JPH06249704A - Noise monitoring system for mobile - Google Patents

Noise monitoring system for mobile

Info

Publication number
JPH06249704A
JPH06249704A JP4080493A JP4080493A JPH06249704A JP H06249704 A JPH06249704 A JP H06249704A JP 4080493 A JP4080493 A JP 4080493A JP 4080493 A JP4080493 A JP 4080493A JP H06249704 A JPH06249704 A JP H06249704A
Authority
JP
Japan
Prior art keywords
noise
data
moving body
section
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080493A
Other languages
Japanese (ja)
Other versions
JPH0737908B2 (en
Inventor
Takaharu Kameyama
隆治 亀山
Ryuichi Murai
隆一 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Aerospace Systems Ltd
Original Assignee
NEC Corp
NEC Aerospace Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Aerospace Systems Ltd filed Critical NEC Corp
Priority to JP4080493A priority Critical patent/JPH0737908B2/en
Publication of JPH06249704A publication Critical patent/JPH06249704A/en
Publication of JPH0737908B2 publication Critical patent/JPH0737908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow highly accurate automatic acquisition of basic data required for noise reduction by tracking a mobile automatically and recording temporal variation of noise level and noise source position. CONSTITUTION:An acoustic sensor section 11 and a noise source deciding section 12 determine the direction and the level of noise coming from an aircraft entering into an airport and outputs a noise data 101. A pulse laser distance measuring section 13 and a monitor camera section 14 are mounted on a gimbal section 15 with the optical axis being set in parallel and the monitor camera section 14 outputs an image data 103 of a mobile noise source. An image tracking/processing section 16 receives the image data 103 and the monitor camera section 14 tracks the mobile noise source automatically to attain an angle measurement data 105 whereas the pulse laser distance measuring section 13 is interlocked with the monitor camera section 14 to attain a distance measurement data 102. The acoustic sensor section 11 and the noise source deciding section 12 determine the direction and the level of incoming noise and a data processing section 17 obtains a time series data of the position and the level of noise from the acquired data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動体騒音監視システム
に関し、特に航空機,鉄道車両等の移動体騒音源の発す
る騒音のレベルおよび発生位置を特定し、自動追尾を行
って騒音のレベルおよび発生位置の時系列データを含む
騒音対策用のデータ記録のために処理する移動体騒音監
視システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile noise monitoring system, and in particular, it specifies the level and position of noise generated by a mobile noise source such as an aircraft or a railway vehicle, and automatically tracks the noise level and noise. The present invention relates to a mobile noise monitoring system for processing data recording for noise countermeasures including time series data of position.

【0002】[0002]

【従来の技術】従来、この種の移動体騒音監視システム
には、騒音計測点の周囲に複数の音響センサを配置し、
各音響センサで取得した受音レベル,継続時間および受
信タイミング等の騒音データを収集したのち、こけら複
数の受信信号間の受信タイミング差,受信レベル差,継
続時間差や複数の音響センサの配置条件等にもとづいて
騒音源の位置および騒音レベルの推定を行ない、騒音源
である移動体(例えば航空機)に関する他の関連データ
(例えば飛行記録)との照合を行なって推定精度を確保
していた。
2. Description of the Related Art Conventionally, in a moving object noise monitoring system of this type, a plurality of acoustic sensors are arranged around a noise measuring point,
After collecting noise data such as the sound reception level, duration and reception timing acquired by each acoustic sensor, the reception timing difference, the reception level difference, the duration difference, and the arrangement conditions of the plurality of acoustic sensors are collected from the plurality of received signals. The position of the noise source and the noise level are estimated based on the above, and the estimation accuracy is ensured by performing comparison with other related data (for example, flight records) regarding the moving body (for example, aircraft) that is the noise source.

【0003】また、測定点で一定方向に設定した監視カ
メラの視野内を移動体が通過したときの画像データか
ら、後処理で推測される騒音源データを騒音データに付
加するものもあった。
There has also been a technique in which noise source data estimated by post-processing is added to noise data from image data when a moving body passes through the field of view of a surveillance camera set in a fixed direction at a measurement point.

【0004】さらに、これらに加え、自動的に騒音源を
識別して騒音の到来方位を自動計測するもの(特開昭6
0−378号)や、航空機の騒音と平行して航空機のト
ランスポンダが送出するSSR(Secondary
SurveillanceRadar)の応答信号を地
上の計測点で同時かつ継続的に受信し、コンピュータ処
理で騒音レベルと騒音源の航空機の到来電界強度レベ
ル,識別信号および高度情報とを経時的に出力するもの
(特開昭63−308523号)等が考えられている。
Further, in addition to these, a device for automatically identifying a noise source and automatically measuring the direction of arrival of noise (Japanese Patent Laid-Open No. Sho 6-62).
0-378) and SSR (Secondary) transmitted by an aircraft transponder in parallel with aircraft noise.
Surveillance Radar) response signals are received simultaneously and continuously at ground measurement points, and the noise level, the incoming electric field strength level of the noise source aircraft, the identification signal, and altitude information are output over time by computer processing (special Kai 63-308523) and the like are considered.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の移動体
騒音監視には、それぞれ次のような問題点がある。
The above-mentioned conventional mobile body noise monitoring has the following problems, respectively.

【0006】すなわち、騒音計測点の周囲に複数の音響
センサを配置して行なうもの、および一定方向を指向し
て配置した監視カメラの視野内を移動体が通過したとき
の画像データにもとづき行なう移動体の騒音監視はいず
れも、後処理で騒音源の推定を行なっているので、騒音
源のリアルタイムでの位置の計測や画像による追跡が出
来ず、リアルタイムで騒音源の位置計測を行なおうとす
る場合には、設備並びに計測員を測定点に配置して手作
業による計測を行なう必要があるだけでなく、気象条件
のもたらす伝搬音線の変動を受け計測精度の劣化が避け
られないという問題点がある。
That is, a plurality of acoustic sensors are arranged around a noise measuring point, and a movement is performed based on image data when a moving body passes through the field of view of a surveillance camera arranged in a fixed direction. In all noise monitoring of the body, since the noise source is estimated by post-processing, it is not possible to measure the position of the noise source in real time or track it with an image, and try to measure the position of the noise source in real time. In this case, it is not only necessary to place equipment and measuring personnel at the measurement point to perform manual measurement, but also the deterioration of measurement accuracy is inevitable due to fluctuations in sound ray propagation caused by weather conditions. There is.

【0007】また、自動的にリアルタイムで計測を行な
う場合であっても計測内容が騒音の到来方位に限定さ
れ、さらに、空港に配置した進入・離陸管制用のSSR
に対する航空機搭載のトランスポンダの発する応答信号
を傍受し、航空機の発する騒音の測定値とともにコンピ
ュータに入力して航空機特定に供する場合でも、通常複
数の応答信号と騒音との対応弁別は後処理となり、単一
の騒音源の場合は別として複数の対応弁別自体にも困難
を伴うことが多いという問題点がある。
Further, even when the automatic real-time measurement is performed, the content of the measurement is limited to the direction of arrival of noise, and further, the SSR for approach and takeoff control placed at the airport.
Even when the response signal emitted by the transponder mounted on the aircraft is intercepted and input to the computer together with the measurement value of the noise emitted by the aircraft for the purpose of identifying the aircraft, usually, the discrimination between the response signals and noise is post-processing, In the case of one noise source, there is a problem that it is often difficult to distinguish between a plurality of countermeasures themselves.

【0008】本発明の目的は上述した問題点を解消すべ
く、騒音源の位置すなわち騒音発生位置と騒音レベルと
の時間経過を気象条件の影響を排してリアルタイムで自
動追尾し、騒音対策のための高精度の基礎データを取得
することを可能とする移動体騒音監視システムを提供す
ることにある。
In order to solve the above-mentioned problems, an object of the present invention is to automatically track the time lapse between the position of the noise source, that is, the noise generation position and the noise level in real time by eliminating the influence of weather conditions, and take measures against noise. The object of the present invention is to provide a mobile noise monitoring system that enables acquisition of high-accuracy basic data.

【0009】[0009]

【課題を解決するための手段】本発明の移動体騒音監視
システムは、移動体の発する移動体騒音を捕捉し前記移
動体騒音のレベルと到来方位とを騒音データとして出力
する騒音データ出力手段と、パルスデータによって前記
移動体までの距離を求め測距データとして出力するとと
もに前記移動体を含む受光視野の光景を光学的に撮像し
た画像データを出力し前記画像データに含まれる前記移
動体の変位に基づいて前記移動体を自動追尾しつつ前記
移動体に対する俯仰角と方位各とを測角データとして出
力する測距・測角・画像データ出力手段と、前記騒音デ
ータと前記測距データと前記測角・画像データとを入力
とし前記移動体騒音のレベルと発生位置との時系列デー
タを含む騒音対策用のデータを記録のために処理するデ
ータ処理手段とを備える。
A mobile body noise monitoring system of the present invention comprises a noise data output means for capturing mobile body noise emitted by a mobile body and outputting the level of the mobile body noise and the direction of arrival as noise data. , The distance to the moving body is obtained from the pulse data and is output as distance measurement data, and the image data obtained by optically capturing the scene of the light-receiving visual field including the moving body is output, and the displacement of the moving body included in the image data is output. Distance measuring / angle measuring / image data output means for automatically outputting the angle of elevation and azimuth relative to the moving body while automatically tracking the moving body, and the noise data and the distance measuring data. Data processing means for inputting angle measurement / image data and processing for recording noise countermeasure data including time series data of the noise level and the position of the moving body noise. Obtain.

【0010】また、本発明の移動体騒音監視システム
は、前記測距・測角・画像データ出力手段が互いに光軸
を平行として配置したパルスレーザ測距部と撮像カメラ
とをジンバル機構に搭載し、前記撮像カメラの受光中心
に前記移動体を占位させるように前記ジンバル機構を駆
動して前記パルスレーザ測距部による前記測距データの
取得と前記撮像カメラによる前記撮像データの取得とを
行なう構成を有する。
Further, in the moving object noise monitoring system of the present invention, a gimbal mechanism is equipped with a pulse laser distance measuring section in which the distance measuring / angle measuring / image data output means are arranged with their optical axes parallel to each other. , The gimbal mechanism is driven so as to occupy the moving body at the light receiving center of the image pickup camera, and the pulse laser distance measuring unit obtains the distance measurement data and the image pickup camera obtains the image pickup data. Have a configuration.

【0011】さらに、本発明の移動体騒音監視システム
は、前記騒音データ出力手段が面配列した複数の指向性
マイクロホンによって前記移動体騒音の到来方位を判定
し、かつ前記複数の指向性マイクロホンの配列面中心に
配置した無指向性マイクロホンによって前記移動体騒音
のレベルを求めるものとした構成を有する。
Further, in the mobile noise monitoring system of the present invention, the direction of arrival of the mobile noise is determined by a plurality of directional microphones arranged in a plane by the noise data output means, and an array of the plurality of directional microphones is arranged. The configuration is such that the noise level of the moving body is obtained by an omnidirectional microphone arranged in the center of the plane.

【0012】[0012]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0013】図1は、本発明の一実施例の構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【0014】本実施例の移動体騒音監視システムは、着
陸のため空港に進入する航空機を移動体騒音源とする場
合を例とし、騒音の到来方位と騒音レベルとを判定して
騒音データ101として出力する騒音データ出力手段を
構成する音響センサ部11および騒音源判定部12と、
騒音源までの距離をパルスレーザによって求めて測距デ
ータ102として出力し、同時に光学的に騒音源を監視
して画像データ103を出力しつつ、ジンバル機構によ
って騒音源を自動追尾して騒音源に対する俯仰角と方位
角とを測角データ105として出力する測距・測角・画
像データ出力手段を構成するパルスレーザ測距部13、
監視カメラ部14,ジンバル部15および画像追尾処理
部16と、前述した騒音データと、測距データ,測角デ
ータおよび画像データを入力とし、騒音源の位置と騒音
レベルとの時間的経過を示す騒音対策用のデータを記録
のために処理するデータ処理手段としてのデータ処理部
17と、システム全体の動作を制御する制御手段として
の制御部18とを備える。
In the mobile noise monitoring system of this embodiment, an aircraft approaching an airport for landing is used as a mobile noise source by way of example. The arrival direction of noise and the noise level are determined and the noise data 101 is obtained. An acoustic sensor unit 11 and a noise source determination unit 12 which constitute noise data output means for outputting;
The distance to the noise source is obtained by a pulse laser and is output as distance measurement data 102. At the same time, while optically monitoring the noise source and outputting the image data 103, the gimbal mechanism automatically tracks the noise source and detects the noise source. A pulse laser distance measuring unit 13 which constitutes distance measuring / angle measuring / image data outputting means for outputting the elevation angle and the azimuth angle as the angle measuring data 105,
The monitoring camera unit 14, the gimbal unit 15, the image tracking processing unit 16, the noise data described above, the distance measurement data, the angle measurement data, and the image data are input, and the time course of the position of the noise source and the noise level is shown. A data processing unit 17 as a data processing unit that processes noise countermeasure data for recording, and a control unit 18 as a control unit that controls the operation of the entire system are provided.

【0015】次に、本実施例の動作について説明する。Next, the operation of this embodiment will be described.

【0016】図1に示す本実施例の移動体騒音監視シス
テムは、空港の滑走路に対する進入路近傍に配置され
る。
The mobile noise monitoring system of this embodiment shown in FIG. 1 is arranged near an approach road to an airport runway.

【0017】図2は、図1の実施例の運用展開の一例を
示す平面図である。図2において、進入航空機は管制塔
からの指示を受けつつ進入路L0に沿って滑走路Sに対
し着地線L1を目標として降下し、停止線L2で停止す
る。移動体騒音監視システムは進入路L0の近傍の設置
位置Pに設置され、あらかじめ設定するθによって決定
される空間範囲を自動追尾領域として進入航空機による
移動体騒音源の監視を次のようにして実施する。
FIG. 2 is a plan view showing an example of operational development of the embodiment shown in FIG. In FIG. 2, the approaching aircraft descends along the approach road L0 toward the runway S with the landing line L1 as a target while receiving an instruction from the control tower, and stops at the stop line L2. The mobile noise monitoring system is installed at the installation position P in the vicinity of the approach road L0, and the mobile aircraft noise source is monitored by the approaching aircraft in the following manner with the spatial range determined by the preset θ as the automatic tracking area. To do.

【0018】2軸バランス機構によって進入航空機の空
間位置を標定するジンバル部15に、パルスレーザ測距
部13およびこれと光軸を平行として搭載した監視カメ
ラ部13は、前述したθによって指定される自動追尾領
域の進入端部方向に初期指向位置を設定される。監視カ
メラ部13は、CCDカメラを利用する撮像カメラで、
その受光視野内に進入航空機を捕捉すると撮像した画像
データ103を画像追尾処理部16に送出する。
The pulse laser distance measuring unit 13 and the surveillance camera unit 13 mounted with the optical axis parallel to the gimbal unit 15 for locating the space position of the approaching aircraft by the two-axis balance mechanism are designated by the above-mentioned θ. An initial pointing position is set in the approach end direction of the automatic tracking area. The monitoring camera unit 13 is an imaging camera that uses a CCD camera,
When the approaching aircraft is captured within the light-receiving field of view, the captured image data 103 is sent to the image tracking processing unit 16.

【0019】画像追尾処理部16は、入力した画像デー
タ103における進入航空機の位置と画像中心(受光面
中心)とのずれを求め、このずれを零とすべくジンバル
部15のX軸とY軸との2軸を制御駆動するための制御
/駆動信号104を発生し、これによって進入航空機は
常に監視カメラ部14の撮像中心を占位するように制御
される。
The image tracking processing section 16 finds a deviation between the position of the approaching aircraft and the center of the image (the center of the light receiving surface) in the input image data 103, and the X axis and the Y axis of the gimbal section 15 are set so that this deviation becomes zero. A control / drive signal 104 for controlling and driving the two axes is generated, whereby the approaching aircraft is controlled so as to always occupy the imaging center of the surveillance camera unit 14.

【0020】パルスレーザ測距部13は、YAGレーザ
やヘリウム・ネオンガスレーザよりも長波長で目に安全
なレーザを使用した測距装置で、瞬時に物標までの距離
が測定でき、さまざまな運用フィールドで使用されてい
るいわゆるアイセーフレーザ測遠機を利用し、監視カメ
ラ部14の指向方向と同一方向を指向し、進入航空機に
対する測距を行ない測距データ102をデータ処理部1
7に送出する。
The pulse laser distance measuring unit 13 is a distance measuring device using a laser having a wavelength longer than that of a YAG laser or a helium / neon gas laser, which is safe for eyes, and can instantly measure a distance to a target, and various operations can be performed. A so-called eye-safe laser range finder used in the field is used to aim in the same direction as the pointing direction of the surveillance camera unit 14 to measure the distance to the approaching aircraft, and the distance measurement data 102 is obtained.
Send to 7.

【0021】ジンバル部15からはまた、画像追尾処理
部16から提供される制御/駆動信号104によって指
向するパルスレーザ測距部13と監視カメラ部14との
光軸方向、すなわち進入航空機の空間方位を決定する俯
仰角と方位角とを測角データ105として画像追尾処理
部16に送出する。前述した測距データ102と測角デ
ータ105とが進入航空機の空間位置を決定する。
From the gimbal section 15, the optical axis direction of the pulse laser distance measuring section 13 and the surveillance camera section 14 directed by the control / drive signal 104 provided from the image tracking processing section 16, that is, the spatial orientation of the approaching aircraft. The elevation angle and the azimuth angle that determine is transmitted to the image tracking processing unit 16 as the angle measurement data 105. The distance measurement data 102 and the angle measurement data 105 described above determine the spatial position of the approaching aircraft.

【0022】画像追尾処理部16からは、測角データ1
05と画像データ103とがそれぞれ所定のデータ形式
で測角/画像データ106としてデータ処理部17に供
給される。
From the image tracking processing unit 16, the angle measurement data 1
05 and the image data 103 are respectively supplied to the data processing unit 17 as the angle measurement / image data 106 in a predetermined data format.

【0023】さて、音響センサ部11は、騒音源判定部
12とともに常時自動追尾領域内での移動体騒音源の発
する騒音のレベルと到来方位とを求め、騒音データ10
1としてデータ処理部17に供給する。
Now, the acoustic sensor unit 11 together with the noise source determining unit 12 always obtains the level of noise and the direction of arrival of noise from the moving body noise source in the automatic tracking area, and calculates the noise data 10
It is supplied to the data processing unit 17 as 1.

【0024】騒音センサ部11は、前方に鋭い指向性を
有する4つの指向性マイクロホンb1,b2,b3およ
びb4がそれぞれ正方形の頂点を占位するように配列さ
れ、かつ配列中心には無指向性マイクロホンa1が配列
される。図3に音響センサ部11の配置状態を示す。
The noise sensor section 11 is arranged such that four directional microphones b1, b2, b3 and b4 having a sharp directivity in the front occupy the vertices of a square, respectively, and the center of the array is omnidirectional. The microphone a1 is arranged. FIG. 3 shows an arrangement state of the acoustic sensor unit 11.

【0025】この音響センサ部11は、あらかじめ設定
した自動追尾領域とあらかじめ既知の航空機の進入方向
とを勘案して計測に有効な方向に向けて固定配置され、
その出力は受信信号111として騒音源判定部12に供
給されて、無指向性マイクロホンaは進入航空機の騒音
レベルを、また指向性マイクロホンb1〜b4は騒音の
到来方位を判定するのに供される。
The acoustic sensor unit 11 is fixedly arranged in a direction effective for measurement in consideration of a preset automatic tracking area and a known approach direction of the aircraft,
The output is supplied to the noise source determination unit 12 as a reception signal 111, and the omnidirectional microphone a is used to determine the noise level of the approaching aircraft, and the directional microphones b1 to b4 are used to determine the arrival direction of noise. .

【0026】指向性マイクロホンb1〜b4は騒音計測
覆域である自動追尾領域からの到来騒音の方位に対応し
た出力をそれぞれ発生し、たとえば全体が騒音源に正対
するとき、その出力は互いに等しい。従って4つのマイ
クロホンの出力差にもとづいて騒音源の到来方位を知る
ことができる。
The directional microphones b1 to b4 respectively generate outputs corresponding to the azimuth of the incoming noise from the automatic tracking area which is the noise measurement coverage area. For example, when the whole directly faces the noise source, the outputs are equal to each other. Therefore, the arrival direction of the noise source can be known based on the output differences of the four microphones.

【0027】本実施例では、このように、音響センサ部
11を固定配置しているが、これは対象とする移動体が
航空機であって、進入および離陸方向が許容差を含めて
あらかじめ設定されていることにもとづく運用形態であ
り、運用目的によっては4つのマイクロホンの出力が常
は零となるように対象物追尾を行なわせることも可能で
ある。
In the present embodiment, the acoustic sensor unit 11 is fixedly arranged in this way, but this is because the target moving body is an aircraft and the approach and take-off directions are preset including tolerances. It is also possible to perform object tracking so that the outputs of the four microphones are always zero depending on the purpose of operation.

【0028】また、本実施例では、正確な移動体の位置
標定は前述した如くパルスレーザ測距と監視カメラとの
併用によるジンバル追尾で確保しており、音響センサ部
11と騒音源判定部12とによる騒音到来方向の精度自
体は著しく高いことを要しない。
Further, in the present embodiment, accurate position location of the moving body is secured by gimbal tracking by using the pulse laser distance measurement and the surveillance camera together as described above, and the acoustic sensor unit 11 and the noise source determination unit 12 are used. The accuracy of the direction of arrival of noise due to does not need to be extremely high.

【0029】データ処理部17は、騒音源判定部12か
らは移動体騒音源としての進入航空機の発する騒音のレ
ベルと方位とを示す騒音データ101を入力し、またパ
ルスレーザ測距部13および画像追尾処理部16からは
進入航空機の空間位置を示す測距データ102および測
角/画像データ106をそれぞれ入力し、進入航空機に
関する空間位置と騒音レベルとを対応させたデータとそ
の時間経過,および進入航空機の画像データを騒音基礎
データとして自動記録する。この場合、騒音データ10
1の含む騒音の方位情報は、測角データ105を基準と
するより高精度の角度による方位情報と照合され、本シ
ステムの方位精度を確保している。
The data processing unit 17 inputs from the noise source determination unit 12 noise data 101 indicating the level and direction of noise emitted by an approaching aircraft as a moving body noise source, and also the pulse laser distance measuring unit 13 and the image. Distance-measuring data 102 and angle-measuring / image data 106 indicating the spatial position of the approaching aircraft are respectively input from the tracking processing unit 16, and data in which the spatial position relating to the approaching aircraft and the noise level are associated with each other, the time elapsed, and the approach. Automatically record aircraft image data as noise basic data. In this case, noise data 10
The noise azimuth information included in 1 is collated with the azimuth information based on a more accurate angle based on the angle measurement data 105 to ensure the azimuth accuracy of the present system.

【0030】騒音データ101の含む騒音レベルが所定
のしきい値を超えた異常騒音であるとき、これを受けた
データ処理部17は画像追尾処理部16を介して監視カ
メラ部14を異常騒音の到来方位に指向させる異常騒音
指向信号107を送出し、異常騒音源の進入航空機を自
動追尾させ、これに対する測距データ102および測角
/画像データ106を自動記録のために取得する。
When the noise level included in the noise data 101 is abnormal noise exceeding a predetermined threshold value, the data processing unit 17 which has received the noise noise causes the monitoring camera unit 14 to detect the abnormal noise through the image tracking processing unit 16. An abnormal noise directing signal 107 that directs the direction of arrival is transmitted, the aircraft approaching the abnormal noise source is automatically tracked, and distance measurement data 102 and angle / image data 106 corresponding thereto are acquired for automatic recording.

【0031】データ処理部17は、こうして入力する騒
音データ101,測距データ102および測角/画像デ
ータ106を利用し、移動体騒音源である進入航空機の
発する騒音を自動追尾領域にわたって常時記録し、移動
体騒音源の位置の経路と騒音レベルを把握する。
The data processing unit 17 uses the noise data 101, the distance measurement data 102, and the angle measurement / image data 106 thus input, and constantly records the noise generated by the approaching aircraft, which is the noise source of the moving body, over the automatic tracking area. Understand the route and noise level of the position of the mobile noise source.

【0032】制御部18は、システム構成各部の動作を
内蔵プログラムにより制御する。
The control section 18 controls the operation of each section of the system by a built-in program.

【0033】このようにして、移動体騒音源としての進
入航空機の騒音を所定の領域にわたり気象条件の影響を
排して自動追尾し、その位置と騒音レベルとの時間経過
を正確に取得し騒音対策の資料として画像データととも
に提供することができる。
In this way, the noise of the approaching aircraft as the noise source of the moving body is automatically tracked over a predetermined region by eliminating the influence of weather conditions, and the time course between the position and the noise level is accurately acquired to obtain the noise. It can be provided together with the image data as a measure material.

【0034】以上、本発明の一実施例について述べた
が、本実施例の変形も種種考えられる。例えば、上述し
た実施例では騒音源として空港進入航空機を対象とした
が、離陸航空機でも同様であり、また航空機以外の鉄道
車両等の移動体の騒音源を対象としても同様に実施しう
ることは明らかである。また、本システムを複数設置
し、それぞれを別に配備するセンターと接続してデータ
を転送する大規模な移動体騒音監視システムを構築して
広範囲な騒音源の監視を行なうことも容易に実施しうる
ことは明らかである。さらに、監視カメラ部14は、こ
れに赤外線カメラ等の夜間でも映像データ取得可能な機
器を配置することにより24時間監視可能とすることが
でき、以上はすべて本発明の主旨を損なうことなく容易
に実施しうるものである。
Although one embodiment of the present invention has been described above, various modifications of this embodiment are possible. For example, although the airport approaching aircraft is targeted as a noise source in the above-described embodiment, the same is true for a takeoff aircraft, and it is also possible to similarly implement a noise source of a moving body such as a railroad vehicle other than an aircraft. it is obvious. It is also possible to easily monitor a wide range of noise sources by constructing a large-scale mobile noise monitoring system in which multiple systems are installed, each of which is connected to a separate center to transfer data. That is clear. Furthermore, the surveillance camera unit 14 can be monitored for 24 hours by arranging a device such as an infrared camera capable of acquiring image data at night, and the monitoring camera unit 14 can be easily monitored without impairing the gist of the present invention. It can be implemented.

【0035】[0035]

【発明の効果】以上説明したように本発明は、移動体を
発生源とする騒音源の自動追尾を行なって、騒音レベル
と騒音発生位置との時間的経過状態を自動的に記録する
ことにより、移動体騒音源に関する騒音データが人手を
介することなく、かつ気象条件の影響を排して、リアル
タイムで迅速かつ精度良く得ることができるという効果
がある。
As described above, according to the present invention, a noise source whose source is a moving body is automatically tracked to automatically record a time lapse state between a noise level and a noise generation position. In addition, there is an effect that the noise data regarding the moving body noise source can be obtained in real time quickly and accurately without human intervention and eliminating the influence of weather conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】本発明の一実施例の運用展開を示す平面図であ
る。
FIG. 2 is a plan view showing operational development of an embodiment of the present invention.

【図3】図1の音響センサ部11の配置状態を示す平面
図である。
FIG. 3 is a plan view showing an arrangement state of an acoustic sensor section 11 of FIG.

【符号の説明】[Explanation of symbols]

11 音響センサ部 12 騒音源判定部 13 パルスレーザ測距部 14 監視カメラ部 15 ジンバル部 16 画像追尾処理部 17 データ処理部 18 制御部 11 acoustic sensor unit 12 noise source determination unit 13 pulse laser distance measuring unit 14 monitoring camera unit 15 gimbal unit 16 image tracking processing unit 17 data processing unit 18 control unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 移動体の発する移動体騒音を捕捉し前記
移動体騒音のレベルと到来方位とを騒音データとして出
力する騒音データ出力手段と、パルスレーザによって前
記移動体までの距離を求め測距データとして出力すると
ともに前記移動体を含む受光視野の光景を光学的に撮像
した画像データを出力し前記画像データに含まれる前記
移動体の変位にもとづいて前記移動体を自動追尾しつつ
前記移動体に対する俯仰角と方位角とを測角データとし
て出力する測距・測角・画像データ出力手段と、前記騒
音データと前記測距データと前記測角・画像データとを
入力とし前記移動体騒音のレベルと発生位置との時系列
データを含む騒音対策用のデータを記録のために処理す
るデータ処理手段とを備えることを特徴とする移動体騒
音監視システム。
1. A noise data output means for capturing a moving body noise emitted by a moving body and outputting the level and the azimuth of arrival of the moving body noise as noise data, and a distance to the moving body by a distance from a pulse laser. The moving body is output while outputting the image data obtained by optically capturing the scene of the light receiving field including the moving body, and automatically tracking the moving body based on the displacement of the moving body included in the image data. Distance measurement / angle measurement / image data output means for outputting the elevation angle and azimuth angle as angle measurement data, and the noise data, the distance measurement data, and the angle measurement / image data as input A moving object noise monitoring system, comprising: a data processing unit that processes, for recording, noise countermeasure data including time series data of a level and a generation position.
【請求項2】 前記測距・測角・画像データ出力手段
が、互いに光軸を平行として配置したパルスレーザ測距
部と撮像カメラとをジンバル機構に搭載し、前記撮像カ
メラの受光中心に前記移動体を占位させるように前記ジ
ンバル機構を駆動して前記パルスレーザ測距部による前
記測距データの取得と前記撮像カメラによる前記画像デ
ータの取得とを行なうことを特徴とする請求項1記載の
移動体騒音監視システム。
2. The distance measuring / angle measuring / image data output means has a gimbal mechanism equipped with a pulse laser distance measuring section in which optical axes are arranged in parallel with each other, and the image pickup camera is mounted on the light receiving center of the image pickup camera. 2. The gimbal mechanism is driven so as to occupy a moving body, and the distance measurement data is acquired by the pulse laser distance measurement unit and the image data is acquired by the imaging camera. Mobile noise monitoring system.
【請求項3】 前記騒音データ出力手段が、面配列した
複数の指向性マイクロホンによって前記移動体騒音の到
来方位を判定し、かつ前記複数の指向性マイクロホンの
配列面中心に配置した無指向性マイクロホンによって前
記移動体騒音のレベルを求めるものであることを特徴と
する請求項1または2記載の移動体騒音監視システム。
3. The omnidirectional microphone, wherein the noise data output means determines the arrival direction of the moving body noise by a plurality of directional microphones arranged in a plane and is arranged at the center of the arrangement surface of the plurality of directional microphones. The mobile noise monitoring system according to claim 1 or 2, wherein the level of the mobile noise is obtained by the method.
JP4080493A 1993-03-02 1993-03-02 Mobile noise monitoring system Expired - Lifetime JPH0737908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080493A JPH0737908B2 (en) 1993-03-02 1993-03-02 Mobile noise monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080493A JPH0737908B2 (en) 1993-03-02 1993-03-02 Mobile noise monitoring system

Publications (2)

Publication Number Publication Date
JPH06249704A true JPH06249704A (en) 1994-09-09
JPH0737908B2 JPH0737908B2 (en) 1995-04-26

Family

ID=12590831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080493A Expired - Lifetime JPH0737908B2 (en) 1993-03-02 1993-03-02 Mobile noise monitoring system

Country Status (1)

Country Link
JP (1) JPH0737908B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748842A1 (en) * 1996-05-14 1997-11-21 Sextant Avionique Aircraft flight generated noise analysing system
WO2002052526A1 (en) * 2000-12-25 2002-07-04 Nittobo Acoustic Engineering Co.,Ltd. A method of measuring point-blank passing time or the like of airplane
JP2006038772A (en) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd Sound pressure measuring method
JP5016726B1 (en) * 2011-09-02 2012-09-05 リオン株式会社 Noise observation apparatus and noise observation method
KR101388601B1 (en) * 2012-12-12 2014-04-23 주식회사 유시스 Acoustic sensor
JP2016048202A (en) * 2014-08-27 2016-04-07 株式会社東芝 Monitoring system and monitoring program
JP2019007260A (en) * 2017-06-27 2019-01-17 調和工業株式会社 Pile placing management system
CN110716526A (en) * 2018-07-12 2020-01-21 发那科株式会社 Noise source monitoring device and noise source monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544635B1 (en) 2002-08-30 2012-01-18 Nittobo Acoustic Engineering Co.,Ltd. Sound source search system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748842A1 (en) * 1996-05-14 1997-11-21 Sextant Avionique Aircraft flight generated noise analysing system
WO2002052526A1 (en) * 2000-12-25 2002-07-04 Nittobo Acoustic Engineering Co.,Ltd. A method of measuring point-blank passing time or the like of airplane
US6892117B2 (en) 2000-12-25 2005-05-10 Nittobo Acoustic Engineering Co., Ltd. Method of measuring point-blank passing time or the like of airplane
JP2006038772A (en) * 2004-07-29 2006-02-09 Nittobo Acoustic Engineering Co Ltd Sound pressure measuring method
JP5016726B1 (en) * 2011-09-02 2012-09-05 リオン株式会社 Noise observation apparatus and noise observation method
KR101388601B1 (en) * 2012-12-12 2014-04-23 주식회사 유시스 Acoustic sensor
JP2016048202A (en) * 2014-08-27 2016-04-07 株式会社東芝 Monitoring system and monitoring program
JP2019007260A (en) * 2017-06-27 2019-01-17 調和工業株式会社 Pile placing management system
CN110716526A (en) * 2018-07-12 2020-01-21 发那科株式会社 Noise source monitoring device and noise source monitoring method
CN110716526B (en) * 2018-07-12 2023-12-08 发那科株式会社 Noise source monitoring device and noise source monitoring method

Also Published As

Publication number Publication date
JPH0737908B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP2071353B1 (en) System and methods for autonomous tracking and surveillance
CN108447075B (en) Unmanned aerial vehicle monitoring system and monitoring method thereof
AU2010345119B2 (en) Method and device for determining the speed of travel and coordinates of vehicles and subsequently identifying same and automatically recording road traffic offences
CN102803990B (en) Tracking method and measuring system having a laser tracker
US20110210872A1 (en) Using image sensor and tracking filter time-to-go to avoid mid-air collisions
CN106909152A (en) A kind of automobile-used context aware systems and automobile
US4926050A (en) Scanning laser based system and method for measurement of distance to a target
US20050278087A1 (en) Remote image management system (RIMS)
JP2015506474A (en) Method and apparatus for wheel independent speed measurement in a vehicle
US5652588A (en) Surveillance system including a radar device and electro-optical sensor stations
CN109084735B (en) A kind of tunnel monitoring abnormal state method based on unmanned plane device
CN110244314A (en) One kind " low slow small " target acquisition identifying system and method
JP3565783B2 (en) Airport information automatic transmission device
JPH06249704A (en) Noise monitoring system for mobile
WO2019244425A1 (en) Obstacle detection system and obstacle detection method
JP3443106B2 (en) Floating object detection / monitoring method and device
CN109919980B (en) Efficient and reliable unmanned aerial vehicle control method
KR101938774B1 (en) Composite Sensor Homming Device and System
CN111121540A (en) Radar-based cross-type anti-unmanned aerial vehicle monitoring system and method thereof
KR20170088501A (en) Local Positioning System
JP2532344B2 (en) Aircraft flight course measuring method and device
US10718613B2 (en) Ground-based system for geolocation of perpetrators of aircraft laser strikes
JP4168591B2 (en) Infrared imaging device
JP2002039715A (en) Transmission line measuring method using laser light and transmission line measuring apparatus
CN207487664U (en) One kind controls visual monitoring system based on radar moduleization

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951011