JPH06249780A - Method and apparatus for measuring conduction time of carrier - Google Patents

Method and apparatus for measuring conduction time of carrier

Info

Publication number
JPH06249780A
JPH06249780A JP5036753A JP3675393A JPH06249780A JP H06249780 A JPH06249780 A JP H06249780A JP 5036753 A JP5036753 A JP 5036753A JP 3675393 A JP3675393 A JP 3675393A JP H06249780 A JPH06249780 A JP H06249780A
Authority
JP
Japan
Prior art keywords
light
pulse
optical
time
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5036753A
Other languages
Japanese (ja)
Other versions
JP2705021B2 (en
Inventor
Tomoshi Furuta
知史 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5036753A priority Critical patent/JP2705021B2/en
Publication of JPH06249780A publication Critical patent/JPH06249780A/en
Application granted granted Critical
Publication of JP2705021B2 publication Critical patent/JP2705021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a measuring method and an apparatus wherein the conduction time of carriers in individual regions at the inside of a measuring sample can be measured. CONSTITUTION:An optical pulse from an extremely-short optical-pulse light source 1 is branched into two pulses by an optical element 2, a pulse generation element 5 is irradiated with the pulse on one side, and an electric pulse which has been generated is applied to a measuring sample 7. The sample 7 emits EL-light so as to correspond to the conduction time of carriers in individual regions, and the light is incident on a nonlinear optical crystal 20. The branched pulse on the other side of the element 2 is incident on the crystal 20 via an optical delay passage 12 as a probe optical pulse, and it generates cross correlational light here. The crystal 20 is turned by a rotary stage 21, and the cross correlational light which has been adjusted to a most intense state is measured by a signal analyzer via a spectroscope 24 and a photodetector 11. Then, the optical path length of the delay passage 12 is changed, a time analysis spectrum is found from a change in the intensity of the correlational light, the light- emitting region of the sample 7 is changed, and the conduction time of the carriers are evaluated repeatedly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料中における
キャリアの伝導時間の測定方法および装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring carrier conduction time in a semiconductor material.

【0002】[0002]

【従来の技術】図1は、従来のキャリア伝導時間測定装
置の構成図である。同図において、符号1は極短光パル
ス光源、2は前記極短光パルス光源1からの極短光パル
スを2光路に分岐するための光学分岐素子、3は分岐し
た一方のポンプ光パルスの光軸、4は分岐した他方のプ
ローブ光パルスの光軸、5は前記ポンプ光パルスを極短
電気パルスに変換する極短電気パルス発生素子、6は前
記極短電気パルス発生素子5にポンプ光パルスを照射す
るための光学系、7は測定試料、8は内部に非線形光学
結晶を有する電気応答波形検出素子、9は前記電気応答
波形検出素子8に前記プローブ光パルスを照射すると共
に、その反射光を集光するための光学系、10は偏光素
子、11は光検出器、12は光学遅延路、13は前記光
検出器11の出力信号を計測するための信号解析装置、
14は光学遅延路12と信号解析装置13を自動制御す
るための制御器である。
2. Description of the Related Art FIG. 1 is a block diagram of a conventional carrier conduction time measuring device. In FIG. 1, reference numeral 1 is an ultrashort optical pulse light source, 2 is an optical branching element for branching the ultrashort optical pulse from the ultrashort optical pulse light source 1 into two optical paths, and 3 is one of the branched pump optical pulses. An optical axis, 4 is an optical axis of the other branched probe light pulse, 5 is an extremely short electric pulse generating element for converting the pump light pulse into an extremely short electric pulse, and 6 is pump light to the extremely short electric pulse generating element 5. An optical system for irradiating a pulse, 7 is a measurement sample, 8 is an electric response waveform detecting element having a nonlinear optical crystal inside, 9 is an electric response waveform detecting element 8 which is irradiated with the probe light pulse and its reflection An optical system for condensing light, 10 a polarization element, 11 a photodetector, 12 an optical delay path, 13 a signal analyzer for measuring the output signal of the photodetector 11,
Reference numeral 14 is a controller for automatically controlling the optical delay line 12 and the signal analysis device 13.

【0003】この従来のキャリア伝導時間測定装置で
は、まず、ポンプ光パルスを素子5に照射し、素子5の
光−電気変換機能により素子5から発生した電気パルス
を測定試料7に入力する。そして、測定試料7の出力応
答波形を素子8における光学定数変化として計測する。
この素子8における光学定数変化は、プローブ光パルス
の反射率変化により計測する。
In this conventional carrier conduction time measuring apparatus, first, the element 5 is irradiated with a pump light pulse, and the electrical pulse generated from the element 5 by the photoelectric conversion function of the element 5 is input to the measurement sample 7. Then, the output response waveform of the measurement sample 7 is measured as a change in the optical constant in the element 8.
The change in the optical constant in the element 8 is measured by the change in the reflectance of the probe light pulse.

【0004】[0004]

【発明が解決しようとする課題】前記従来のキャリア伝
導時間測定装置では、ポンプ光パルスを極短電気パルス
発生素子5に照射することで発生する電気パルスを被測
定試料7に入力する。この時の試料7の出力応答波形の
強度は、電気応答波形検出素子8内に設けられている非
線形光学結晶の電気光学効果によって生ずる光学定数変
化として表れる。そのため、この光学定数変化を素子8
の表面にプローブ光パルスを照射し、その反射率変化と
して計測し、この計測値から試料7のキャリア伝導時間
を算出ている。
In the conventional carrier conduction time measuring device, the electric pulse generated by irradiating the ultrashort electric pulse generating element 5 with the pump light pulse is input to the sample 7 to be measured. The intensity of the output response waveform of the sample 7 at this time appears as a change in the optical constant caused by the electro-optical effect of the nonlinear optical crystal provided in the electrical response waveform detecting element 8. Therefore, this change in the optical constants is taken into
The surface of the sample is irradiated with a probe light pulse, and the change in the reflectance is measured, and the carrier conduction time of the sample 7 is calculated from the measured value.

【0005】したがって、上記した測定方法における空
間分解能は、素子8内の非線形光学結晶の寸法、あるい
は、プローブ光パルスの空間的広がりによって制限さ
れ、測定試料7の入力、出力間のキャリアの伝導時間を
測定するに留まっており、測定試料7内部の各領域にお
ける伝導時間を計測することは不可能である、といった
欠点があった。
Therefore, the spatial resolution in the above-mentioned measurement method is limited by the size of the nonlinear optical crystal in the element 8 or the spatial spread of the probe light pulse, and the carrier conduction time between the input and output of the measurement sample 7 is limited. However, there is a drawback that it is impossible to measure the conduction time in each region inside the measurement sample 7.

【0006】また、従来のキャリア伝導時間測定装置
は、極短電気パルスを測定試料7に印加し、その出力応
答波形のみを検出するため、極短電気パルスを測定試料
7に印加した時間原点を決定することが不可能である、
といった欠点もあった。
Further, the conventional carrier conduction time measuring device applies an extremely short electric pulse to the measurement sample 7 and detects only its output response waveform, so that the origin of the time when the extremely short electric pulse is applied to the measurement sample 7 is set. Impossible to determine,
There was also a drawback.

【0007】従って、本発明は、測定試料内部の各領域
からの発光の時間変化を精度良く測定する方法および装
置を提供することを、課題とするものである。
Therefore, it is an object of the present invention to provide a method and apparatus for accurately measuring the time change of the light emission from each region inside the measurement sample.

【0008】[0008]

【課題を解決するための手段】前記課題を達成するた
め、本発明の測定方法および装置は、従来例とは異な
り、電気パルスを測定試料に印加することにより、測定
試料の各領域から発生する発光スペクトルを測定し、そ
の発光スペクトルの時間分解を行うことを特徴としてい
る。
In order to achieve the above-mentioned object, the measuring method and apparatus of the present invention, unlike the conventional example, generate electric field from each region of the measuring sample by applying an electric pulse to the measuring sample. It is characterized in that the emission spectrum is measured and the emission spectrum is time-resolved.

【0009】すなわち、本発明のキャリア伝導時間測定
方法は、半導体試料に電気パルスを印加することによ
り、前記半導体試料からの発光を生じさせ、前記半導体
試料から発光した光と前記電気パルスに同期したレーザ
光との交差相関光を非線形光学結晶により発生させ、前
記交差相関光の時間変化を計測し、この計測値から前記
半導体試料中のキャリア伝導時間を算出する、ことを特
徴とする。
That is, in the carrier conduction time measuring method of the present invention, the semiconductor sample is caused to emit light by applying an electric pulse to the semiconductor sample, and the light emitted from the semiconductor sample is synchronized with the electric pulse. Non-linear optical crystals are used to generate cross-correlated light with laser light, the time change of the cross-correlated light is measured, and the carrier conduction time in the semiconductor sample is calculated from this measured value.

【0010】また、本発明のキャリア伝導時間測定装置
は、電気パルスを発生させる電気パルス発生手段と、前
記電気パルスに同期したレーザ光を発生させる同期レー
ザ光発生手段と、前記電気パルスを半導体試料に印加す
ることにより生ずる半導体試料からの発光と、前記同期
レーザ光とを同時に非線形光学結晶に入射させることに
より前記発光光と前記同期レーザ光との交差相関光を発
生させる交差相関光発生手段と、前記交差相関光の時間
変化を自動計測することで、前記半導体試料中のキャリ
アの伝導時間を算出する計測・算出手段と、を有するこ
とを特徴とする。
Further, the carrier conduction time measuring apparatus of the present invention comprises an electric pulse generating means for generating an electric pulse, a synchronous laser light generating means for generating a laser light synchronized with the electric pulse, and the electric pulse for a semiconductor sample. Cross-correlation light generation means for generating cross-correlation light between the emission light and the synchronous laser light by simultaneously causing the emission from the semiconductor sample caused by applying the light and the synchronization laser light to the nonlinear optical crystal at the same time. And measuring means for calculating the conduction time of the carrier in the semiconductor sample by automatically measuring the time change of the cross-correlated light.

【0011】[0011]

【作用】本発明は、測定半導体試料に極短電気パルスを
印加することでキャリアを走行させ、キャリアが測定試
料の各領域を伝導する際に発生する発光の時間分解測定
を行い、各領域固有の時間分解スペクトルを比較し、そ
の遅延時間差からキャリアの伝導時間を算出するように
している。したがって、従来不可能であった、測定試料
内部の各領域個々におけるキャリアの伝導時間の測定が
可能となる効果を有する。
According to the present invention, a carrier is made to travel by applying an ultrashort electric pulse to a measurement semiconductor sample, and time-resolved measurement of luminescence generated when the carrier conducts each region of the measurement sample is performed. The time-resolved spectra are compared and the carrier conduction time is calculated from the delay time difference. Therefore, it is possible to measure the conduction time of carriers in each region inside the measurement sample, which has been impossible in the past.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面を用いて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】図2は、本発明のキャリア伝導時間測定装
置のブロック図である。図2において、図1と同一構成
要素には同一符号を付して説明を簡略化する。図中の符
号20は非線形光学結晶、21は回転ステージ、22は
測定試料7からの発光を前記非線形光学結晶20に集光
するための光学系、23はプローブ光パルスを非線形光
学結晶20に照射するための光学系、24は分光器、2
5は非線形光学結晶20で発生する交差相関光を前記分
光器24に入射させるための光学系、前記分光器24で
分光された交差相関光は、光検出器11で検出される。
この光検出器11からの出力信号は、信号解析装置13
で計測される。そして、26は、回転ステージ21、光
学遅延路12、分光器24、信号解析装置13を制御す
るための制御器である。
FIG. 2 is a block diagram of the carrier conduction time measuring apparatus of the present invention. 2, the same components as those in FIG. 1 are designated by the same reference numerals to simplify the description. In the figure, reference numeral 20 is a non-linear optical crystal, 21 is a rotary stage, 22 is an optical system for focusing the light emitted from the measurement sample 7 on the non-linear optical crystal 20, and 23 is a probe optical pulse applied to the non-linear optical crystal 20. Optical system, 24 is a spectroscope, 2
Reference numeral 5 denotes an optical system for causing the cross-correlated light generated by the nonlinear optical crystal 20 to enter the spectroscope 24, and the cross-correlated light split by the spectroscope 24 is detected by the photodetector 11.
The output signal from the photodetector 11 is a signal analysis device 13
Is measured at. Reference numeral 26 is a controller for controlling the rotary stage 21, the optical delay path 12, the spectroscope 24, and the signal analysis device 13.

【0014】なお、前記構成において、極短光パルス光
源1、光学分岐素子2、光軸3、極短電気パルス発生素
子5および光学系6は、電気パルス発生手段を構成して
いる。また、極短光パルス光源1、光学分岐素子2、光
軸4、光学遅延路12および光学系23は、同期レーザ
光発生手段を構成している。さらに、非線形光学結晶2
0および回転ステージ21は、交差相関光発生手段を構
成している。さらにまた、光学系25、分光器24、光
検出器11、信号解析装置13および制御器26は、計
測・算出手段を構成している。
In the above structure, the ultrashort optical pulse light source 1, the optical branching element 2, the optical axis 3, the ultrashort electric pulse generating element 5 and the optical system 6 constitute electric pulse generating means. Further, the ultrashort optical pulse light source 1, the optical branching element 2, the optical axis 4, the optical delay path 12 and the optical system 23 constitute a synchronous laser light generating means. Furthermore, the nonlinear optical crystal 2
The 0 and the rotary stage 21 constitute a cross-correlated light generating means. Furthermore, the optical system 25, the spectroscope 24, the photodetector 11, the signal analyzing device 13, and the controller 26 constitute a measuring / calculating means.

【0015】前記構成の測定装置では、測定試料7に印
加する極短電気パルスは、極短パルス光源1から発生さ
れる光パルスを光学素子2にて2光路に分岐し、その片
方の光を極短電気パルス発生用素子5内に設けられた電
気的絶縁領域に照射し、素子5の光−電気変換機能によ
り、発生させる。すなわち、極短パルス光の照射により
極短電気パルス発生用素子5内に発生するキャリアによ
って、素子5は、導通状態になり、極短光パルスのパル
ス幅に応じた極短電気パルスを発生させる。この極短電
気パルスを測定試料7に印加することで、測定試料7中
にキャリアが注入され、試料7内部の各領域における材
料および電界強度に応じて発光(エレクトロルミネセン
ス光、以下、EL光と略す)が生じる。
In the measuring apparatus having the above-mentioned structure, the ultrashort electric pulse applied to the measurement sample 7 branches the light pulse generated from the ultrashort pulse light source 1 into two optical paths by the optical element 2 and outputs one of the light beams. The electrical insulation region provided in the element 5 for generating an extremely short electric pulse is irradiated and generated by the photoelectric conversion function of the element 5. That is, the carrier generated in the element 5 for generating an ultrashort electric pulse by irradiation with the ultrashort pulsed light brings the element 5 into a conductive state and generates an ultrashort electrical pulse according to the pulse width of the ultrashort optical pulse. . By applying this ultrashort electric pulse to the measurement sample 7, carriers are injected into the measurement sample 7, and light emission (electroluminescence light, hereinafter referred to as EL light) is generated according to the material and electric field strength in each region inside the sample 7. Abbreviated) occurs.

【0016】一方、光学素子2にて分岐された一方の光
パルスを、プローブ光パルスとして利用することで、前
記極短電気パルスに同期をとることは容易である。ま
た、複数の光の交差相関は、これら複数の光を非線形光
学結晶20に入射させることで実現できる。したがっ
て、試料7から放出されるEL光を光学系22で集光し
て、非線形光学結晶20上の一点に照射すると共に、光
学遅延路12を経由したプローブ光パルスを光学系23
を通して非線形光学結晶20上の前記EL光の照射点と
同じ位置に照射することで、交差相関光を得ることがで
きる。
On the other hand, by utilizing one optical pulse branched by the optical element 2 as a probe optical pulse, it is easy to synchronize with the ultrashort electrical pulse. The cross-correlation of a plurality of lights can be realized by making the plurality of lights incident on the nonlinear optical crystal 20. Therefore, the EL light emitted from the sample 7 is condensed by the optical system 22 and is applied to one point on the nonlinear optical crystal 20, and the probe light pulse that has passed through the optical delay path 12 is transmitted to the optical system 23.
Cross-correlated light can be obtained by irradiating the same position as the EL light irradiation point on the nonlinear optical crystal 20 through.

【0017】次に、非線形光学結晶20を回転ステージ
21にて回転させ、非線形光学結晶20中で試料7から
の発光光とプローブ光パルスとによって交差相関光が最
も効率的に発生するように回転角を設定する。発生した
交差相関光は、光学系25により分光器24に集光され
る。分光器24にて分光された交差相関光は、光検出器
11にて検出され、同光検出器11で電気信号に変換さ
れた後、信号解析装置13にて計測される。次に、制御
器26にて光学遅延路12の光路差を変化させ、それと
連動して交差相関光の強度変化を計測する。これによ
り、測定試料7のある領域からの発光の時間分解スペク
トルが計測できることになる。
Next, the non-linear optical crystal 20 is rotated by the rotary stage 21 and rotated so that the cross-correlated light is generated most efficiently in the non-linear optical crystal 20 by the emitted light from the sample 7 and the probe light pulse. Set the corner. The generated cross-correlated light is condensed on the spectroscope 24 by the optical system 25. The cross-correlated light separated by the spectroscope 24 is detected by the photodetector 11, converted into an electric signal by the photodetector 11, and then measured by the signal analysis device 13. Next, the controller 26 changes the optical path difference of the optical delay path 12, and measures the intensity change of the cross-correlated light in conjunction with it. As a result, the time-resolved spectrum of light emission from a certain region of the measurement sample 7 can be measured.

【0018】さらに、測定試料7の別の領域における発
光の時間分解スペクトルを計測するため、回転ステージ
21の角度、分光器24の波長を、制御器26にて任意
に設定し、上記した操作を繰り返し行うことで、測定試
料7の各領域からの発光の時間分解スペクトルが測定さ
れることになり、それらを対比させることで測定試料7
中のキャリアの伝導時間を評価できることになる。
Further, in order to measure the time-resolved spectrum of light emission in another region of the measurement sample 7, the angle of the rotary stage 21 and the wavelength of the spectroscope 24 are arbitrarily set by the controller 26, and the above-mentioned operation is performed. By repeating the measurement, the time-resolved spectrum of the light emission from each region of the measurement sample 7 is measured, and by comparing them, the measurement sample 7 is compared.
It will be possible to evaluate the conduction time of the carriers inside.

【0019】図3は、上記した測定方法および装置によ
り実測したもので、試料7から放出される発光および光
パルスの時間分解スペクトルを示すグラフである。以下
においては、便宜的に測定試料7を電気パルスの入力端
から出力端にかけてA,B,Cの材料、すなわち、3つ
の領域から構成されているものと想定して説明を行う。
従って、キャリアは、試料中A,B,Cの順に走行する
ことになる。
FIG. 3 is a graph showing the time-resolved spectrum of the light emission and the light pulse emitted from the sample 7, which is actually measured by the above-described measuring method and apparatus. Hereinafter, for convenience, the measurement sample 7 will be described assuming that it is composed of materials A, B, and C, that is, three regions from the input end to the output end of the electric pulse.
Therefore, the carrier travels in the order of A, B, and C in the sample.

【0020】図3のグラフにおいて、光パルスの時間分
解スペクトルは、電気パルス発生素子5の表面における
ポンプ光パルスの散乱光と、プローブ光パルスとの自己
相関により得られ、その強度が最大となる時刻t0 、す
なわち電気パルスが測定試料7に印加された時刻が高精
度に決定される。
In the graph of FIG. 3, the time-resolved spectrum of the light pulse is obtained by the autocorrelation between the scattered light of the pump light pulse on the surface of the electric pulse generating element 5 and the probe light pulse, and its intensity becomes maximum. The time t 0 , that is, the time when the electric pulse is applied to the measurement sample 7 is accurately determined.

【0021】ポンプ光パルスの照射により素子5におい
て発生した電気パルスは、測定試料7に印加され、発生
したキャリアは、測定試料7のA領域を伝導する。この
とき、A領域における発光再結合過程、あるいは高電界
効果などにより、材料Aのバンドギャップを反映した発
光が生じる。この発光光とプローブ光パルスとの交差相
関による時間分解スペクトル強度は、時間原点よりやや
遅れて立ち上がり始め、時刻と共に増加し、ある時刻に
おいて最大点に達し、その後、緩やかに減少する。時間
分解スペクトル強度の立ち上がる時刻は、測定試料に電
気パルスが印加され、キャリアが試料に注入され始める
時刻(tA r)に対応する。つづいて、スペクトルが最大
点に達する時刻は、キャリアが領域Aに十分注入された
時刻(tA (max))に対応する。また、立ち下がる
過程は、キャリアが領域AからBへ流出していく過程を
反映するものである。したがって、立ち上がり時刻(t
)と立ち下がり時刻(t )の差の時間が、キャ
リアが領域Aを伝導する時間になる。
The electric pulse generated in the element 5 by the irradiation of the pump light pulse is applied to the measurement sample 7, and the generated carrier is conducted in the area A of the measurement sample 7. At this time, light emission that reflects the bandgap of the material A occurs due to the radiative recombination process in the A region, the high electric field effect, or the like. The time-resolved spectrum intensity due to the cross-correlation between the emitted light and the probe light pulse starts rising slightly later than the time origin, increases with time, reaches the maximum point at a certain time, and then gradually decreases. The rising time of the time-resolved spectral intensity electrical pulse is applied to the sample, corresponding to the time at which the carrier starts to be injected into the sample (t A r). Subsequently, the time when the spectrum reaches the maximum point corresponds to the time (t A (max)) when the carriers are sufficiently injected into the region A. The process of falling reflects the process in which carriers flow from the area A to the area B. Therefore, the rising time (t
The time of the difference between A r ) and the fall time (t A f ) is the time for carriers to conduct in the region A.

【0022】次に、領域Bにおける発光とプローブ光パ
ルスとの交差相関光強度が最も効率的に発生するように
回転ステージ21の角度を設定し、領域Bにおける発光
の時間分解スペクトルを測定する。時間分解スペクトル
強度の変化は、領域Aにおけるものと同様の変化を示
し、立ち上がり時刻(tB r)と立ち下がり時刻(tB f
との差の時間から、領域Bをキャリアが走行する時間を
求めることができる。また、立ち上がり時刻(tB r
が、領域Aの時間分解スペクトルの立ち下がり時刻(t
A f)にほぼ一致していることは、キャリアが領域Aから
流出すると共に領域Bへ伝導し始めることを表してい
る。したがって、領域A,Bの時間分解スペクトルの立
ち上がり時刻の差からも領域Aをキャリアが伝導する時
間を求めることが可能になる。
Next, the angle of the rotary stage 21 is set so that the cross-correlated light intensity between the light emission in the region B and the probe light pulse is generated most efficiently, and the time-resolved spectrum of the light emission in the region B is measured. The change in the time-resolved spectrum intensity shows the same change as that in the region A, and the rising time (t B r ) and the falling time (t B f )
The time during which the carrier travels in the area B can be obtained from the time difference from In addition, the rise time (t B r)
Is the fall time of the time-resolved spectrum of region A (t
A close match with A f ) means that the carriers flow out from the region A and start to conduct to the region B. Therefore, it is possible to determine the time for carriers to conduct in the region A also from the difference between the rising times of the time-resolved spectra in the regions A and B.

【0023】同様に領域Cにおける時間分解スペクトル
から、キャリアが領域Cを伝導する時間を、求めること
が可能である。
Similarly, from the time-resolved spectrum in the region C, it is possible to determine the time for the carriers to conduct in the region C.

【0024】本実施例においては、すでに述べたよう
に、測定半導体試料中においてキャリアが伝導し、試料
の各領域を通過する際、発光再結合あるいは高電界効果
などによる試料の各領域固有の発光現象の時間分解能測
定を行い、時間遅延の比較からキャリアの伝導時間を求
める方法である。すなわち、従来例のように電気応答波
形検出素子に設けられる非線形光学結晶の寸法やプロー
ブ光パルスの空間的広がりによる空間分解能の制限が無
く、微細構造試料中の各領域におけるキャリアの伝導時
間の測定が可能となる。したがって、測定試料に関して
は上記したような1つの測定試料および測定試料が3つ
の領域から構成されるといった条件に限定されることは
なく、測定試料の個数、測定試料の構成領域が任意に選
択できることは明白である。
In the present embodiment, as described above, when carriers are conducted in the semiconductor sample to be measured and pass through each region of the sample, luminescence specific to each region of the sample due to radiative recombination or high electric field effect. This is a method of measuring the time resolution of the phenomenon and obtaining the carrier conduction time from the comparison of the time delays. That is, unlike the conventional example, there is no limitation in the spatial resolution due to the dimensions of the nonlinear optical crystal provided in the electrical response waveform detection element or the spatial spread of the probe light pulse, and the measurement of the carrier conduction time in each region in the fine structure sample is performed. Is possible. Therefore, the measurement sample is not limited to the condition that one measurement sample and the measurement sample are composed of three regions as described above, and the number of measurement samples and the constituent region of the measurement sample can be arbitrarily selected. Is obvious.

【0025】また、本実施例においては、測定試料から
放出される発光の強度の時間変化そのものを測定するの
では無く、非線形光学結晶中における光パルスと発光光
との、非線形光学効果によって変換された交差相関光を
測定するものである。すなわち、本実施例における時間
分解能は、光パルスの時間幅、非線形光学結晶の寸法お
よび材質、光学遅延路における光路差量にて決定され
る。したがって、要求する時間分解能、相関光強度に応
じて、任意に光パルスの時間幅、非線形光学結晶の種
類、寸法および、光学遅延路12における光路差量を任
意に設定できることは明白である。
Further, in this embodiment, the time change itself of the intensity of the luminescence emitted from the measurement sample is not measured, but is converted by the non-linear optical effect of the light pulse and the luminescence light in the non-linear optical crystal. The cross-correlated light is measured. That is, the time resolution in this embodiment is determined by the time width of the optical pulse, the size and material of the nonlinear optical crystal, and the optical path difference amount in the optical delay path. Therefore, it is apparent that the time width of the optical pulse, the type and size of the nonlinear optical crystal, and the optical path difference amount in the optical delay path 12 can be arbitrarily set according to the required time resolution and the correlated light intensity.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、測定半
導体試料に極短電気パルスを印加することでキャリアを
走行させ、キャリアが測定試料の各領域を伝導する際発
生する発光の時間分解測定を行い、各領域固有の時間分
解スペクトルを比較し、その遅延時間差からキャリアの
伝導時間を算出するようにしたので、従来不可能であっ
た、測定試料内部の各領域個々におけるキャリアの伝導
時間の測定が可能となる効果を有する。
As described above, according to the present invention, a carrier is caused to travel by applying an ultrashort electric pulse to a measurement semiconductor sample, and time-resolved emission of light generated when the carrier conducts each region of the measurement sample. Measurement was performed, time-resolved spectra unique to each region were compared, and carrier conduction time was calculated from the delay time difference, so carrier conduction time in each region inside the measurement sample, which was previously impossible, was impossible. Has the effect of enabling the measurement of

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のキャリア伝導時間測定装置の構成図であ
る。
FIG. 1 is a configuration diagram of a conventional carrier conduction time measuring device.

【図2】本発明のキャリア伝導時間測定装置の構成図で
ある。
FIG. 2 is a configuration diagram of a carrier conduction time measuring device of the present invention.

【図3】本発明のキャリア伝導時間測定装置による光パ
ルスと測定試料中の各領域における発光の時間分解測定
例を示すグラフである。
FIG. 3 is a graph showing an example of time-resolved measurement of light pulse and light emission in each region in a measurement sample by the carrier conduction time measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 極短光パルス光源 2 光学分岐素子 3 光軸 4 光軸 5 極短電気パルス発生用素子 6 光学系 7 測定試料 11 光検出器 12 光学遅延路 13 信号解析装置 20 非線形光学結晶 21 回転ステージ 22 光学系 23 光学系 24 分光器 25 光学系 26 制御器 1 Ultrashort optical pulse light source 2 Optical branching element 3 Optical axis 4 Optical axis 5 Element for ultrashort electric pulse generation 6 Optical system 7 Measurement sample 11 Photodetector 12 Optical delay path 13 Signal analyzer 20 Nonlinear optical crystal 21 Rotation stage 22 Optical system 23 Optical system 24 Spectroscope 25 Optical system 26 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体試料に電気パルスを印加すること
により、前記半導体試料からの発光を生じさせ、 前記半導体試料から発光した光と前記電気パルスに同期
したレーザ光との交差相関光を非線形光学結晶により発
生させ、 前記交差相関光の時間変化を計測し、この計測値から前
記半導体試料中のキャリア伝導時間を算出する、ことを
特徴とするキャリア伝導時間測定方法。
1. A semiconductor sample is caused to emit light by applying an electric pulse to the semiconductor sample, and cross-correlated light between light emitted from the semiconductor sample and laser light synchronized with the electric pulse is nonlinear optical. A method for measuring carrier conduction time, which is generated by a crystal, measures the time change of the cross-correlated light, and calculates the carrier conduction time in the semiconductor sample from the measured value.
【請求項2】 電気パルスを発生させる電気パルス発生
手段と、 前記電気パルスに同期したレーザ光を発生させる同期レ
ーザ光発生手段と、 前記電気パルスを半導体試料に印加することにより生ず
る半導体試料からの発光と、前記同期レーザ光とを同時
に非線形光学結晶に入射させることにより、前記発光光
と前記同期レーザ光との交差相関光を発生させる交差相
関光発生手段と、 前記交差相関光の時間変化を自動計測することで、前記
半導体試料中のキャリアの伝導時間を算出する計測・算
出手段と、 を有するキャリア伝導時間測定装置。
2. An electric pulse generating means for generating an electric pulse, a synchronous laser light generating means for generating a laser light synchronized with the electric pulse, and a semiconductor sample generated by applying the electric pulse to a semiconductor sample. Cross-correlation light generating means for generating cross-correlation light between the emitted light and the synchronous laser light by causing light emission and the synchronous laser light to enter the nonlinear optical crystal at the same time, and a time change of the cross-correlation light. A carrier conduction time measuring device comprising: a measuring / calculating means for calculating the conduction time of carriers in the semiconductor sample by automatically measuring.
JP5036753A 1993-02-25 1993-02-25 Method and apparatus for measuring carrier conduction time Expired - Fee Related JP2705021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036753A JP2705021B2 (en) 1993-02-25 1993-02-25 Method and apparatus for measuring carrier conduction time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036753A JP2705021B2 (en) 1993-02-25 1993-02-25 Method and apparatus for measuring carrier conduction time

Publications (2)

Publication Number Publication Date
JPH06249780A true JPH06249780A (en) 1994-09-09
JP2705021B2 JP2705021B2 (en) 1998-01-26

Family

ID=12478503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036753A Expired - Fee Related JP2705021B2 (en) 1993-02-25 1993-02-25 Method and apparatus for measuring carrier conduction time

Country Status (1)

Country Link
JP (1) JP2705021B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792191B2 (en) * 2000-04-21 2011-10-12 株式会社アドバンテスト Circuit test apparatus and circuit test method
WO2013077097A1 (en) * 2011-11-25 2013-05-30 学校法人慶應義塾 Polarized wave analyzer, polarized wave analysis method, physical property measurement device, and physical property measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792191B2 (en) * 2000-04-21 2011-10-12 株式会社アドバンテスト Circuit test apparatus and circuit test method
WO2013077097A1 (en) * 2011-11-25 2013-05-30 学校法人慶應義塾 Polarized wave analyzer, polarized wave analysis method, physical property measurement device, and physical property measurement method
JPWO2013077097A1 (en) * 2011-11-25 2015-04-27 学校法人慶應義塾 Polarization analyzer, polarization analysis method, physical property measuring apparatus, and physical property measuring method

Also Published As

Publication number Publication date
JP2705021B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
EP0600633B1 (en) Time resolved optical array detectors and CCD cameras for frequency domain fluorometry &/or phosphorimetry
CA2482402A1 (en) Semiconductor diode laser spectrometer arrangement and method
RU2371684C2 (en) Method and device for measuring time-domain spectrum of terahertz radiation pulses
US7646486B2 (en) Modulated reflectance measurement system using UV probe
JPS6093926A (en) Discriminating method in spectrometry
KR20020033189A (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
CN104849244B (en) A kind of multi-pulse laser induced breakdown spectroscopy measurement method and system
JP5628256B2 (en) Flash photolysis system
US5216482A (en) Apparatus for emission spectrochemical analysis
JP3896532B2 (en) Terahertz complex permittivity measurement system
US7817270B2 (en) Nanosecond flash photolysis system
Buller et al. All‐solid‐state microscope‐based system for picosecond time‐resolved photoluminescence measurements on II‐VI semiconductors
JP6298654B2 (en) Transient absorption response detection apparatus and transient absorption response detection method
JP2705021B2 (en) Method and apparatus for measuring carrier conduction time
US7026831B2 (en) Method and device for measuring the diffusion length of minority carriers in a semiconductor sample
WO2022121082A1 (en) Transient absorption spectrometer using excitation by pulse current
US20070171420A1 (en) Pulsed ellipsometer device
CN113970559A (en) Semiconductor deep energy level defect detection device and detection method
JPH0776711B2 (en) High time resolved total internal reflection spectroscopy and measurement equipment
JPH06194312A (en) Time-resolved fluorecent excitation spectrum measuring equipment
Katayama et al. Dose dependence of carrier and heat dynamics at an ion-implanted silicon surface measured using lens-free heterodyne transient grating method
CN108333161A (en) A kind of pulse laser based on optical fiber repeatedly utilizes device and fluorescence signal detection method back and forth
KR20030054084A (en) Method of laser-induced plasma atomic emission spectroscopy and apparatus thereof
JP2991260B2 (en) Time-resolved luminescence measurement device
JPH0783790A (en) Inspecting apparatus for optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees