when the conventional example FIG. 2 is viewed from the direction of the first birefringent plate 2.

【符号の説明】[Explanation of symbols]

1 入射光 2,4,5 複屈折板 3 ファラデー回転子 1 incident light 2,4,5 birefringent plate 3 Faraday rotator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】偏光方向により光を2つの直線偏光に分離
する第1の複屈折板と、偏光面に非相反な回転を与える
ファラデー回転子と、ビーム位置補正用の第2の複屈折
板と、分離された偏光を合成する第3の複屈折板とをこ
の順に配置してなる偏光無依存型光アイソレータにおい
て、ビーム位置補正用の複屈折板を分離されたビームの
片方のみの光路上に配置したことを特徴とする偏光無依
存型光アイソレータ。
1. A first birefringent plate that separates light into two linearly polarized lights according to a polarization direction, a Faraday rotator that gives non-reciprocal rotation to a polarization plane, and a second birefringent plate for correcting beam position. And a third birefringent plate for synthesizing the separated polarized light in this order, in a polarization-independent optical isolator, a birefringent plate for correcting a beam position is provided on the optical path of only one of the separated beams. A polarization-independent optical isolator, characterized in that
JP5035351A 1993-02-24 1993-02-24 Polarization-independent optical isolator Expired - Fee Related JP2989984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035351A JP2989984B2 (en) 1993-02-24 1993-02-24 Polarization-independent optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035351A JP2989984B2 (en) 1993-02-24 1993-02-24 Polarization-independent optical isolator

Publications (2)

Publication Number Publication Date
JPH06250122A true JPH06250122A (en) 1994-09-09
JP2989984B2 JP2989984B2 (en) 1999-12-13

Family

ID=12439450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035351A Expired - Fee Related JP2989984B2 (en) 1993-02-24 1993-02-24 Polarization-independent optical isolator

Country Status (1)

Country Link
JP (1) JP2989984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197839A (en) * 2017-05-25 2018-12-13 株式会社鈴木松風堂 Stereoscopic image appreciation tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197839A (en) * 2017-05-25 2018-12-13 株式会社鈴木松風堂 Stereoscopic image appreciation tool

Also Published As

Publication number Publication date
JP2989984B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US7039262B2 (en) Depolarizer
JP2002268013A (en) Optical circulator
US6246807B1 (en) Optical circulator
US6246518B1 (en) Reflection type optical isolator
JP2989984B2 (en) Polarization-independent optical isolator
JP3161885B2 (en) Optical isolator
JPS61122624A (en) Optical isolator
US20030053209A1 (en) Dual stage optical isolator with reduced polarization mode dispersion and beam offset
US6751366B2 (en) Multi-port circulator
JP3610094B2 (en) Polarization-independent optical isolator
JPH09258136A (en) Optical circulator and optical switch
JP3176180B2 (en) Optical isolator
US6987896B1 (en) Optical isolator
JP3342067B2 (en) Polarizer and method of manufacturing the same
JP2002296544A (en) 3-port miniaturized optical circulator
JP2989983B2 (en) Optical isolator
JPH11160653A (en) Optical circulator
JP2977927B2 (en) Optical circuit element
JPH06160774A (en) Optical isolator
JPH04140709A (en) Optical isolator
JPH02173613A (en) Polarizing device
JPH04149406A (en) Optical isolator
JPH05224150A (en) Optical isolator device
JP2003114405A (en) Optical circulator
JPS6380222A (en) Polarizing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees