JPH06250108A - Compensation optical device and astronomical telescope, optical data link, and laser working machine using same - Google Patents

Compensation optical device and astronomical telescope, optical data link, and laser working machine using same

Info

Publication number
JPH06250108A
JPH06250108A JP5031989A JP3198993A JPH06250108A JP H06250108 A JPH06250108 A JP H06250108A JP 5031989 A JP5031989 A JP 5031989A JP 3198993 A JP3198993 A JP 3198993A JP H06250108 A JPH06250108 A JP H06250108A
Authority
JP
Japan
Prior art keywords
wavefront
light
laser beam
laser
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5031989A
Other languages
Japanese (ja)
Inventor
Yuji Ichinose
祐治 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5031989A priority Critical patent/JPH06250108A/en
Publication of JPH06250108A publication Critical patent/JPH06250108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Laser Beam Processing (AREA)
  • Telescopes (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To compensate the wave front distortion even for a weak light. CONSTITUTION:When an incident light 1 is reflected by a shape variable mirror 2 to compensate the distortion of a wave front 14, the reflected light is phase modulated by vibrating every region of the reflection surface of the mirror 2 using different frequencies. The phase modulated light is taken out by a beam splitter 3 and converged on a pin hole 7 by a lens 6. The converged light is interfered with a laser beam 11 outputted from a laser oscillator 9 and the light intensity is detected by a photodetector 8. A wave front controller 12 separates each phase modulated signal based on the light intensity, the amount of advance or retard of an actuator placed at each region of the mirror is decided by the signal and the regions are driven through a driving power supply 13. Since the detected each phase modulated signal is an alternating signal, the signal is amplified by the interference with the laser beam and the compensation is made for the distortion of weak light wave front whose intensity is less than the receiving level of the photodetector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザビーム等の光波の
波面の歪みを検出しこれを補正して波面を揃える補償光
学装置に係り、特に、微弱な光波でもその波面の歪みを
精度良く検出して補正するのに好適な補償光学装置と、
この補償光学装置を備える天体望遠鏡,光データリン
ク,レーザ加工機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adaptive optics device for detecting a wavefront distortion of a light wave such as a laser beam and correcting the wavefront to make the wavefront uniform, and more particularly, to accurately detect the wavefront distortion of a weak light wave. An adaptive optics device suitable for correction by
The present invention relates to an astronomical telescope, an optical data link, and a laser processing machine equipped with this adaptive optics.

【0002】[0002]

【従来の技術】天体を望遠鏡で観測する場合、星から地
球に届いた微弱な光が大気を通過し望遠鏡にとらえられ
ることになるが、大気の密度はムラがあるために、光の
波面はこのために揺らいでしまう。このため、像はぼけ
てしまい、高精度の観測ができなくなってしまう。そこ
で、例えば米国特許第3731103号、第39234
00号、第4141652号等に記載されている補償光
学装置が使用されることになる。この補償光学装置で
は、反射面の形状を任意形状に可変な形状可変鏡を用
い、波面の揺らぎに応じて反射面形状を歪ませ、波面が
揺らいだ入射光をこの反射面で反射させることで、波面
を揃えるようにしている。形状可変鏡の反射面を変形さ
せる制御は、反射面からの反射光の一部を取り出しこれ
を集光し、その光強度を光検出器で検出し、この光強度
から波面の揺らぎを求めることで行う。
2. Description of the Related Art When observing an astronomical object with a telescope, the faint light that reaches the earth from a star passes through the atmosphere and is captured by the telescope. However, since the density of the atmosphere is uneven, the wavefront of light is Because of this, it shakes. For this reason, the image is blurred and high-precision observation cannot be performed. Therefore, for example, U.S. Pat. Nos. 3,731,103 and 39,234.
The adaptive optics apparatus described in No. 00, No. 4141652, etc. will be used. In this adaptive optics device, by using a deformable mirror whose shape of the reflecting surface can be changed to an arbitrary shape, the reflecting surface shape is distorted according to the fluctuation of the wavefront, and the incident light whose wavefront fluctuates is reflected by this reflecting surface. , I try to align the wavefronts. The control to deform the reflecting surface of the deformable mirror is to extract a part of the reflected light from the reflecting surface, collect it, detect the light intensity with a photodetector, and obtain the fluctuation of the wavefront from this light intensity. Done in.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術に係る補
償光学装置を用いれば、波面の補正を精度良く行うこと
ができるので、これを天体望遠鏡に適用すればその分解
能が向上し、光通信に用いれば通信効率が向上し、レー
ザ加工機に用いれば高精度の加工が可能になる。しか
し、光検出器の検出感度以下の微弱な光の場合、波面の
揺らぎを検出することができなくなってしまう。天体観
測で補償光学装置が要求されるのは、非常に微弱な光し
か受信できない天体の観測であり、このために光検出器
を高感度のものを使用するが、限界がある。
If the adaptive optics device according to the above-mentioned prior art is used, the wavefront can be corrected with high accuracy. Therefore, if this is applied to an astronomical telescope, its resolution is improved and optical communication is achieved. If it is used, communication efficiency is improved, and if it is used in a laser processing machine, highly accurate processing becomes possible. However, when the light is weaker than the detection sensitivity of the photodetector, the fluctuation of the wavefront cannot be detected. The purpose of adaptive optics for astronomical observation is to observe astronomical objects that can only receive very weak light. For this purpose, a photodetector with high sensitivity is used, but there is a limit.

【0004】本発明の目的は、光検出器の検出感度以下
の光波の波面の揺らぎも検出してこれを補正することの
できる補償光学装置とこれを用いた天体望遠鏡等を提供
することにある。
An object of the present invention is to provide an adaptive optics device capable of detecting and correcting fluctuations in the wavefront of a light wave below the detection sensitivity of a photodetector, and an astronomical telescope using the same. .

【0005】[0005]

【課題を解決するための手段】上記目的は、光波(レー
ザビームを含む。)の波面歪を検出し波面歪を補正する
補償光学装置において、波面歪を補正する形状可変鏡
と、該形状可変鏡の反射面の特定の領域毎に光波を異な
る周波数で位相変調する手段と、位相変調された光波を
集光したものとレ−ザビ−ムとを干渉させた後にその強
度を検出する手段と、該強度から前記波面の歪みを検出
し形状可変鏡を制御する手段とを設けることで、達成さ
れる。
In the adaptive optics apparatus for detecting the wavefront distortion of a light wave (including a laser beam) and correcting the wavefront distortion, a variable shape mirror for correcting the wavefront distortion and a variable shape mirror are provided. Means for phase-modulating the light wave at different frequencies for each specific region of the reflecting surface of the mirror, and means for detecting the intensity of the laser beam after the interference of the condensed phase-modulated light wave with the laser beam. And means for controlling the deformable mirror by detecting the distortion of the wavefront from the intensity.

【0006】[0006]

【作用】形状可変鏡の反射面を分割した小領域毎に異な
る周波数で振動させ光波を各小領域対応に位相変調し、
これを集光し検出すると、その光強度に含まれる複数の
周波数成分の振幅は、各領域の光波の位相に比例する。
そこで、位相変調した光波を集光したものと、同一波長
のレ−ザとを光検出器上で干渉させることにより、上記
複数の周波数成分の振幅を検出器の受光レベル以上に増
幅することができる。このため、微弱な光でもその波面
の揺らぎを検出することが可能となる。
[Operation] The reflecting surface of the deformable mirror is oscillated at different frequencies for each of the divided small regions, and the light wave is phase-modulated for each small region.
When this is collected and detected, the amplitudes of the plurality of frequency components included in the light intensity are proportional to the phase of the light wave in each region.
Therefore, it is possible to amplify the amplitudes of the plurality of frequency components above the light receiving level of the detector by causing a light detector, which collects the phase-modulated light waves, and a laser having the same wavelength to interfere with each other on the photodetector. it can. Therefore, it is possible to detect the fluctuation of the wavefront even with weak light.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の第1実施例に係る補償光学装
置の構成図である。図1において、1は入射光、2は形
状可変鏡、3はビ−ムスプリッタ、4は形状可変鏡2で
反射された反射光でありビームスプリッタ3で分割され
ず直進する反射光が補償光学装置の出射光となる。5は
特定の波長のみ透過させるNDフィルタ、6はレンズ、
7はピンホ−ル、8は光検出器、9はレ−ザ発振器、1
0はレンズ、11はレ−ザビ−ム、12は波面制御装
置、13は形状可変鏡2の駆動電源である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a block diagram of an adaptive optics apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 is incident light, 2 is a variable shape mirror, 3 is a beam splitter, and 4 is reflected light reflected by the variable shape mirror 2. It becomes the light emitted from the device. 5 is an ND filter that transmits only a specific wavelength, 6 is a lens,
7 is a pinhole, 8 is a photodetector, 9 is a laser oscillator, 1
Reference numeral 0 is a lens, 11 is a laser beam, 12 is a wavefront control device, and 13 is a drive power source for the variable shape mirror 2.

【0008】補償光学装置では、形状可変鏡2の反射面
の各部を進退させて所要形状にゆがませ、大気の密度差
等で波面がゆがんだ入射光1をこの反射面で反射し、波
面の揃った出射光4として出射しようとするものであ
る。この様に波面を揃えることで、これを天体望遠鏡に
適用すると分解能が向上し、大出力レーザ加工装置(大
出力であると出力されるレーザ光自体がすでに歪んでい
る場合が多い)に適用するとレーザ光の集束度が高くな
って加工精度が向上し、光通信に用いれば正確な通信が
でき通信効率が向上する。
In the adaptive optics device, each part of the reflecting surface of the deformable mirror 2 is moved back and forth to be distorted into a desired shape, and the incident light 1 whose wavefront is distorted due to a difference in the density of the atmosphere is reflected by this reflecting surface to generate a wavefront. It is intended to be emitted as the emitted light 4 having a uniform line. By aligning the wavefronts in this way, the resolution is improved when this is applied to an astronomical telescope, and when applied to a high-power laser processing device (the output laser beam itself is often distorted at high power). The focusing degree of the laser light is increased to improve the processing accuracy, and if it is used for optical communication, accurate communication can be performed and communication efficiency is improved.

【0009】形状可変鏡2の反射面の背部に、例えば3
0個程度のアクチュエータを並列に並べ、各アクチュエ
ータの進退量を制御することで、反射面の形状を変形さ
せるのであるが、このとき、各アクチュエータを夫々異
なる周波数(1kHz程度のオーダー)で微小距離振動
させ、各アクチュエータの反射面領域で反射される光に
位相変調を与えるようにする。そして、反射光(出射
光)4の一部をビームスプリッタ3で取り出し、NDフ
ィルタ5に送る。NDフィルタ5は特定の波長域の光だ
けを透過させるものであり、入射光1と干渉させるレ−
ザ発振器9のレ−ザ波長と同一の波長の光のみを透過さ
せる。その透過光はレンズ6により焦点位置に集光さ
れ、ピンホ−ル7を通過した光が光検出器8で検出され
る。各アクチュエータに対応する反射面の各領域におけ
る光放射強度Um は次の数式1で示され、
On the back of the reflecting surface of the deformable mirror 2, for example, 3
By arranging about 0 actuators in parallel and controlling the amount of advance / retreat of each actuator, the shape of the reflecting surface is deformed. At this time, each actuator has a small distance at a different frequency (on the order of 1 kHz). The light is reflected by the reflecting surface area of each actuator so as to be phase-modulated. Then, a part of the reflected light (emitted light) 4 is taken out by the beam splitter 3 and sent to the ND filter 5. The ND filter 5 transmits only light in a specific wavelength range, and is a laser that interferes with the incident light 1.
Only light having the same wavelength as the laser wavelength of the oscillator 9 is transmitted. The transmitted light is condensed at the focal position by the lens 6, and the light passing through the pinhole 7 is detected by the photodetector 8. The light emission intensity Um in each region of the reflecting surface corresponding to each actuator is represented by the following mathematical formula 1,

【0010】[0010]

【数1】 [Equation 1]

【0011】レ−ザビ−ム11を加えない場合の光検出
器8で検出される光強度Ip は、次の数式2となる。
The light intensity Ip detected by the photodetector 8 when the laser beam 11 is not added is given by the following formula 2.

【0012】[0012]

【数2】 [Equation 2]

【0013】この数式2の第4項が位相変調信号を表
し、その振幅値は次の数式3となる。
The fourth term of the equation 2 represents the phase modulation signal, and its amplitude value is given by the following equation 3.

【0014】[0014]

【数3】 [Equation 3]

【0015】この数式3によれば、その振幅値は対応す
る領域の光の位相に比例するため、波面を検出できるこ
とがわかる。
According to the equation (3), the amplitude value is proportional to the phase of the light in the corresponding area, so that the wavefront can be detected.

【0016】そこで、ビームスプリッタで取り出した形
状可変鏡2の反射光に次の数式4の放射強度を持つレ−
ザビ−ム11を干渉させたとき
Therefore, the reflected light of the deformable mirror 2 extracted by the beam splitter has a radiation intensity of the following formula 4.
When you interfere with the beam 11

【0017】[0017]

【数4】 [Equation 4]

【0018】それぞれの位相変調信号の振幅値は、次の
数式5となる。
The amplitude value of each phase modulation signal is given by the following expression 5.

【0019】[0019]

【数5】 [Equation 5]

【0020】この数式5の第2項が、干渉により増幅さ
れる部分である。入射光1の強度が弱く反射光4の強度
が弱くなって、数式3で示される強度が光検出器8の受
光レベル以下になった場合には、レ−ザビ−ム11を干
渉させることにより、光検出器8の受光レベル以上に増
幅でき、検出が可能となる。
The second term of this equation 5 is the portion amplified by interference. When the intensity of the incident light 1 is weak and the intensity of the reflected light 4 is weak and the intensity represented by the formula 3 becomes lower than the light receiving level of the photodetector 8, the laser beam 11 is caused to interfere. , Can be amplified above the light receiving level of the photodetector 8 and can be detected.

【0021】図1において、レ−ザ発振器9から出力さ
れるレ−ザビ−ム11を、レンズ10により、レンズ6
が作る焦点位置に結像させて干渉させ、光検出器8でそ
の強度Ip を検出する。強度Ip は波面制御装置12に
入力され、形状可変鏡2の各アクチュエータの進退量を
制御するための指令値を決定し、駆動電源13により形
状可変鏡2の各アクチュエータを駆動し、波面を補正し
て揃える。
In FIG. 1, the laser beam 11 output from the laser oscillator 9 is converted into a lens 6 by a lens 10.
An image is formed at the focal point position created by the optical interference and the intensity is detected by the photodetector 8. The intensity Ip is input to the wavefront control device 12 to determine a command value for controlling the amount of advance / retreat of each actuator of the variable shape mirror 2, and the drive power source 13 drives each actuator of the variable shape mirror 2 to correct the wavefront. And arrange.

【0022】図2は波面制御装置12の構成図である。
形状可変鏡2の反射面を分割する領域の数と同数の制御
部15を設ける。各制御部15では、同期検波器16に
より、数式5で示される振幅値を検出し、制御器18に
より位相の指令値を決定する。また発振器17からの出
力を上記位相の指令値と加算し、駆動電源13に出力し
対応するアクチュエータを駆動し、形状可変鏡2で位相
変調と波面の補正を実現できる。なお、各制御部15に
おける発振器17の発振周波数は、それぞれ異なる周波
数に設定されることはいうまでもない。
FIG. 2 is a block diagram of the wavefront controller 12.
The same number of control units 15 as the number of regions into which the reflecting surface of the deformable mirror 2 is divided is provided. In each control unit 15, the synchronous detector 16 detects the amplitude value represented by Formula 5, and the controller 18 determines the phase command value. Further, the output from the oscillator 17 is added to the above-mentioned phase command value, which is output to the drive power source 13 to drive the corresponding actuator, and the variable shape mirror 2 can realize phase modulation and wavefront correction. Needless to say, the oscillation frequency of the oscillator 17 in each control unit 15 is set to a different frequency.

【0023】図1において、NDフィルタ5の挿入位置
はビ−ムスプリッタ3とレンズ6の間としたが、レ−ザ
ビ−ム11と干渉させる前であれば、ビ−ムスプリッタ
3の後段であればどの位置に挿入しても問題はない。ま
たピンホ−ル7は、レンズ6の回折限界内の光を取り出
すことにより信号のSN比を向上させるものであり、ピ
ンホ−ル7を省略しても信号の検出は可能である。この
ときは、光検出器8の受光面をレンズ6の焦点位置に設
置することはいうまでもない。また、レンズ10でレ−
ザビ−ム11をピンホ−ル7上に結像させるのは、レ−
ザビ−ム11の位相を揃えるためであり、レ−ザ発振器
9から出力されるレ−ザビ−ムの波面が揃っていればレ
ンズ10を設ける必要はない。
In FIG. 1, the ND filter 5 is inserted between the beam splitter 3 and the lens 6, but if it is not interfered with the laser beam 11, the ND filter 5 will be provided at a stage subsequent to the beam splitter 3. If there is any, it can be inserted at any position. Further, the pinhole 7 improves the SN ratio of the signal by extracting the light within the diffraction limit of the lens 6, and the signal can be detected even if the pinhole 7 is omitted. At this time, it goes without saying that the light receiving surface of the photodetector 8 is set at the focal position of the lens 6. In addition, the lens 10
The image of the beam 11 is formed on the pinhole 7 by a laser.
This is for aligning the phases of the beam 11 and the lens 10 is not necessary if the wave fronts of the laser beams output from the laser oscillator 9 are aligned.

【0024】図3は、本発明の第2実施例に係る補償光
学装置の構成図である。図3に示すように、ビ−ムスプ
リッタ3のところで、レ−ザ発振器9から出力されるレ
−ザビ−ム11を、形状可変鏡2で反射され位相変調さ
れた反射光4(ビームスプリッタ3で分割した反射光)
と重ねることによっても干渉させることができる。入射
光1を形状可変鏡2の反射面で位相変調しながら反射し
た後であれば、どの位置からでもレ−ザビ−ム11を重
ねることにより、位相変調信号を増幅することが可能で
ある。光検出器8で検出した光強度Ip を用いて上述し
たように形状可変鏡2を制御すれば、波面の補正が可能
であるあることはいうまでもない。
FIG. 3 is a block diagram of an adaptive optics apparatus according to the second embodiment of the present invention. As shown in FIG. 3, at the beam splitter 3, the laser beam 11 output from the laser oscillator 9 is reflected by the variable shape mirror 2 and the reflected light 4 (beam splitter 3) is phase-modulated. (Reflected light divided by)
It can also be interfered by overlapping with. After the incident light 1 is reflected by the reflecting surface of the variable shape mirror 2 while being phase-modulated, the phase-modulated signal can be amplified by overlapping the laser beam 11 from any position. It goes without saying that the wavefront can be corrected by controlling the deformable mirror 2 as described above using the light intensity Ip detected by the photodetector 8.

【0025】図4は、本発明の第3実施例に係る補償光
学装置の構成図である。本実施例では、形状可変鏡の代
わりに液晶マトリックス19を用いている。液晶マトリ
ックス19は液晶素子が2次元状に配列されたものであ
り、各素子ごとに異なる電界を加えることが可能であ
る。液晶マトリックス19を透過する光の位相は、印加
電圧を変えることにより制御可能であり、これにより位
相変調及び波面の補正が可能となる。図4では、入射光
1を液晶マトリックス19で位相変調及び波面の補正を
し、ビ−ムスプリッタ3で分けられた入射光1をレ−ザ
発振器9からのビ−ムと干渉させて、光検出器8で検出
するものである。形状可変鏡2を液晶マトリックス19
と入れ替えた以外は、図1と同じ構成であり、同様の動
作により波面が補正できる。また、図3で示した実施例
でも述べたように、レ−ザ発振器9の挿入位置を変える
ことができることはいうまでもない。
FIG. 4 is a block diagram of an adaptive optics apparatus according to the third embodiment of the present invention. In this embodiment, a liquid crystal matrix 19 is used instead of the deformable mirror. The liquid crystal matrix 19 is one in which liquid crystal elements are arranged two-dimensionally, and different electric fields can be applied to the respective elements. The phase of the light passing through the liquid crystal matrix 19 can be controlled by changing the applied voltage, which enables the phase modulation and the wavefront correction. In FIG. 4, the incident light 1 is phase-modulated by the liquid crystal matrix 19 and the wavefront is corrected, and the incident light 1 split by the beam splitter 3 is caused to interfere with the beam from the laser oscillator 9 to generate light. It is detected by the detector 8. The deformable mirror 2 is attached to the liquid crystal matrix 19
The configuration is the same as that of FIG. 1 except that the above is replaced, and the wavefront can be corrected by the same operation. Further, as described in the embodiment shown in FIG. 3, it goes without saying that the insertion position of the laser oscillator 9 can be changed.

【0026】図5は、本発明の第4実施例に係る補償光
学装置の構成図である。本実施例では、形状可変鏡2と
液晶マトリックス19の両方を用いている。入射光1は
形状可変鏡2で波面が補正されたあと、ビ−ムスプリッ
タ3で分けられ、一方はNDフィルタ5を透過し、液晶
マトリックス19で液晶素子毎に異なる周波数で位相変
調される。位相変調された光はレンズ6で集光され、こ
れとレ−ザビ−ム11とが干渉され、光検出器8で強度
Ip が検出される。強度Ip を用いて波面を検出し形状
可変鏡2で波面を制御するのは、上述した実施例と同様
である。
FIG. 5 is a block diagram of an adaptive optics apparatus according to the fourth embodiment of the present invention. In this embodiment, both the deformable mirror 2 and the liquid crystal matrix 19 are used. The incident light 1 has its wavefront corrected by the variable shape mirror 2 and then split by the beam splitter 3, one of which is transmitted through the ND filter 5 and is phase-modulated by the liquid crystal matrix 19 at a different frequency for each liquid crystal element. The phase-modulated light is condensed by the lens 6, the laser beam 11 interferes with this, and the photodetector 8 detects the intensity Ip. The wavefront is detected using the intensity Ip and the wavefront is controlled by the deformable mirror 2 as in the above-described embodiment.

【0027】図6は、天体望遠鏡に、上述した補償光学
装置を適用したときの構成図である。天体21を観測す
る天体望遠鏡22において、観測する光をレンズ6で平
行光にし、補償光学装置20への入射光1とする。補償
光学装置20では、上述した方法により波面を補正し、
大気の揺らぎにより乱れた入射光1の波面を揃える。こ
れにより、分解能が向上する。また、本実施例によれ
ば、従来は補正が不可能だった暗い天体からの光も補正
可能となる。なお、観測装置23においては、積分型の
撮像管を用いることにより天体像を観測できる。
FIG. 6 is a configuration diagram when the above-described adaptive optics device is applied to an astronomical telescope. In the astronomical telescope 22 for observing the celestial body 21, the light to be observed is collimated by the lens 6 to be incident light 1 to the adaptive optics device 20. In the adaptive optics device 20, the wavefront is corrected by the method described above,
The wavefronts of incident light 1 disturbed by atmospheric fluctuations are aligned. This improves the resolution. In addition, according to the present embodiment, it is possible to correct light from a dark celestial body that could not be corrected conventionally. In the observation device 23, an astronomical image can be observed by using an integral type image pickup tube.

【0028】図7は、天体望遠鏡の別実施例の構成図で
ある。観測対象とする天体21からの光が弱く、波面の
検出ができない場合の対策として、レ−ザ発振器9を用
い、観測対象の天体21と同じ方向にレ−ザビ−ム11
を出射し、大気により散乱されるレ−ザビ−ムを計測
し、波面の乱れを検出するものである。レ−ザビ−ムの
伝搬経路の総べてから散乱光が天体望遠鏡22に戻って
来るが、天体望遠鏡22の視野を絞ることにより、天体
と同様の点光源とみなすことができる。これをレ−ザガ
イド星25と呼んでいる。天体21からの光の波面とレ
−ザガイド星25からの光の波面との差を小さくするに
は、レ−ザガイド星25の高度を上げる必要があるが、
レ−ザビ−ムは大気により減衰するため大出力のレ−ザ
発振器9が必要となる。そこで本発明の補償光学装置2
0を用いれば波面検出のための信号を増幅できるため、
レ−ザ発振器9の出力を抑えることができる。
FIG. 7 is a block diagram of another embodiment of the astronomical telescope. As a countermeasure when the light from the celestial body 21 to be observed is weak and the wavefront cannot be detected, the laser beam 9 is used in the same direction as the celestial body 21 to be observed.
Is emitted, and the laser beam scattered by the atmosphere is measured to detect the turbulence of the wavefront. Although scattered light returns to the astronomical telescope 22 from all the propagation paths of the laser beam, it can be regarded as a point light source similar to the celestial body by narrowing the field of view of the astronomical telescope 22. This is called Laser Guide Star 25. To reduce the difference between the wavefront of the light from the celestial body 21 and the wavefront of the light from the laser guide star 25, it is necessary to raise the altitude of the laser guide star 25.
Since the laser beam is attenuated by the atmosphere, a large output laser oscillator 9 is required. Therefore, the adaptive optics device 2 of the present invention
Since the signal for wavefront detection can be amplified by using 0,
The output of the laser oscillator 9 can be suppressed.

【0029】次に、図8を用い、離れた2点間をレ−ザ
ビ−ムによりデ−タの送受信を行うレ−ザデ−タリンク
に補償光学装置を適用した実施例について説明する。図
8において、上部と下部は同一の装置構成となってお
り、レ−ザビ−ムを介してデ−タの送受信を行うもので
ある。まず上部から下部へ送信する場合について説明す
る。デ−タ送信装置28aで送信すべきデ−タをレ−ザ
の変調信号に変換し、レ−ザ発振器9aよりレ−ザを出
力する。そのレ−ザビ−ムは形状可変鏡2a、ミラ−3
及び送信光学系27aを介して遠方の受信光学系の方向
へ送信される。下部の送信光学系27bからも同様にレ
−ザビ−ムが送信されており、上部の受信光学系26a
では、そのレ−ザビ−ムを受信しビ−ムスプリッタ3a
により一方は光検出器8aで電気信号に変換されデ−タ
受信装置で情報として受け取る。他方は形状可変鏡2b
を介して補償光学装置20aに入力され、形状可変鏡2
bでレ−ザビ−ムの波面歪を補正する。補償光学装置2
0aから形状可変鏡2bへ与えられる指令と同じ制御信
号を形状可変鏡2aにも出力し、レ−ザ発振器9aから
出力されるレ−ザビ−ムの波面を補正し、送信するもの
である。両方の送受信装置が遠く離れている場合には、
双方のレ−ザビ−ムは同一の伝搬経路を通ると考えてよ
く、したがって上述の方法で送信するレ−ザビ−ムの波
面を補正できる。このようにレ−ザビ−ムの波面を補正
することにより、受信位置でのエネルギ密度を高めるこ
とができる。いま、上部から下部へ送信する場合につい
て説明したが、その逆の場合も同様の動作によりレ−ザ
ビ−ムの波面を補正できることはいうまでもない。
Next, with reference to FIG. 8, an embodiment in which an adaptive optical device is applied to a laser data link for transmitting and receiving data between two distant points by a laser beam will be described. In FIG. 8, the upper part and the lower part have the same device configuration, and data is transmitted and received via the laser beam. First, the case of transmitting from the upper part to the lower part will be described. The data transmitting device 28a converts the data to be transmitted into a laser modulated signal, and the laser oscillator 9a outputs the laser. The laser beam is a deformable mirror 2a and a mirror-3.
And is transmitted to the distant receiving optical system via the transmitting optical system 27a. A laser beam is similarly transmitted from the lower transmission optical system 27b, and the upper reception optical system 26a.
Then, the laser beam is received and the beam splitter 3a is received.
As a result, one of them is converted into an electric signal by the photodetector 8a and is received as information by the data receiving device. The other is a deformable mirror 2b
Is input to the adaptive optics device 20a via the
In b, the wavefront distortion of the laser beam is corrected. Adaptive optics 2
The same control signal as the command given from 0a to the variable shape mirror 2b is also output to the variable shape mirror 2a to correct and transmit the wave front of the laser beam output from the laser oscillator 9a. If both transceivers are far apart,
Both laser beams may be considered to follow the same propagation path, and thus the wave front of the transmitted laser beam may be corrected in the manner described above. By correcting the wavefront of the laser beam in this way, the energy density at the receiving position can be increased. Although the case of transmitting from the upper part to the lower part has been described, it goes without saying that the wavefront of the laser beam can be corrected by the same operation in the opposite case.

【0030】次に、図9を用い、レ−ザビ−ムで材料を
切断したり溶接するレ−ザ加工機に補償光学装置を適用
した実施例について説明する。図9において、レ−ザ発
振器9から出力されるレ−ザビ−ムは、形状可変鏡2及
びレンズ6aを介して加工材30上に照射される。加工
材30の表面で反射される光をレンズ6bで受光し光検
出器8で検出する。またレ−ザ発振器9から出力される
レ−ザビ−ムの一部をビ−ムスプリッタ3a,レンズ6
b及びビ−ムスプリッタ3bを用いて、加工材30から
の反射光と干渉させる。これにより、形状可変鏡2を制
御することで、加工材30に照射されるレーザの波面が
揃い、精度の高い加工が可能となる。本実施例を採用す
ることで、加工材30からの反射波が弱い場合でもレ−
ザ波面を検出し補正することができる。レ−ザ加工機の
場合はレ−ザ出力が高いため、大気の揺らぎのほかレ−
ザによる光学系の熱変形により波面がひずむので、補償
光学系を適用することで、常に高いエネルギ密度で加工
材30を照射することができる。
Next, with reference to FIG. 9, an embodiment in which an adaptive optics device is applied to a laser processing machine for cutting or welding a material with a laser beam will be described. In FIG. 9, the laser beam output from the laser oscillator 9 is irradiated onto the processed material 30 via the variable shape mirror 2 and the lens 6a. The light reflected by the surface of the processed material 30 is received by the lens 6b and detected by the photodetector 8. A part of the laser beam output from the laser oscillator 9 is used as a beam splitter 3a and a lens 6.
b and the beam splitter 3b are used to interfere with the reflected light from the processed material 30. With this, by controlling the deformable mirror 2, the wavefronts of the laser irradiated on the processing material 30 are aligned, and high-precision processing becomes possible. By adopting this embodiment, even if the reflected wave from the processed material 30 is weak,
The wavefront can be detected and corrected. In the case of a laser processing machine, the laser output is high, so in addition to fluctuations in the atmosphere,
Since the wavefront is distorted by the thermal deformation of the optical system due to the z, the adaptive optics can always be applied to the workpiece 30 with a high energy density.

【0031】[0031]

【発明の効果】本発明によれば、波面を補正しようとす
る光をレ−ザビ−ムとの干渉を用いて増幅し波面を検出
するため、光検出器の検出限界以下の弱い光の波面を補
正することができる。
According to the present invention, since the light whose wavefront is to be corrected is amplified by using the interference with the laser beam and the wavefront is detected, the wavefront of weak light below the detection limit of the photodetector is detected. Can be corrected.

【0032】このため、天体望遠鏡に適用すると、暗い
天体からの光の波面の補正が可能となり、高い分解能で
観測できる領域が広がるという効果を奏する。更に、弱
い光の波面を検出できるために、波面のみだれを検出す
るために作るレ−ザガイド星の生成用レ−ザ発振器の出
力を小さくできる。
Therefore, when applied to an astronomical telescope, it is possible to correct the wavefront of light from a dark celestial body, which has the effect of widening the region that can be observed with high resolution. Further, since the wavefront of weak light can be detected, the output of the laser oscillator for generating the laser guide star, which is made to detect the droop of the wavefront, can be reduced.

【0033】通信に適用した場合には、レ−ザビ−ムの
伝搬中に生じる波面の乱れによるビ−ムの拡がりを抑え
ることができ、高い到達エネルギ密度が得られ、送信レ
−ザ出力を小さくできる。
When it is applied to communication, it is possible to suppress the spread of the beam due to the disturbance of the wavefront generated during the propagation of the laser beam, a high arrival energy density can be obtained, and the transmission laser output can be obtained. Can be made smaller.

【0034】レーザ加工機に適用した場合には、伝搬中
に生じる波面の乱れの他に高いレ−ザエネルギによる光
学系の歪によるビ−ムの拡がりを抑えることができ、加
工材に照射されるレ−ザスポットを小さくできるため、
正確な加工が可能となる。
When it is applied to a laser processing machine, it is possible to suppress the spread of the beam due to the distortion of the optical system due to the high laser energy in addition to the disturbance of the wavefront generated during the propagation, and to irradiate the processed material. Since the laser spot can be made smaller,
Accurate processing is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る補償光学装置の構成
図である。
FIG. 1 is a configuration diagram of an adaptive optics apparatus according to a first embodiment of the present invention.

【図2】図1に示す波面制御装置の構成図である。FIG. 2 is a configuration diagram of the wavefront control device shown in FIG.

【図3】本発明の第2実施例に係る補償光学装置の構成
図である。
FIG. 3 is a configuration diagram of an adaptive optics device according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る補償光学装置の構成
図である。
FIG. 4 is a configuration diagram of an adaptive optics device according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る補償光学装置の構成
図である。
FIG. 5 is a configuration diagram of an adaptive optics device according to a fourth example of the present invention.

【図6】本発明の一実施例に係る天体望遠鏡の構成図で
ある。
FIG. 6 is a configuration diagram of an astronomical telescope according to an embodiment of the present invention.

【図7】本発明の他の実施例に係る天体望遠鏡の構成図
である。
FIG. 7 is a configuration diagram of an astronomical telescope according to another embodiment of the present invention.

【図8】本発明の一実施例に係るレ−ザデ−タリンクの
構成図である。
FIG. 8 is a configuration diagram of a laser data link according to an embodiment of the present invention.

【図9】本発明の一実施例に係るレ−ザ加工機の構成図
である。
FIG. 9 is a configuration diagram of a laser processing machine according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…入射光、2…形状可変鏡、3…ビ−ムスプリッタ、
4…出射光、5…NDフィルタ、6…レンズ、7…ピン
ホ−ル、8…光検出器、9…レ−ザ発振器、10…レン
ズ、11…レ−ザビ−ム、12…波面制御装置、13…
駆動電源、14…波面、15…制御部、16…同期検波
器、17…発振器、18…制御器、19…液晶マトリッ
クス、20…補償光学装置、21…天体、22…天体望
遠鏡、23…観測装置、24…チルトミラ−、25…レ
−ザガイド星、26…受信光学系、27…送信光学系、
28…送信装置、29…受信装置、30…加工材。
1 ... Incident light, 2 ... Deformable mirror, 3 ... Beam splitter,
4 ... Emitted light, 5 ... ND filter, 6 ... Lens, 7 ... Pinhole, 8 ... Photodetector, 9 ... Laser oscillator, 10 ... Lens, 11 ... Laser beam, 12 ... Wavefront control device , 13 ...
Drive power supply, 14 ... Wavefront, 15 ... Control part, 16 ... Synchronous detector, 17 ... Oscillator, 18 ... Controller, 19 ... Liquid crystal matrix, 20 ... Compensation optical device, 21 ... Astronomical object, 22 ... Astronomical telescope, 23 ... Observation Device, 24 ... Tilt mirror, 25 ... Laser guide star, 26 ... Receiving optical system, 27 ... Transmitting optical system,
28 ... Transmitting device, 29 ... Receiving device, 30 ... Processing material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/13 505 9017−2K ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G02F 1/13 505 9017-2K

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 光波の波面歪を検出し波面歪を補正する
補償光学装置において、波面歪を補正する形状可変鏡
と、該形状可変鏡の反射面の特定の領域毎に光波を異な
る周波数で位相変調する手段と、位相変調された光波を
集光したものとレ−ザビ−ムとを干渉させた後にその強
度を検出する手段と、該強度から前記波面の歪みを検出
し形状可変鏡を制御する手段とを備えることを特徴とす
る補償光学装置。
1. An adaptive optics device for detecting wavefront distortion of a light wave and correcting the wavefront distortion, wherein a variable shape mirror for correcting the wavefront distortion and a light wave having a different frequency for each specific region of a reflecting surface of the variable shape mirror. A phase-modulating means, a means for detecting the intensity of the laser beam after the interference of the phase-modulated light wave and the laser beam, and a deformable mirror for detecting the wavefront distortion from the intensity. And a means for controlling the adaptive optics device.
【請求項2】 光波の波面歪を検出し波面歪を補正する
補償光学装置において、波面歪を補正する形状可変鏡
と、波面が補正された該形状可変鏡の反射光を入射光と
する液晶素子を二次元的に配列した液晶マトリクスと、
各液晶素子毎に印加する電界を制御して前記入射光の位
相変調を行う手段と、位相変調された光波を集光したも
のとレ−ザビ−ムとを干渉させた後にその強度を検出す
る手段と、該強度から前記波面の歪みを検出し形状可変
鏡を制御する手段とを備えることを特徴とする補償光学
装置。
2. An adaptive optics device for detecting a wavefront distortion of a light wave and correcting the wavefront distortion, and a variable shape mirror for correcting the wavefront distortion, and a liquid crystal in which the reflected light of the variable shape mirror with the corrected wavefront is incident light. A liquid crystal matrix in which elements are arranged two-dimensionally,
A means for phase-modulating the incident light by controlling the electric field applied to each liquid crystal element, and a laser beam that interferes with the condensed phase-modulated light wave are detected. An adaptive optics apparatus comprising: means and means for detecting distortion of the wavefront from the intensity and controlling a deformable mirror.
【請求項3】 光波の波面歪を検出し波面歪を補正する
補償光学装置において、波面歪を補正する光波を入射光
とする液晶素子を二次元的に配列した液晶マトリクス
と、各液晶素子毎に印加する電界を制御して前記入射光
の波面の歪みを補正すると共に位相変調を行う制御手段
と、位相変調された光波を集光したものとレ−ザビ−ム
とを干渉させた後にその強度を検出する手段と、該強度
から前記波面の歪みを検出し前記制御手段を制御する手
段とを備えることを特徴とする補償光学装置。
3. An adaptive optics device for detecting wavefront distortion of a light wave and correcting the wavefront distortion, wherein a liquid crystal matrix in which liquid crystal elements having a light wave for correcting the wavefront distortion as incident light are arranged two-dimensionally, and each liquid crystal element Control means for correcting the distortion of the wavefront of the incident light by controlling the electric field applied to the incident light and for performing phase modulation, and after the interference of the laser beam with the condensed phase-modulated light wave An adaptive optics device comprising: a unit for detecting intensity; and a unit for detecting distortion of the wavefront from the intensity and controlling the control unit.
【請求項4】 請求項1乃至請求項3のいずれかにおい
て、前記位相変調した光波を特定波長のみ透過する光学
フィルタを通した後に集光し該特定波長と同一波長のレ
ーザビームと干渉させることを特徴とする補償光学装
置。
4. The method according to claim 1, wherein the phase-modulated light wave is condensed after passing through an optical filter that transmits only a specific wavelength, and interferes with a laser beam having the same wavelength as the specific wavelength. An adaptive optics device.
【請求項5】 請求項1乃至請求項4のいずれかにおい
て、干渉させるレ−ザビ−ムを干渉させる位置に集光さ
せる手段を設けたことを特徴とする補償光学装置。
5. An adaptive optics apparatus according to claim 1, further comprising means for condensing an interfering laser beam at a position where it interferes.
【請求項6】 天体を観測する天体望遠鏡において、請
求項1乃至請求項5のいずれかに記載の補償光学装置を
設け、観測する光の波面歪を補正した後に観測すること
を特徴とする天体望遠鏡。
6. An astronomical telescope for observing an astronomical object, wherein the adaptive optics device according to claim 1 is provided, and observation is performed after correcting the wavefront distortion of the observed light. telescope.
【請求項7】 請求項6において、レ−ザ発振器と該レ
−ザ発振器からのレ−ザビ−ムを観測対象の天体方向へ
出射する手段とを設けたことを特徴とする天体望遠鏡。
7. The astronomical telescope according to claim 6, further comprising a laser oscillator and means for emitting a laser beam from the laser oscillator toward an astronomical object to be observed.
【請求項8】 遠方に離れた二点間でレ−ザビ−ムによ
り情報を伝達する光デ−タリンクにおいて、受信したレ
−ザビ−ムから波面の歪を検出する手段と、該手段で検
出した波面と位相共役な波面を持つレ−ザビ−ムを送信
する手段とを設けたことを特徴とする光デ−タリンク。
8. In an optical data link for transmitting information by a laser beam between two points distant from each other, means for detecting wavefront distortion from the received laser beam, and means for detecting the wavefront distortion. And a means for transmitting a laser beam having a wavefront that is phase conjugate with the above-mentioned wavefront.
【請求項9】 遠方に離れた二点間でレ−ザビ−ムによ
り情報を伝達する光デ−タリンクにおいて、請求項1乃
至請求項5のいずれかに記載の補償光学装置を設けたこ
とを特徴とする光デ−タリンク。
9. An adaptive optical device according to any one of claims 1 to 5 is provided in an optical data link for transmitting information by a laser beam between two points distant from each other. Characteristic optical data link.
【請求項10】 加工材にレ−ザを照射することにより
加工材を加工するレ−ザ加工機において、請求項1乃至
請求項5のいずれかに記載の補償光学装置を設け、加工
材に照射されるレーザビームの波面を揃えることを特徴
とするレ−ザ加工機。
10. A laser processing machine for processing a processed material by irradiating the processed material with a laser, wherein the adaptive optics device according to claim 1 is provided, and the processed material is processed. A laser processing machine, which is characterized in that the wavefronts of laser beams to be irradiated are aligned.
JP5031989A 1993-02-22 1993-02-22 Compensation optical device and astronomical telescope, optical data link, and laser working machine using same Pending JPH06250108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031989A JPH06250108A (en) 1993-02-22 1993-02-22 Compensation optical device and astronomical telescope, optical data link, and laser working machine using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031989A JPH06250108A (en) 1993-02-22 1993-02-22 Compensation optical device and astronomical telescope, optical data link, and laser working machine using same

Publications (1)

Publication Number Publication Date
JPH06250108A true JPH06250108A (en) 1994-09-09

Family

ID=12346335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031989A Pending JPH06250108A (en) 1993-02-22 1993-02-22 Compensation optical device and astronomical telescope, optical data link, and laser working machine using same

Country Status (1)

Country Link
JP (1) JPH06250108A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510860A (en) * 2001-11-27 2005-04-21 エイエスエムエル ネザランドズ ベスローテン フエンノートシャップ Imaging device
JP2006113185A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Laser processing apparatus
JP2006523330A (en) * 2003-03-31 2006-10-12 シーディーエム オプティックス, インコーポレイテッド System and method for minimizing the effects of aberrations in an imaging system
JP2008241896A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Phase distribution controller
JP2010169424A (en) * 2009-01-20 2010-08-05 Nikon Corp Apparatus for evaluating optical performance
JP2012178183A (en) * 2012-06-04 2012-09-13 Raitoron Kk Device, method and program for restoring deteriorated image
JP2013197280A (en) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp Optical phase synchronization laser
KR20160100516A (en) * 2015-02-16 2016-08-24 한국원자력연구원 Quality improvement apparatus of laser beam
CN108347284A (en) * 2018-02-08 2018-07-31 青岛海信宽带多媒体技术有限公司 A kind of photoreceiver and optical module
USRE48338E1 (en) 2010-12-21 2020-12-01 Cailabs Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510860A (en) * 2001-11-27 2005-04-21 エイエスエムエル ネザランドズ ベスローテン フエンノートシャップ Imaging device
JP2006523330A (en) * 2003-03-31 2006-10-12 シーディーエム オプティックス, インコーポレイテッド System and method for minimizing the effects of aberrations in an imaging system
JP2006113185A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Laser processing apparatus
JP2008241896A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Phase distribution controller
JP2010169424A (en) * 2009-01-20 2010-08-05 Nikon Corp Apparatus for evaluating optical performance
USRE48338E1 (en) 2010-12-21 2020-12-01 Cailabs Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect
JP2013197280A (en) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp Optical phase synchronization laser
JP2012178183A (en) * 2012-06-04 2012-09-13 Raitoron Kk Device, method and program for restoring deteriorated image
KR20160100516A (en) * 2015-02-16 2016-08-24 한국원자력연구원 Quality improvement apparatus of laser beam
CN108347284A (en) * 2018-02-08 2018-07-31 青岛海信宽带多媒体技术有限公司 A kind of photoreceiver and optical module

Similar Documents

Publication Publication Date Title
US4005935A (en) Method and apparatus for providing a phase compensated optical beam
US8716677B2 (en) Wavefront correction of light beam
CN100476378C (en) Method and apparatus for determining characteristic of laser beam spot
TWI384332B (en) Laser drawing method and apparatus
CA2235238C (en) High energy laser focal sensor
CA2363928A1 (en) System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
CN112748510A (en) Scanning type automatic focusing method and device with automatic leveling function
JPH06250108A (en) Compensation optical device and astronomical telescope, optical data link, and laser working machine using same
CN108398774B (en) Light sheet microscope
KR20170137181A (en) Runtime alignment system and method of spot scanning wafer inspection system
US20200081126A1 (en) Laser radar device
US20080210673A1 (en) Femtosecond Laser Micromachining Device with Dynamic Bean Conformation
WO2016039148A1 (en) Light irradiating device and light irradiating method
JPS63278020A (en) Laser beam scanner
US6888118B2 (en) Method, apparatus and scanning microscope with means for stabilizing the temperature of optical components
JP7397317B2 (en) Aberration control method for laser processing equipment
US7440478B2 (en) Laser beam path length difference detector, laser phase controller, and coherent optical coupler
JPH11223747A (en) Laser optical device
JPH10239600A (en) Compensating optical device, optical space communication device using it, laser range finder, and laser finishing machine
JP2006026699A (en) Laser beam machining apparatus and its method
JP2000098271A (en) Galvano-mirror drive device
RU2584185C1 (en) Laser receiver
JP2024526821A (en) Localization of singularized fluorophores by continuous movement of a focused light beam around the molecule
RU2540451C1 (en) Laser location system
US4048492A (en) Method and apparatus for automatic focusing an optical system with a scanning grating