JPH06250081A - Chromatic aberration compensating element - Google Patents

Chromatic aberration compensating element

Info

Publication number
JPH06250081A
JPH06250081A JP5138302A JP13830293A JPH06250081A JP H06250081 A JPH06250081 A JP H06250081A JP 5138302 A JP5138302 A JP 5138302A JP 13830293 A JP13830293 A JP 13830293A JP H06250081 A JPH06250081 A JP H06250081A
Authority
JP
Japan
Prior art keywords
chromatic aberration
wavelength
optical axis
correction element
aberration correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5138302A
Other languages
Japanese (ja)
Other versions
JP3306170B2 (en
Inventor
Koichi Maruyama
晃一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP13830293A priority Critical patent/JP3306170B2/en
Priority to US08/091,983 priority patent/US5629799A/en
Priority to DE4323971A priority patent/DE4323971C2/en
Publication of JPH06250081A publication Critical patent/JPH06250081A/en
Priority to US08/386,091 priority patent/US5914822A/en
Priority to US08/630,597 priority patent/US5796520A/en
Priority to US08/802,404 priority patent/US5883744A/en
Priority to US08/802,386 priority patent/US5969862A/en
Priority to US08/801,459 priority patent/US5838497A/en
Priority to US09/190,365 priority patent/US6118597A/en
Application granted granted Critical
Publication of JP3306170B2 publication Critical patent/JP3306170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a chromatic aberration compensating element capable of compensating an on-axis chromatic aberration generated in a positive lens and restricting the change of a spherical aberration to be small even when a light beam having a wavelength not contiguous to is changed over for use. CONSTITUTION:A divergent wave front having an excess spherical aberration is generated to the incidence of a parallel light beam having a wavelength shorter than a reference wavelength and a convergent wave front having a few spherical aberration is generated to the incidence of a parallel light beam having a wavelength longer than the reference wavelength. Concretely, an element scarsely having the refractive power is formed by sticking together both a positive and a negative lenses having no difference of a refractive index and different dispersions and the stuck surface r2 is made an aspherical surface whose absolute value of the radius of curvature gets smaller as the surface is separated from the optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光学系の持つ色収差
を補正する素子に関し、特に、色収差以外の収差が補正
された非球面単レンズと組み合せて利用される色収差補
正素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for correcting chromatic aberration of an optical system, and more particularly to a chromatic aberration correcting element used in combination with an aspherical single lens in which aberrations other than chromatic aberration are corrected.

【0002】[0002]

【従来の技術】近年、光ディスク用の対物レンズには、
軽量化のために両面非球面の単レンズが使われるように
なっている。しかし、非球面単レンズでは色収差の補正
はできない。
2. Description of the Related Art In recent years, objective lenses for optical disks have been
A single lens with aspherical surfaces on both sides has been used for weight reduction. However, chromatic aberration cannot be corrected with an aspherical single lens.

【0003】光ディスク装置の光源として用いられてい
る半導体レーザーは、出力パワーの変化、あるいは温度
の変化により発光波長がシフトする。このため、対物レ
ンズの色収差が補正されていない場合には、光束の集光
位置が波長のシフトにより変化し、情報の読取、書込み
に誤りを生じる可能性がある。
The emission wavelength of a semiconductor laser used as a light source of an optical disk device shifts due to a change in output power or a change in temperature. For this reason, if the chromatic aberration of the objective lens is not corrected, the focal position of the light beam may change due to the wavelength shift, and errors may occur in reading and writing of information.

【0004】この問題を解決するため、本発明者らは、
ガラスレンズを2枚、あるいは3枚貼り合わせた色収差
補正素子を発明した(特開平3-155514号公報、特開平3-1
55515公報参照)。この色収差補正素子を非球面単レンズ
と組み合せて使用することにより、波長変動による影響
を受けないレンズを比較的小型で提供できた。
In order to solve this problem, the present inventors have
The present invention invented a chromatic aberration correction element in which two or three glass lenses are bonded together (Japanese Patent Laid-Open No. 3-155514 and Japanese Patent Laid-Open No. 3-1555).
55515). By using this chromatic aberration correction element in combination with an aspherical single lens, a lens that is not affected by wavelength fluctuations can be provided in a relatively small size.

【0005】これらの色収差補正素子は、光学系のほぼ
アフォーカルな部分に配置され、対物レンズの軸上色収
差を打ち消すように、波長により平行光を発散光あるい
は収束光に変える作用を有している。
These chromatic aberration correction elements are arranged in almost afocal portions of the optical system, and have the function of changing parallel light into divergent light or convergent light depending on the wavelength so as to cancel the axial chromatic aberration of the objective lens. There is.

【0006】色収差を補正されるべきレンズは、一般に
単一の波長で球面収差が補正された正レンズである。正
レンズの焦点距離は、可視光近傍の波長では波長が短い
場合には短く、波長が長い場合には長くなる。したがっ
て、軸上色収差を打ち消してピント位置の移動を防ぐた
めには、正レンズに入る光束を短波長光の場合には発散
光、長波長光の場合には収束光とすればよい。
A lens whose chromatic aberration is to be corrected is generally a positive lens whose spherical aberration is corrected at a single wavelength. The focal length of the positive lens is short when the wavelength is short at a wavelength near visible light, and is long when the wavelength is long. Therefore, in order to cancel the axial chromatic aberration and prevent the focus position from moving, the light flux entering the positive lens may be divergent light for short wavelength light and convergent light for long wavelength light.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の色収差補正素子を用いた光学系は、軸上色収差
の補正はできるものの、波長の変化により球面収差が変
化するため、特に波長変化の幅が大きい場合には、変化
する前後の両波長において良好な性能を保つことはでき
なかった。
However, although the optical system using the above-described conventional chromatic aberration correcting element can correct axial chromatic aberration, spherical aberration changes due to wavelength change, so that the range of wavelength change is particularly large. When is large, it was not possible to maintain good performance at both wavelengths before and after the change.

【0008】基準波長において補正されている正レンズ
の球面収差は、屈折率が高くなる短波長光に対してはア
ンダーとなり、屈折率が低くなる長波長光に対してはオ
ーバーとなる。これが、球面収差の波長による変化であ
る。
The spherical aberration of the positive lens corrected at the reference wavelength becomes under for short wavelength light with a high refractive index and over for long wavelength light with a low refractive index. This is the change in spherical aberration with wavelength.

【0009】一方、従来の色収差補正素子の作用により
平行光が発散光、あいるは収束光に変化すると、この変
化は正レンズ側からは無限遠にあった物点が有限の距離
に変化したことと等価であるため、球面収差が変化す
る。この変化により、正レンズへの入射光が発散光とな
ると球面収差がアンダーとなり、収束光となるとオーバ
ーとなる。これが、色収差補正素子の作用により発生す
る球面収差の変化である。
On the other hand, when the parallel light is changed to divergent light or converging light by the action of the conventional chromatic aberration correcting element, this change changes the object point at infinity from the positive lens side to a finite distance. Since this is equivalent to that, the spherical aberration changes. Due to this change, when the incident light on the positive lens becomes divergent light, the spherical aberration becomes under, and when it becomes convergent light, it becomes over. This is the change in spherical aberration generated by the action of the chromatic aberration correction element.

【0010】これらの2つの要因による球面収差の変化
は、同一の方向に表れるため、従来の色収差補正素子を
用いた光学系では補正することができなかった。
Since changes in spherical aberration due to these two factors appear in the same direction, they cannot be corrected by an optical system using a conventional chromatic aberration correcting element.

【0011】使用波長帯域が半導体レーザーの発振波長
の変化程度の狭い場合には球面収差の変化も僅かである
ため問題が少ないが、より広い範囲の波長の変化、例え
ば近赤外の半導体レーザー(780nm)と可視赤色半導体レ
ーザー(680nm)、あるいはHe-Neレーザー(633nm)とYAGレ
ーザーのSHG波(532nm)のように接近していない波長の光
源を切り換えて使用する場合、または同時に複数の波長
を使用する場合等には、球面収差の変化も大きくなるた
め、何らかの対策が必要となる。
When the used wavelength band is narrow such that the change of the oscillation wavelength of the semiconductor laser is small, the change of spherical aberration is also small, so there is little problem, but the change of wavelength in a wider range, for example, near infrared semiconductor laser ( (780 nm) and visible red semiconductor laser (680 nm), or He-Ne laser (633 nm) and YAG laser SHG wave (532 nm) such as SHG waves (532 nm). If, for example, is used, the change in spherical aberration also becomes large, so some measure is required.

【0012】[0012]

【発明の目的】この発明は、上述した従来技術の課題に
鑑みてなされたものであり、正レンズで発生する軸上色
収差を補正すると共に、接近していない波長の光束を切
り換えて使用する場合にも、球面収差の変化を小さく抑
えることができる色収差補正素子を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and in the case of correcting the axial chromatic aberration generated in the positive lens and switching the light beams of wavelengths which are not close to each other. Another object of the present invention is to provide a chromatic aberration correction element capable of suppressing a change in spherical aberration to be small.

【0013】[0013]

【課題を解決するための手段】この発明にかかる色収差
補正素子は、上記の目的を達成させるため、基準波長よ
り短い波長の平行光束の入射に対してはオーバーな球面
収差を持つ発散波面を発生し、基準波長より長い波長の
平行光束の入射に対してはアンダーな球面収差を持つ集
光波面を発生することを特徴とする。
In order to achieve the above object, a chromatic aberration correcting element according to the present invention generates a divergent wavefront having an excessive spherical aberration with respect to the incidence of a parallel light beam having a wavelength shorter than the reference wavelength. However, it is characterized in that it generates a converging wavefront having spherical aberration that is under the incidence of a parallel light flux having a wavelength longer than the reference wavelength.

【0014】[0014]

【実施例】以下、この発明にかかる色収差補正素子の実
施例を説明する。
Embodiments of the chromatic aberration correction element according to the present invention will be described below.

【0015】色収差補正素子により、正レンズの波長に
よる球面収差の変化分と正レンズへの発散光、収束光の
入射により発生する球面収差とを補正するためには、色
収差補正効果を持つ面を球面収差を発生する形状にすれ
ばよい。そこで、この発明の色収差補正素子は、基準波
長より短い波長の平行光束の入射に対してはオーバーな
球面収差を持つ発散波面を発生し、基準波長より長い波
長の平行光束の入射に対してはアンダーな球面収差を持
つ集光波面を発生するよう構成されている。
In order to correct the amount of change in spherical aberration due to the wavelength of the positive lens and the spherical aberration generated by the incidence of divergent light and convergent light on the positive lens with the chromatic aberration correction element, a surface having a chromatic aberration correction effect is used. The shape may be such that spherical aberration is generated. Therefore, the chromatic aberration correction element of the present invention generates a divergent wavefront having an excessive spherical aberration with respect to the incidence of a parallel light flux having a wavelength shorter than the reference wavelength, and has a divergence wavefront with respect to the incidence of a parallel light flux having a wavelength longer than the reference wavelength. It is configured to generate a focused wavefront with under spherical aberration.

【0016】具体的な色収差補正素子のタイプとして
は、基準波長においてほぼ屈折率差を持たず分散が異な
る二種の材質を用いた正レンズと負レンズとを貼り合わ
せて構成される屈折型と、光入射、射出端面の少なくと
も一面を光軸に対して垂直な平面を光軸に対して同心円
状の輪帯として階段状に形成した回折型とが考えられ
る。そして、屈折型の場合には貼合わせ面、回折型の場
合には階段状に形成された面の巨視的な湾曲であるベー
スカーブを、その曲率半径が光軸から離れるに従ってそ
の絶対値が小さくなる非球面とすることにより、上述し
た球面収差を発生させることができる。
As a concrete type of the chromatic aberration correction element, there are a refraction type constructed by bonding a positive lens and a negative lens using two kinds of materials having substantially no difference in refractive index and different dispersion at the reference wavelength. A diffractive type is conceivable in which at least one of the light incident and exit end faces is formed in a stepwise manner with a plane perpendicular to the optical axis as a concentric ring zone with respect to the optical axis. Then, in the case of the refraction type, the pasted surface, and in the case of the diffraction type, the absolute value becomes smaller as the radius of curvature of the base curve, which is a macroscopic curve of the surface formed in a stepwise manner, decreases. With such an aspherical surface, the spherical aberration described above can be generated.

【0017】一般に、低次の球面収差は入射高さに対し
4次の関数の形になるため、色補正素子の面を4次の非
球面性を持つ面とすれば、概ね球面収差変化を補正でき
る。ただし、補正対象となる正レンズとして非球面単レ
ンズを用いる場合には、色収差補正素子の非球面を正の
円錐定数を有する回転楕円面に近い非球面とすれば、高
次の球面収差変化成分も含めて補正できる。
Generally, low-order spherical aberration has a form of a fourth-order function with respect to the incident height. Therefore, if the surface of the color correction element is a surface having a fourth-order asphericity, the spherical aberration change is almost the same. Can be corrected. However, when an aspherical single lens is used as the positive lens to be corrected, if the aspherical surface of the chromatic aberration correction element is an aspherical surface close to a spheroidal surface having a positive conic constant, high-order spherical aberration change components It can be corrected including.

【0018】また、上記の回転楕円面に近い非球面は、
光軸からの距離hの点における回転楕円面からのズレ量
ε(h)を(1)式で表すとき、通過する光束の有効な最大
の半径内の全ての距離hにおいて、屈折型の場合には
(2)式、回折型の場合には(4)式の条件を満たすことが
望ましい。
The aspherical surface close to the above-mentioned spheroid is
When the amount of deviation ε (h) from the spheroid at the point of distance h from the optical axis is expressed by equation (1), in the case of refraction type at all distances h within the effective maximum radius of the passing light beam. In
In the case of the formula (2) and the diffraction type, it is desirable that the condition of the formula (4) is satisfied.

【0019】[0019]

【数1】 ε(h)=ΔX(h)−Ch2/(1−√(1−(1+K)C22))…(1) |ε(h)|<λ/ΔnMAX …(2) |ε(h)|<λ/(n−1) …(4) ただし、ΔX(h)は非球面のサグ量、Cは、近軸曲率、
Kは、円錐定数、λは、最大使用波長、ΔnMAXは、使
用波長帯域の中で貼り合わせ面前後の媒質の屈折率の差
のもっとも大きい状態の屈折率差の絶対値、nは、屈折
率である。
## EQU1 ## ε (h) = ΔX (h) -Ch 2 / (1-√ (1- (1 + K) C 2 h 2 )) ... (1) | ε (h) | <λ / ΔnMAX ... (2 ) | Ε (h) | <λ / (n-1) (4) where ΔX (h) is the sag amount of the aspherical surface, C is the paraxial curvature,
K is the conic constant, λ is the maximum usable wavelength, ΔnMAX is the absolute value of the refractive index difference in the state where the difference in the refractive index of the media before and after the bonding surface is the largest in the used wavelength band, and n is the refractive index. Is.

【0020】なお、回折型の色収差補正素子の場合、光
軸からの距離hの点の光軸方向のベースカーブの変位量
をΔX(h)として、階段状に形成された面の光軸からの
距離hの点の変位量ΔX'(h)は(3)式により与えられ
る。
In the case of a diffractive chromatic aberration correction element, the displacement amount of the base curve in the optical axis direction at a point at a distance h from the optical axis is ΔX (h), and from the optical axis of the surface formed in a stepwise manner. The displacement amount ΔX ′ (h) of the point at the distance h of is given by the equation (3).

【0021】[0021]

【数2】 ΔX'(h)=(mλ0/(n-1))Int((ΔX(h)/(mλ0/(n-1)))+0.5)…(3) ただし、mは、整数、nは、屈折率、λ0は、色収差補
正素子を用いる波長あるいは波長域内の任意の一波長、
Int(x)は、xを越えない整数を与える関数である。
## EQU2 ## ΔX '(h) = (mλ0 / (n-1)) Int ((ΔX (h) / (mλ0 / (n-1))) + 0.5) (3) where m is an integer , N is the refractive index, λ0 is the wavelength using the chromatic aberration correction element or any one wavelength within the wavelength range,
Int (x) is a function that gives an integer that does not exceed x.

【0022】(2)式は、屈折型の色収差補正素子を用い
る場合に、光路長差が1λ以下となる条件であり、同様
に(4)式は、回折型の色収差補正素子を用いる場合に、
光路長差が1λ以下となる条件であり、上限を越える場
合は波面収差rms値が0.1λを越えるため光情報記録再生
用としては用いることができない。
Expression (2) is a condition that the optical path length difference is 1λ or less when a refraction type chromatic aberration correction element is used. Similarly, Expression (4) is used when a diffraction type chromatic aberration correction element is used. ,
It is a condition that the optical path length difference is 1 λ or less, and if it exceeds the upper limit, the wavefront aberration rms value exceeds 0.1 λ and cannot be used for optical information recording / reproducing.

【0023】図1は、実施例1−3の色収差補正素子に
より補正される正の対物レンズのレンズ図である。具体
的な数値構成は表1に示されている。表中、NAは開口
比、fは焦点距離、ωは半画角、fbはバックフォーカ
ス、rは曲率半径、dはレンズ厚若しくは空気間隔、n
iは波長inmでの屈折率、νはアッベ数である。なお、
第1面、第2面が両面非球面の対物レンズ、第3面、第
4面が光ディスクのカバーガラスを示している。
FIG. 1 is a lens diagram of a positive objective lens which is corrected by the chromatic aberration correction element of Example 1-3. The specific numerical configuration is shown in Table 1. In the table, NA is aperture ratio, f is focal length, ω is half angle of view, fb is back focus, r is radius of curvature, d is lens thickness or air gap, n
i is the refractive index at the wavelength inm, and ν is the Abbe number. In addition,
The first and second surfaces are objective lenses having aspherical surfaces on both sides, and the third and fourth surfaces are cover glasses for optical disks.

【0024】非球面は、光軸からの高さがYとなる非球
面上の座標点の非球面頂点の接平面からの距離をX、非
球面頂点の曲率(1/r)をC、円錐係数をK、4次、6次、8
次、10次の非球面係数をA4,A6,A8,A10として、以下の式
で表される。
The aspherical surface is defined by a distance X from the tangent plane of the aspherical vertex of a coordinate point on the aspherical surface having a height Y from the optical axis, a curvature (1 / r) of the aspherical vertex C, and a cone. Coefficients K, 4th, 6th, 8
Next, the tenth-order aspherical surface coefficients are represented by the following formulas with A4, A6, A8, and A10.

【0025】[0025]

【数3】 X = (CY2/(1+√(1-(1+K)C2Y2))) + A4Y4 + A6Y6 + A8Y8 + A10Y10 [Equation 3] X = (CY 2 / (1 + √ (1- (1 + K) C 2 Y 2 ))) + A4Y 4 + A6Y 6 + A8Y 8 + A10Y 10

【0026】これらの円錐係数、非球面係数は、表2に
示される。図2は、球面収差SA、正弦条件SC、波長780n
m,680nmにおける球面収差によって示される色収差を示
している。
Table 2 shows the conical coefficient and the aspherical coefficient. Fig. 2 shows spherical aberration SA, sine condition SC, wavelength 780n.
7 shows the chromatic aberration exhibited by spherical aberration at m, 680 nm.

【0027】[0027]

【表1】 NA=0.55 f=3.00 ω=1.4° fb=1.088 面番号 r d n588 ν n780 n680 1 1.894 2.200 1.49700 81.6 1.49282 1.49461 2 -4.186 1.088 3 ∞ 1.200 1.58547 29.9 1.57346 1.57834 4 ∞[Table 1] NA = 0.55 f = 3.00 ω = 1.4 ° fb = 1.088 Surface number rd n588 ν n780 n680 1 1.894 2.200 1.49700 81.6 1.49282 1.49461 2 -4.186 1.088 3 ∞ 1.200 1.58547 29.9 1.57346 1.57834 4 ∞

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【実施例1】図3は、この発明の実施例1にかかる屈折
型の色収差補正素子を図1に示される対物レンズと組み
合せた光学系を示す。実施例1の色収差補正素子は、貼
合わせ面r2が楕円面であり、ε(h)は有効径内におい
て0である。この光学系の具体的な数値構成は、表3に
示されている。第1−3面が色収差補正素子、第4、5
面が対物レンズ、第6、7面が光ディスクのカバーガラ
スである。この例では、第2、4、5面が非球面であ
り、それらの非球面係数は、表4に示されている。図4
は、この構成による球面収差、色収差を示す。
EXAMPLE 1 FIG. 3 shows an optical system in which the refractive chromatic aberration correction element according to Example 1 of the present invention is combined with the objective lens shown in FIG. In the chromatic aberration correction element of Example 1, the bonding surface r2 is an elliptical surface, and ε (h) is 0 within the effective diameter. The specific numerical configuration of this optical system is shown in Table 3. The first to third surfaces are chromatic aberration correction elements, and the fourth and fifth surfaces are
The surface is the objective lens, and the sixth and seventh surfaces are the cover glass of the optical disk. In this example, the second, fourth, and fifth surfaces are aspherical surfaces, and their aspherical surface coefficients are shown in Table 4. Figure 4
Shows spherical aberration and chromatic aberration due to this configuration.

【0030】[0030]

【表3】 FNO=1:0.9 f=3.00 ω=1.4° fb=0.00 面番号 r d n588 ν n780 n680 1 ∞ 2.000 1.75500 52.3 1.74523 1.74940 2 -4.400 1.000 1.76182 26.5 1.74404 1.75132 3 ∞ 任意 4 1.894 2.200 1.49700 81.6 1.49282 1.49461 5 -4.186 1.088 6 ∞ 1.200 1.58547 29.9 1.57346 1.57834 7 ∞[Table 3] FNO = 1: 0.9 f = 3.00 ω = 1.4 ° fb = 0.00 Surface number r d n588 ν n780 n680 1 ∞ 2.000 1.75500 52.3 1.74523 1.74940 2 -4.400 1.000 1.76182 26.5 1.74404 1.75132 3 ∞ arbitrary 4 1.894 2.200 1.49700 81.6 1.49282 1.49461 5 -4.186 1.088 6 ∞ 1.200 1.58547 29.9 1.57346 1.57834 7 ∞

【0031】[0031]

【表4】 第4面 第5面 第2面 K =-0.5800 K = 0.0000 K = 0.2500×10 A4 = 0.7540×10-3 A4 = 0.3250×10-1 A6 =-0.3670×10-4 A6 =-0.1000×10-1 A8 = 0.2800×10-4 A8 = 0.2000×10-2 A10 =-0.3600×10-4 A10 =-0.1820×10-3 [Table 4] 4th surface 5th surface 2nd surface K = -0.5800 K = 0.0000 K = 0.2500 × 10 A4 = 0.7540 × 10 -3 A4 = 0.3250 × 10 -1 A6 = -0.3670 × 10 -4 A6 =- 0.1000 x 10 -1 A8 = 0.2800 x 10 -4 A8 = 0.2000 x 10 -2 A10 = -0.3600 x 10 -4 A10 = -0.1820 x 10 -3

【0032】図5は、実施例1と同様の構成において、
貼合わせ面r2を球面とした光学系を示し、図6は、図
5の光学系による球面収差、色収差を示す。図4と図6
とを比較することにより、貼合わせ面を球面から楕円面
に変えることにより、波長変動による球面収差の変化量
が小さくなることが理解できる。
FIG. 5 shows a configuration similar to that of the first embodiment.
An optical system in which the bonding surface r2 is a spherical surface is shown, and FIG. 6 shows spherical aberration and chromatic aberration by the optical system in FIG. 4 and 6
By comparing with, it can be understood that by changing the bonding surface from a spherical surface to an elliptical surface, the amount of change in spherical aberration due to wavelength fluctuation is reduced.

【0033】[0033]

【実施例2】図7は、回折型の色収差補正素子を図1に
示した対物レンズと組み合せた光学系を示す。回折型の
色収差補正素子は、図8(a)、(b)に示すように、光軸
に対して垂直な平面を光軸に対して同心円状の輪帯とし
て階段状に形成して構成されている。
Second Embodiment FIG. 7 shows an optical system in which a diffractive chromatic aberration correction element is combined with the objective lens shown in FIG. As shown in FIGS. 8 (a) and 8 (b), the diffractive chromatic aberration correction element is formed by forming a plane perpendicular to the optical axis in a stepwise manner as concentric ring zones with respect to the optical axis. ing.

【0034】表5は、実施例2の回折型の色収差補正素
子を図1に示した対物レンズと組み合せた光学系の構成
を示す。この色収差補正素子は、階段状に形成された面
r1の巨視的な湾曲であるベースカーブが4次非球面と
されている。図9は、この構成による球面収差、色収差
をそれぞれ示す。
Table 5 shows the configuration of an optical system in which the diffractive chromatic aberration correction element of Example 2 is combined with the objective lens shown in FIG. In this chromatic aberration correcting element, the base curve, which is a macroscopic curve of the stepwise formed surface r1, is a quaternary aspherical surface. FIG. 9 shows spherical aberration and chromatic aberration due to this configuration, respectively.

【0035】この例では、第1、3、4面が非球面であ
り、それらの非球面係数は、表6に示されている。
In this example, the first, third and fourth surfaces are aspherical surfaces, and their aspherical surface coefficients are shown in Table 6.

【0036】[0036]

【表5】 FNO=1:0.9 f=3.00 ω=1.4° fb=0.00 面番号 r d n588 ν n780 n680 1 -104.400 1.000 1.51633 64.1 1.51072 1.51315 2 ∞ 任意 3 1.894 2.200 1.49700 81.6 1.49282 1.49461 4 -4.186 1.090 5 ∞ 1.200 1.58547 29.9 1.57346 1.57834 6 ∞[Table 5] FNO = 1: 0.9 f = 3.00 ω = 1.4 ° fb = 0.00 Surface number r d n588 ν n780 n680 1 -104.400 1.000 1.51633 64.1 1.51072 1.51315 2 ∞ Arbitrary 3 1.894 2.200 1.49700 81.6 1.49282 1.49461 4 -4.186 1.090 5 ∞ 1.200 1.58547 29.9 1.57346 1.57834 6 ∞

【0037】[0037]

【表6】 第3面 第4面 第1面 K =-0.5800 K = 0.0000 K = 0.0000 A4 = 0.7540×10-3 A4 = 0.3250×10-1 A4 =-0.3400×10-3 A6 =-0.3670×10-4 A6 =-0.1000×10-1 A8 = 0.2800×10-4 A8 = 0.2000×10-2 A10 =-0.3600×10-4 A10 =-0.1820×10-3 [Table 6] Third surface Fourth surface First surface K = -0.5800 K = 0.0000 K = 0.0000 A4 = 0.7540 × 10 -3 A4 = 0.3250 × 10 -1 A4 = -0.3400 × 10 -3 A6 = -0.3670 × 10 -4 A6 = -0.1000 x 10 -1 A8 = 0.2800 x 10 -4 A8 = 0.2000 x 10 -2 A10 = -0.3600 x 10 -4 A10 = -0.1820 x 10 -3

【0038】[0038]

【実施例3】表7は、実施例3の色収差補正素子を図1
に示した対物レンズと組み合せた光学系の構成を示す。
この色収差補正素子の階段状に形成された面r1の巨視
的な湾曲であるベースカーブは楕円面であり、ε(h)は
有効径内において0である。図10は、この構成による
球面収差、色収差をそれぞれ示す。この例では、第1、
3、4面が非球面であり、それらの非球面係数は、表8
に示されている。
[Embodiment 3] Table 7 shows the chromatic aberration correction element of Embodiment 3 shown in FIG.
The structure of an optical system combined with the objective lens shown in FIG.
The base curve, which is a macroscopic curve of the stepped surface r1 of the chromatic aberration correction element, is an elliptical surface, and ε (h) is 0 within the effective diameter. FIG. 10 shows spherical aberration and chromatic aberration due to this configuration, respectively. In this example, the first,
The third and fourth surfaces are aspherical surfaces, and their aspherical surface coefficients are shown in Table 8.
Is shown in.

【0039】[0039]

【表7】 FNO=1:0.9 f=3.00 ω=1.4° fb=0.00 面番号 r d n588 ν n780 n680 1 -104.400 1.000 1.51633 64.1 1.51072 1.51315 2 ∞ 任意 3 1.894 2.200 1.49700 81.6 1.49282 1.49461 4 -4.186 5 ∞ 1.200 1.58547 29.9 1.57346 1.57834 6 ∞[Table 7] FNO = 1: 0.9 f = 3.00 ω = 1.4 ° fb = 0.00 Surface number rd n588 ν n780 n680 1 -104.400 1.000 1.51633 64.1 1.51072 1.51315 2 ∞ Arbitrary 3 1.894 2.200 1.49700 81.6 1.49282 1.49461 4 -4.186 5 ∞ 1.200 1.58547 29.9 1.57346 1.57834 6 ∞

【0040】[0040]

【表8】 第3面 第4面 第1面 K =-0.5800 K = 0.0000 K = 0.2000×10+4 A4 = 0.7540×10-3 A4 = 0.3250×10-1 A6 =-0.3670×10-4 A6 =-0.1000×10-1 A8 = 0.2800×10-4 A8 = 0.2000×10-2 A10 =-0.3600×10-4 A10 =-0.1820×10-3 [Table 8] 3rd surface 4th surface 1st surface K = -0.5800 K = 0.0000 K = 0.2000 × 10 +4 A4 = 0.7540 × 10 -3 A4 = 0.3250 × 10 -1 A6 = -0.3670 × 10 -4 A6 = -0.1000 × 10 -1 A8 = 0.2800 × 10 -4 A8 = 0.2000 × 10 -2 A10 = -0.3600 × 10 -4 A10 = -0.1820 × 10 -3

【0041】図11は、実施例2、3と同様の構成で、
階段状に形成された面のベースカーブを球面とした場合
の球面収差、色収差を示す。図9、10と比較すること
により、4次非球面、楕円面とすることにより、球面の
場合と比較して球面収差の波長変動を小さく抑えること
ができるのが理解できる。
FIG. 11 shows a configuration similar to that of the second and third embodiments.
The spherical aberration and chromatic aberration when the base curve of the surface formed in a step shape is a spherical surface are shown. By comparing with FIGS. 9 and 10, it can be understood that the fourth-order aspherical surface and the elliptic surface make it possible to suppress the wavelength variation of spherical aberration smaller than that in the case of a spherical surface.

【0042】図12は、実施例4−5の色収差補正素子
による補正対象となる両面非球面の正の単レンズであ
る。具体的な数値構成は、表9および10に示されてい
る。このレンズ単独での球面収差、およびその波長633n
m、532nmにおける球面収差で表される色収差は、図13
に示される。
FIG. 12 shows a positive single lens having aspherical surfaces on both sides which is to be corrected by the chromatic aberration correcting element of Example 4-5. Specific numerical configurations are shown in Tables 9 and 10. Spherical aberration of this lens alone and its wavelength 633n
The chromatic aberration represented by spherical aberration at m and 532 nm is shown in FIG.
Shown in.

【0043】[0043]

【表9】 [Table 9]

【0044】[0044]

【表10】 [Table 10]

【0045】[0045]

【実施例4】図14は、この発明の実施例4にかかる屈
折型の色収差補正素子を図12に示した対物レンズと組
み合せた光学系の説明図である。具体的な数値構成は表
11及び12に示されている。色収差補正素子の貼合わ
せ面r2は、楕円面であり、ε(h)は有効径内において
0である。図15は、この構成による球面収差、色収差
を示す。
[Embodiment 4] FIG. 14 is an explanatory diagram of an optical system in which a refractive chromatic aberration correction element according to Embodiment 4 of the present invention is combined with the objective lens shown in FIG. Specific numerical configurations are shown in Tables 11 and 12. The bonding surface r2 of the chromatic aberration correction element is an elliptical surface, and ε (h) is 0 within the effective diameter. FIG. 15 shows spherical aberration and chromatic aberration with this configuration.

【0046】[0046]

【表11】 FNO=1:0.9 f=3.29 ω=1.7° fb=0.00 面番号 r d n588 ν n633 n532 1 ∞ 0.800 1.74077 27.8 1.73541 1.74959 2 2.280 2.000 1.74100 52.7 1.73804 1.74567 3 ∞ 任意 4 2.180 2.250 1.54358 55.6 1.54151 1.54680 5 -6.250 1.332 6 ∞ 1.200 1.58547 29.9 1.58156 1.59194 7 ∞[Table 11] FNO = 1: 0.9 f = 3.29 ω = 1.7 ° fb = 0.00 Surface number r d n588 ν n633 n532 1 ∞ 0.800 1.74077 27.8 1.73541 1.74959 2 2.280 2.000 1.74100 52.7 1.73804 1.74567 3 ∞ arbitrary 4 2.180 2.250 1.54358 55.6 1.54151 1.54680 5 -6.250 1.332 6 ∞ 1.200 1.58547 29.9 1.58156 1.59194 7 ∞

【0047】[0047]

【表12】 第4面 第5面 第2面 K =-0.3265 K = 0.0000 K = 0.6000 A4 =-0.2263×10-2 A4 = 0.1670×10-1 A6 =-0.5014×10-3 A6 =-0.5080×10-2 A8 =-0.7162×10-5 A8 = 0.8000×10-3 A10 =-0.3194×10-4 A10 =-0.4848×10-4 [Table 12] 4th surface 5th surface 2nd surface K = -0.3265 K = 0.0000 K = 0.6000 A4 = -0.2263 × 10 -2 A4 = 0.1670 × 10 -1 A6 = -0.5014 × 10 -3 A6 = -0.5080 × 10 -2 A8 = -0.7162 × 10 -5 A8 = 0.8000 × 10 -3 A10 = -0.3 194 × 10 -4 A10 = -0.4848 × 10 -4

【0048】図16は、上記と同様の構成で色収差補正
素子の貼合わせ面r2を球面とした光学系を示し、図1
7はその球面収差を示す。楕円面の採用により、両波長
における球面収差の形状を近付けると共に、全体的にも
球面収差の量を減らすことができる。
FIG. 16 shows an optical system having the same structure as that described above, in which the bonding surface r2 of the chromatic aberration correction element is spherical.
Reference numeral 7 indicates the spherical aberration. By adopting the elliptical surface, the shapes of spherical aberrations at both wavelengths can be made close to each other and the amount of spherical aberrations can be reduced as a whole.

【0049】[0049]

【実施例5】図18は、この発明の実施例5にかかる回
折型の色収差補正素子と図12に示した対物レンズとを
組み合せた光学系の説明図であり、具体的な数値構成は
表11及び12に示される。この例では、色収差補正素
子の階段状に形成された面のベースカーブは楕円面であ
り、ε(h)は有効径内において0である。この構成によ
る球面収差、色収差は、図19に示される。
[Embodiment 5] FIG. 18 is an explanatory view of an optical system in which a diffractive chromatic aberration correction element according to Embodiment 5 of the present invention and the objective lens shown in FIG. 12 are combined. Shown at 11 and 12. In this example, the base curve of the step-shaped surface of the chromatic aberration correction element is an elliptical surface, and ε (h) is 0 within the effective diameter. The spherical aberration and chromatic aberration due to this configuration are shown in FIG.

【0050】[0050]

【表13】 f=3.29 ω=1.7° fb=0.00 面番号 r d n588 ν n633 n532 1 ∞ 2.000 1.51633 64.1 1.51462 1.51900 2 41.000 任意 3 2.180 2.250 1.54358 55.6 1.54151 1.54680 4 -6.250 1.341 5 ∞ 1.200 1.58547 29.9 1.58156 1.59194 6 ∞[Table 13] f = 3.29 ω = 1.7 ° fb = 0.00 Surface number r d n588 ν n633 n532 1 ∞ 2.000 1.51633 64.1 1.51462 1.51900 2 41.000 arbitrary 3 2.180 2.250 1.54358 55.6 1.54151 1.54680 4 -6.250 1.341 5 ∞ 1.200 1.58547 29.9 1.58156 1.59194 6 ∞

【0051】[0051]

【表14】 第3面 第4面 第1面 K =-0.3265 K = 0.0000 K = 0.2450×10+3 A4 =-0.2263×10-2 A4 = 0.1670×10-1 A6 =-0.5014×10-3 A6 =-0.5080×10-2 A8 =-0.7162×10-5 A8 = 0.8000×10-3 A10 =-0.3194×10-4 A10 =-0.4848×10-4 [Table 14] 3rd surface 4th surface 1st surface K = -0.3265 K = 0.0000 K = 0.2450 x 10 +3 A4 = -0.2263 x 10 -2 A4 = 0.1670 x 10 -1 A6 = -0.5014 x 10 -3 A6 = -0.5080 x 10 -2 A8 = -0.7162 x 10 -5 A8 = 0.8000 x 10 -3 A10 = -0.3194 x 10 -4 A10 = -0.4848 x 10 -4

【0052】図20は、上記の実施例5と同様の構成で
色収差補正素子の階段状に形成された面のベースカーブ
を球面にした場合の球面収差、色収差を示す。図19と
図20とを比較することにより、ベースカーブを楕円面
にすることにより球面収差の変動を抑えられることが理
解できる。
FIG. 20 shows spherical aberration and chromatic aberration when the base curve of the stepwise surface of the chromatic aberration correction element is spherical with the same configuration as in the above-mentioned fifth embodiment. By comparing FIG. 19 and FIG. 20, it can be understood that the variation of the spherical aberration can be suppressed by making the base curve an elliptical surface.

【0053】[0053]

【発明の効果】以上説明したように、この発明によれ
ば、波長の変動による収束レンズの軸上色収差を補正す
るのみでなく、球面収差の変動をも抑えることができる
ため、従来より広い範囲で波長の変動による光学系の性
能の変化を抑えることができる。
As described above, according to the present invention, not only the axial chromatic aberration of the converging lens due to the fluctuation of the wavelength can be corrected but also the fluctuation of the spherical aberration can be suppressed. Thus, it is possible to suppress the change in the performance of the optical system due to the change in wavelength.

【0054】したがって、比較的離れた2波長を用いる
光情報記録装置、発光ダイオードや白色光源を用いる情
報読取装置にも色収差が補正されていないレンズを用い
ることができ、光学系をコンパクトに構成することがで
きる。
Therefore, a lens whose chromatic aberration has not been corrected can be used in an optical information recording device using two wavelengths relatively distant from each other and an information reading device using a light emitting diode or a white light source, and the optical system can be made compact. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1−3の色収差補正素子により補正さ
れる正の対物レンズのレンズ図である。
FIG. 1 is a lens diagram of a positive objective lens that is corrected by a chromatic aberration correction element of Example 1-3.

【図2】 図1に示される対物レンズ単独での球面収
差、色収差図である。
FIG. 2 is a diagram of spherical aberration and chromatic aberration of the objective lens shown in FIG. 1 alone.

【図3】 図1に示されるレンズに貼合わせ面が楕円面
である実施例1の屈折型の色収差補正素子とを組み合せ
た光学系のレンズ図である。
FIG. 3 is a lens diagram of an optical system in which the lens shown in FIG. 1 is combined with the refraction type chromatic aberration correction element of Example 1 in which the bonding surface is an elliptical surface.

【図4】 図3に示される光学系の球面収差、色収差図
である。
FIG. 4 is a spherical aberration and chromatic aberration diagram of the optical system shown in FIG.

【図5】 図1に示される対物レンズと貼合わせ面が球
面である屈折型の色収差補正素子とを組み合せた光学系
のレンズ図である。
5 is a lens diagram of an optical system in which the objective lens shown in FIG. 1 and a refraction type chromatic aberration correction element having a spherical bonding surface are combined.

【図6】 図5に示される光学系の球面収差、色収差図
である。
FIG. 6 is a diagram of spherical aberration and chromatic aberration of the optical system shown in FIG.

【図7】 図1に示されるレンズと回折型の色収差補正
素子とを組み合せた光学系のレンズ図である。
FIG. 7 is a lens diagram of an optical system in which the lens shown in FIG. 1 and a diffractive chromatic aberration correction element are combined.

【図8】 回折型色収差補正素子の階段状の面の構成を
示す説明図であり、(a)は側面図、(b)は平面図であ
る。
8A and 8B are explanatory views showing a configuration of a stepped surface of the diffractive chromatic aberration correction element, wherein FIG. 8A is a side view and FIG. 8B is a plan view.

【図9】 図7に示される光学系において、階段状の面
のベースカーブが楕円面である実施例2の回折型色収差
補正素子を用いた場合の球面収差、色収差図である。
9 is a diagram of spherical aberration and chromatic aberration in the case where the diffractive chromatic aberration correction element of Example 2 in which the base curve of the stepped surface is an elliptical surface is used in the optical system shown in FIG.

【図10】 図7に示される光学系において、階段状の
面のベースカーブが4次非球面である実施例3の回折型
色収差補正素子を用いた場合の球面収差、色収差図であ
る。
FIG. 10 is a spherical aberration diagram and a chromatic aberration diagram when the diffractive chromatic aberration correction element of Example 3 in which the base curve of the stepped surface is a fourth-order aspherical surface is used in the optical system shown in FIG. 7.

【図11】 図7に示される光学系において、階段状の
面のベースカーブが球面である回折型色収差補正素子を
用いた場合の球面収差、色収差図である。
FIG. 11 is a diagram of spherical aberration and chromatic aberration when a diffractive chromatic aberration correction element in which the base curve of the stepped surface is a spherical surface is used in the optical system shown in FIG. 7.

【図12】 実施例4、5の色収差補正素子により補正
される正の対物レンズのレンズ図である。
FIG. 12 is a lens diagram of a positive objective lens that is corrected by the chromatic aberration correction elements of Examples 4 and 5.

【図13】 図12に示される対物レンズ単独での球面
収差、色収差図である。
13 is a diagram of spherical aberration and chromatic aberration of the objective lens shown in FIG. 12 alone.

【図14】 図12に示される対物レンズと貼合わせ面
が球面である屈折型の色収差補正素子とを組み合せた光
学系のレンズ図である。
FIG. 14 is a lens diagram of an optical system in which the objective lens shown in FIG. 12 and a refraction type chromatic aberration correction element having a spherical bonding surface are combined.

【図15】 図14に示される光学系の球面収差、色収
差図である。
15 is a diagram of spherical aberration and chromatic aberration of the optical system shown in FIG.

【図16】 図12に示されるレンズに貼合わせ面が楕
円面である実施例4の屈折型の色収差補正素子とを組み
合せた光学系のレンズ図である。
16 is a lens diagram of an optical system in which the lens shown in FIG. 12 is combined with a refraction type chromatic aberration correction element of Example 4 in which the bonding surface is an elliptical surface.

【図17】 図16に示される光学系の球面収差、色収
差図である。
17 is a diagram of spherical aberration and chromatic aberration of the optical system shown in FIG.

【図18】 図12に示されるレンズと回折型の色収差
補正素子とを組み合せた光学系のレンズ図である。
FIG. 18 is a lens diagram of an optical system in which the lens shown in FIG. 12 and a diffractive chromatic aberration correction element are combined.

【図19】 図18に示される光学系において、階段状
の面のベースカーブが楕円面である実施例5の回折型色
収差補正素子を用いた場合の球面収差、色収差図であ
る。
FIG. 19 is a spherical aberration diagram and a chromatic aberration diagram in the case where the diffractive chromatic aberration correction element of Example 5 in which the base curve of the stepped surface is an elliptical surface is used in the optical system shown in FIG.

【図20】 図18に示される光学系において、階段状
の面のベースカーブが球面である回折型色収差補正素子
を用いた場合の球面収差、色収差図である。
20 is a diagram of spherical aberration and chromatic aberration in the case where a diffractive chromatic aberration correction element in which the base curve of the stepped surface is a spherical surface is used in the optical system shown in FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基準波長より短い波長の平行光束の入射に
対してはオーバーな球面収差を持つ発散波面を発生し、
前記基準波長より長い波長の平行光束の入射に対しては
アンダーな球面収差を持つ集光波面を発生することを特
徴とする色収差補正素子。
1. A divergent wavefront having an excessive spherical aberration with respect to incidence of a parallel light flux having a wavelength shorter than a reference wavelength,
A chromatic aberration compensating element, which generates a condensed wavefront having spherical aberration which is under the incidence of a parallel light flux having a wavelength longer than the reference wavelength.
【請求項2】前記基準波長においてほぼ屈折率差を持た
ず分散が異なる材質を用いた正レンズと負レンズとを貼
り合わせて構成され、貼り合わせ面は、その曲率半径が
光軸から離れるに従って絶対値が小さくなる非球面であ
ること特徴とする請求項1に記載の色収差補正素子。
2. A positive lens and a negative lens, which are made of materials having substantially no difference in refractive index and different dispersions at the reference wavelength, are bonded to each other, and the bonding surface has a radius of curvature that is farther from the optical axis. The chromatic aberration correction element according to claim 1, wherein the chromatic aberration correction element is an aspherical surface having a small absolute value.
【請求項3】前記貼合わせ面は、正の楕円定数を有する
回転楕円面に近い非球面であり、光軸からの距離hの点
における回転楕円面からのズレ量ε(h)を(1)式で表す
とき、通過する光束の有効な最大の半径内の全ての距離
hにおいて、(2)式の条件を満たすことを特徴とする請
求項2に記載の色収差補正素子。 ε(h)=ΔX(h)−Ch2/(1−√(1−(1+K)C22))…(1) |ε(h)|<λ/ΔnMAX …(2) ただし、 ΔX(h)は非球面のサグ量、 Cは、近軸曲率、 Kは、円錐定数、 λは、最大使用波長、 ΔnMAXは、使用波長帯域の中で貼り合わせ面前後の媒
質の屈折率の差のもっとも大きい状態の屈折率差の絶対
値である。
3. The bonding surface is an aspherical surface close to a spheroid having a positive elliptic constant, and a deviation amount ε (h) from the spheroid at a point of a distance h from the optical axis is (1 The chromatic aberration correction element according to claim 2, wherein the condition of the expression (2) is satisfied at all distances h within the effective maximum radius of the light flux passing through when expressed by the expression (4). ε (h) = ΔX (h) -Ch 2 / (1-√ (1- (1 + K) C 2 h 2 )) ... (1) | ε (h) | <λ / ΔnMAX ... (2) where ΔX (h) is the amount of sag on the aspherical surface, C is the paraxial curvature, K is the conical constant, λ is the maximum usable wavelength, ΔnMAX is the difference in the refractive index of the media before and after the bonding surface within the usable wavelength band. Is the absolute value of the refractive index difference in the largest state.
【請求項4】光入射、射出端面の少なくとも一面を、光
軸に対して垂直な平面を光軸に対して同心円状の輪帯と
して階段状に形成した回折型の色収差補正素子におい
て、 前記階段状に形成された面の巨視的な湾曲であるベース
カーブが、その曲率半径が光軸から離れるに従ってその
絶対値が小さくなる非球面であり、光軸からの距離hの
点の光軸方向の前記ベースカーブの変位量をΔX(h)と
して、前記階段状に形成された面の光軸からの距離hの
点の変位量ΔX'(h)が(3)式により与えられることを
特徴とする色収差補正素子。 ΔX'(h)=(mλ0/(n-1))Int((ΔX(h)/(mλ0/(n-1)))+0.5)…(3) ただし、 mは、整数、 nは、屈折率、 λ0は、色収差補正素子を用いる波長あるいは波長域内
の任意の一波長、 Int(x)は、xを越えない整数を与える関数である。
4. A diffractive chromatic aberration compensating element in which at least one of the light incident and exit end faces is stepwise formed by using a plane perpendicular to the optical axis as a concentric ring zone with respect to the optical axis. The base curve, which is a macroscopic curve of the surface formed in a shape, is an aspherical surface whose absolute value decreases as the radius of curvature thereof moves away from the optical axis, and the base curve in the optical axis direction at a distance h from the optical axis. The displacement amount ΔX ′ (h) at a point of a distance h from the optical axis of the stepwise surface is given by the equation (3), where the displacement amount of the base curve is ΔX (h). A chromatic aberration correction element. ΔX '(h) = (mλ0 / (n-1)) Int ((ΔX (h) / (mλ0 / (n-1))) + 0.5) (3) where m is an integer and n is The refractive index, λ0, is a wavelength using the chromatic aberration correction element or any one wavelength within the wavelength range, and Int (x) is a function that gives an integer not exceeding x.
【請求項5】前記ベースカーブは、正の円錐定数を有す
る回転楕円面に近い非球面であり、光軸からの距離hの
点における回転楕円面からのズレ量ε(h)を(1)式で表
すとき、通過する光束の有効な最大の半径内の全ての距
離hにおいて、(4)式の条件を満たすことを特徴とする
請求項4に記載の色収差補正素子。 ε(h)=ΔX(h)−Ch2/(1−√(1−(1+K)C22))…(1) |ε(h)|<λ/(n−1) …(4) ただし、 Cは、近軸曲率、 Kは、円錐定数、 λは、最大使用波長である。
5. The base curve is an aspherical surface close to a spheroid having a positive conic constant, and the deviation amount ε (h) from the spheroid at a point of a distance h from the optical axis is (1). The chromatic aberration correction element according to claim 4, wherein when expressed by the formula, the condition of the formula (4) is satisfied at all distances h within the effective maximum radius of the passing light beam. ε (h) = ΔX (h) -Ch 2 / (1-√ (1- (1 + K) C 2 h 2 )) ... (1) | ε (h) | <λ / (n-1) ... (4 However, C is a paraxial curvature, K is a conic constant, and (lambda) is the maximum usable wavelength.
JP13830293A 1992-07-16 1993-06-10 Chromatic aberration correction element Expired - Fee Related JP3306170B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP13830293A JP3306170B2 (en) 1992-12-28 1993-06-10 Chromatic aberration correction element
US08/091,983 US5629799A (en) 1992-07-16 1993-07-16 Chromatic aberration correcting element and its application
DE4323971A DE4323971C2 (en) 1992-07-16 1993-07-16 Read / write device for an optical disk
US08/386,091 US5914822A (en) 1992-07-16 1995-02-09 Chromatic aberration correcting element and its application
US08/630,597 US5796520A (en) 1992-07-16 1996-04-10 Chromatic aberration correcting element and its application
US08/802,404 US5883744A (en) 1992-07-16 1997-02-18 Chromatic aberration correcting element and its application
US08/802,386 US5969862A (en) 1992-07-16 1997-02-18 Chromatic aberration correcting element and its application
US08/801,459 US5838497A (en) 1992-07-16 1997-02-18 Chromatic aberration correction element and its application
US09/190,365 US6118597A (en) 1992-07-16 1998-11-12 Chromatic aberration correcting element and its application

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-348593 1992-12-28
JP34859392 1992-12-28
JP13830293A JP3306170B2 (en) 1992-12-28 1993-06-10 Chromatic aberration correction element

Publications (2)

Publication Number Publication Date
JPH06250081A true JPH06250081A (en) 1994-09-09
JP3306170B2 JP3306170B2 (en) 2002-07-24

Family

ID=26471375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13830293A Expired - Fee Related JP3306170B2 (en) 1992-07-16 1993-06-10 Chromatic aberration correction element

Country Status (1)

Country Link
JP (1) JP3306170B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154101A (en) * 1999-10-26 2001-06-08 Carl Zeiss Jena Gmbh Array for irradiation by using several wavelengths inside microscope
US7050379B2 (en) 2001-02-28 2006-05-23 Sony Corporation Optical pickup-use object lens, optical pickup and optical disk unit
US7301882B2 (en) 2004-01-16 2007-11-27 Victor Company Of Japan, Limited Optical pickup device and diffractive optical element
USRE40329E1 (en) 1998-05-07 2008-05-20 Konica Corporation Single objective lens for use with CD or DVD optical disks
WO2013122337A1 (en) * 2012-02-13 2013-08-22 Lg Innotek Co., Ltd. Light emitting package

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40329E1 (en) 1998-05-07 2008-05-20 Konica Corporation Single objective lens for use with CD or DVD optical disks
USRE44397E1 (en) 1998-05-07 2013-07-30 Konica Corporation Single objective lens for use with CD or DVD optical disk
JP2001154101A (en) * 1999-10-26 2001-06-08 Carl Zeiss Jena Gmbh Array for irradiation by using several wavelengths inside microscope
US7050379B2 (en) 2001-02-28 2006-05-23 Sony Corporation Optical pickup-use object lens, optical pickup and optical disk unit
US7301882B2 (en) 2004-01-16 2007-11-27 Victor Company Of Japan, Limited Optical pickup device and diffractive optical element
WO2013122337A1 (en) * 2012-02-13 2013-08-22 Lg Innotek Co., Ltd. Light emitting package
US9136449B2 (en) 2012-02-13 2015-09-15 Lg Innotek Co., Ltd. Light emitting package

Also Published As

Publication number Publication date
JP3306170B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3385213B2 (en) Objective lens for optical head
US5883744A (en) Chromatic aberration correcting element and its application
US6865025B2 (en) Aberration compensating optical element, optical system, optical pickup device, recorder and reproducer
JP3563747B2 (en) Objective lens
US20020003660A1 (en) Diffractive-refractive achromatic lens
KR101061347B1 (en) Objective lens, optical pickup device and optical information recording and reproducing device for optical pickup device
KR20020081077A (en) Objective lens, converging optical system, optical pickup apparatus and recording and/or reproducing apparatus
JPH06331887A (en) Compound lens
US20090316563A1 (en) Objective lens, optical pickup apparatus and optical information recording and/or reproducing apparatus
KR20020096939A (en) Objective lens, optical pickup apparatus, and recording and/or reproducing apparatus
US4768867A (en) Aspherical single lens
JPH03155515A (en) Objective lens system for optical information recording and reproducing device
JP3306170B2 (en) Chromatic aberration correction element
JPS61215512A (en) Objective for optical information reader
JP3108695B2 (en) Optical system of optical information recording / reproducing device
JPH0411846B2 (en)
JP2001155369A (en) Optical system for optical information recording and reproducing device
JPH02235010A (en) Glass-molded aspherical single lens
KR101061324B1 (en) Light source device and optical pickup device
JPH02153310A (en) Lens for optical recording and reproducing device
JPS6235311A (en) Lens for optical disk
US5087990A (en) Collimator lens of erasable and re-recordable magneto-optical disk system
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPS6254212A (en) Aspheric surface single lens
JPS61179409A (en) Objective of optical information reader

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees