JPH06249637A - Method for estimating thickness of thin wall part of pipe - Google Patents

Method for estimating thickness of thin wall part of pipe

Info

Publication number
JPH06249637A
JPH06249637A JP3978693A JP3978693A JPH06249637A JP H06249637 A JPH06249637 A JP H06249637A JP 3978693 A JP3978693 A JP 3978693A JP 3978693 A JP3978693 A JP 3978693A JP H06249637 A JPH06249637 A JP H06249637A
Authority
JP
Japan
Prior art keywords
pipe
film
thinning
thickness
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3978693A
Other languages
Japanese (ja)
Other versions
JP3273647B2 (en
Inventor
Yoshitoshi Yotsutsuji
美年 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Engineering Co Ltd
Original Assignee
Idemitsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Engineering Co Ltd filed Critical Idemitsu Engineering Co Ltd
Priority to JP03978693A priority Critical patent/JP3273647B2/en
Publication of JPH06249637A publication Critical patent/JPH06249637A/en
Application granted granted Critical
Publication of JP3273647B2 publication Critical patent/JP3273647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a method by which the thickness of a thin wall part generated at the central part of a pipe between both ends of the pipe can be quantitatively estimated from an exposed film. CONSTITUTION:A radiation generator 20 and film 30 to be exposed to radiation are fitted to the outside of a pipe 10 which becomes an object to be inspected and radiation, such as the gamma-rays, etc., are radiated toward the film 30 from the generator 20 through the pipe 10 and the densities of the sound and thin parts of the pipe 10 are measured from the film 30 after exposure. The thickness of the thin wall part of the pipe 10 is estimated based on the approximate expression of thickness reduction rate empirically obtained in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管の減肉深さの推定
方法に関し、石油プラント等の実機配管の保守検査など
に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the depth of wall thinning of a pipe, which can be used for maintenance and inspection of actual pipes in oil plants and the like.

【0002】[0002]

【背景技術】一般に、石油プラント等は各種の流体を移
送するための配管設備を備えている。これらの配管は、
長時間の使用で内部の流体の流れにより腐食、壊食等を
起こしたり、あるいは配管振動等により亀裂が発生した
りして配管の内側に穴状、クラック状等の種々の形状で
局所的な減肉部が生じる。従って、これらの石油プラン
ト等の実機配管では、その機能面から、あるいは安全面
からもこのような減肉部を見つけるために保守検査が必
要とされている。このような配管の保守検査は、石油プ
ラント等の稼働時または定修時において行われるが、近
年では、主にγ線(イリジュウム192線源)による放
射線透過試験での保守検査が盛んに実施されている。
BACKGROUND ART Generally, petroleum plants and the like are equipped with piping equipment for transferring various fluids. These pipes are
If it is used for a long time, corrosion or erosion may occur due to the internal fluid flow, or cracks may occur due to pipe vibration, etc. A thinned part occurs. Therefore, in actual piping of these oil plants and the like, maintenance inspection is required in order to find such a thinned portion in terms of its function and safety. Maintenance inspections of such pipes are performed during the operation or regular maintenance of petroleum plants, etc., but in recent years, maintenance inspections have mainly been conducted in a radiation transmission test using gamma rays (iridium 192 radiation source). ing.

【0003】図9には、従来の放射線透過試験による配
管の保守検査方法の一例が示されている。配管80の外側
には、γ線を放射する線源としての放射線発生装置81が
取り付けられ、配管80を挟んでこの放射線発生装置81の
反対側には、放射線撮影用のフィルム82が取り付けられ
ている。放射線発生装置81から放射されたγ線は、配管
80を透過してフィルム82に至り、フィルム82上には、こ
の時の配管80の撮影痕が得られるようになっている。そ
して、このようにして撮影されたフィルム82の撮影痕の
状態から配管80の減肉深さを推定する。すなわち、配管
80の図中左右両側の端部83, 84に減肉部85(図中二点鎖
線)が生じている場合には、フィルム82上の図中Bの範
囲に幅Cの減肉部85の存在を示す濃淡が現れる。このフ
ィルム82上に現れた幅Cの濃淡は、通常、目視で確認で
きる程度の濃淡であるので、定規等を用いて幅Cを測定
することができ、この幅Cの値から放射線発生装置81、
配管80、フィルム82の配置状況を考慮し、計算により減
肉部85の減肉深さを推定することができる。
FIG. 9 shows an example of a conventional maintenance inspection method for piping by a radiation transmission test. A radiation generator 81 as a radiation source that emits γ rays is attached to the outside of the pipe 80, and a film 82 for radiography is attached to the opposite side of the radiation generator 81 across the pipe 80. There is. The γ rays emitted from the radiation generator 81 are
After passing through 80, the film reaches the film 82, and an imaging mark of the pipe 80 at this time is obtained on the film 82. Then, the thinning depth of the pipe 80 is estimated from the state of the trace of the film 82 photographed in this way. That is, piping
When the thinned portion 85 (two-dot chain line in the figure) is generated at the end portions 83, 84 on both the left and right sides of the figure 80, the thinned portion 85 of the width C in the range B in the figure on the film 82 The light and shade that shows existence appears. Since the shade of the width C appearing on the film 82 is usually a shade that can be visually confirmed, the width C can be measured using a ruler or the like, and the radiation generator 81 can be obtained from the value of the width C. ,
The metal thinning depth of the metal thinned portion 85 can be estimated by calculation in consideration of the arrangement of the pipe 80 and the film 82.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の検査方法では、配管80の左右の端部83, 84
(フィルム82上で図中Bの範囲に照射される部分)に存
在する減肉部85の場合には、前述した方法でその減肉深
さを推定することができるが、配管80の中央部86(フィ
ルム82上で図中Aの範囲に照射される部分)に存在する
減肉部87(図中二点鎖線)の場合には、その存在自体は
撮影されたフィルム82の濃淡により確認できても、減肉
深さを推定することは困難であるという問題があった。
つまり、このような中央部86に生じた減肉部87の減肉深
さは、フィルム82上に現れた濃淡から経験的に深いか浅
いかを判断するに止まっていた。また、配管80の中央部
86に減肉部87の存在が確認された場合に、この減肉部87
の減肉深さをある程度正確に推定するためには、放射線
発生装置81およびフィルム82の取り付け位置を変更して
撮影する方向を変え、減肉部87の位置が左右の端部83,
84の位置にくるようにして再び撮影しなおさなければな
らず、手間がかかるという問題があった。
However, in such a conventional inspection method, the left and right ends 83, 84 of the pipe 80 are provided.
In the case of the thinned portion 85 existing in (the portion of the film 82 irradiated in the range B in the figure), the thinned depth can be estimated by the method described above, but the central portion of the pipe 80 In the case of a thinned portion 87 (a portion indicated by a two-dot chain line in the figure) existing in 86 (a portion of the film 82 irradiated in the area A in the figure), its existence can be confirmed by the light and shade of the film 82 taken. However, there is a problem that it is difficult to estimate the metal thinning depth.
That is, the depth of the thinned portion 87 in the central portion 86 has been empirically determined from the light and shade appearing on the film 82. Also, the central part of the pipe 80
When it is confirmed that the thinned portion 87 is present in 86, the thinned portion 87
In order to estimate the thickness reduction depth to a certain degree accurately, the attachment positions of the radiation generator 81 and the film 82 are changed to change the shooting direction, and the position of the thickness reduction part 87 is changed to the left and right end portions 83,
There was a problem that it took time and effort to retake the picture again so that it was at the 84th position.

【0005】本発明の目的は、配管の両側端部の間に位
置する中央部に生じた減肉部の減肉深さを、撮影後のフ
ィルムから定量的に推定できる配管の減肉深さの推定方
法を提供することにある。
An object of the present invention is to make it possible to quantitatively estimate, from a film after filming, the metal thinning depth of a metal thinning portion generated in a central portion located between both end portions of the pipe. Is to provide an estimation method of.

【0006】[0006]

【課題を解決するための手段】本発明の配管の減肉深さ
の推定方法は、予め実験で得られた減肉率の近似式を用
いて前記目的を達成しようとするものである。具体的に
は、本発明の配管の減肉深さの推定方法は、検査対象と
なる配管の外側に放射線発生装置および放射線撮影用の
フィルムを取り付け、この放射線発生装置から前記配管
を透して前記フィルムに向けて放射線を照射し、撮影後
の前記フィルムから前記配管の健全部および減肉部のフ
ィルム濃度を測定し、これらのフィルム濃度を用いて予
め実験で得られた減肉率の近似式により前記配管の減肉
深さを推定することを特徴とする。ここで、前記減肉率
の近似式は、鋼板試験片を用いた実験等により得ること
ができる。
The method of estimating the metal thinning depth of a pipe according to the present invention is intended to achieve the above object by using an approximate expression of the metal thinning rate obtained in advance by an experiment. Specifically, the method for estimating the metal thinning depth of the pipe of the present invention is to attach a radiation generator and a film for radiography to the outside of the pipe to be inspected, and pass the pipe through the radiation generator. Irradiate the film with radiation, measure the film density of the sound part and the thinned part of the pipe from the film after photographing, and approximate the thinning ratio obtained in the experiment in advance using these film concentrations. The thinning depth of the pipe is estimated by an equation. Here, the approximate expression of the thickness reduction rate can be obtained by an experiment or the like using a steel plate test piece.

【0007】[0007]

【作用】このような本発明においては、放射線発生装置
から配管を透してフィルムに向けて放射線を照射し、配
管内部の減肉の状態をフィルムに撮影する。このように
して撮影されたフィルム上には、配管が正常な状態にあ
る部分(健全部)と、減肉による欠陥を生じている部分
(減肉部)とがフィルム濃度の差として現れる。これら
の健全部と減肉部とのフィルム濃度をそれぞれ測定し、
これらの測定値を用いて予め実験で得られた減肉率の近
似式により配管の両側端部の間に位置する中央部に生じ
た減肉部の減肉深さを推定する。例えば、減肉部と健全
部とのフィルム濃度の差を健全部のフィルム濃度で除し
た値および配管の肉厚をパラメータとして配管の減肉率
が定まるような減肉率の近似式を予め実験により求めて
おき、この減肉率の近似式に測定した健全部と減肉部と
のフィルム濃度および配管の肉厚を代入して減肉率を求
め、減肉深さを推定する。また、配管の両側端部に生じ
た減肉部の減肉深さは、前述した図9の従来方法で推定
することが可能であり、結局、減肉率の近似式による配
管の中央部の減肉深さの推定と合わせ、一回の放射線照
射で配管の両側端部および中央部の減肉深さの推定が可
能となり、これらにより前記目的が達成される。
According to the present invention as described above, the radiation is emitted from the radiation generator through the pipe toward the film, and the thinned state inside the pipe is photographed on the film. On the film thus photographed, a portion where the pipe is in a normal state (a sound portion) and a portion where a defect due to the thickness reduction occurs (a thickness reduction portion) appear as a difference in film density. Measure the film density of these healthy parts and thinned parts,
Using these measured values, the thinning depth of the thinning portion formed in the central portion located between the both side ends of the pipe is estimated by an approximate expression of the thinning rate obtained in advance by an experiment. For example, an approximate expression of the metal thinning rate is determined in advance so that the metal thinning rate of the pipe is determined using the value obtained by dividing the difference in the film density between the thin metal portion and the healthy portion by the film density of the healthy portion and the wall thickness of the pipe as a parameter. The thickness reduction rate is calculated by substituting the measured film densities of the healthy portion and the thickness reduction portion and the wall thickness of the pipe into the approximate expression of the thickness reduction rate, and the thickness reduction depth is estimated. Further, the thickness reduction depth of the metal thinning portion generated at both end portions of the pipe can be estimated by the conventional method of FIG. Together with the estimation of the metal thinning depth, it is possible to estimate the metal thinning depth of both side end portions and the central portion of the pipe with one irradiation of radiation, thereby achieving the above object.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1には、検査対象となる実機における配管10
の減肉深さを推定するためのγ線等の放射線による放射
線透過試験の実施状況が示されている。配管10の外側に
は、γ線等を放射する線源としての放射線発生装置20が
取り付けられ、配管10を挟んでこの放射線発生装置20の
反対側には、放射線撮影用のフィルム30が取り付けられ
ている。放射線発生装置20から放射されたγ線等は、配
管10を透過してフィルム30に至り、フィルム30上にはこ
の時の配管10の撮影痕が得られるようになっている。そ
して、詳細は後述するように、この図1の状態で撮影さ
れたフィルム30の濃度を測定することにより、配管10の
減肉深さを推定する。ここで、γ線等の線源としては、
例えば、イリジュウム192線源等が用いられ、また、
撮影距離(配管10と放射線発生装置20との間隔および配
管10とフィルム30との間隔)、撮影時間、線源強さ等の
撮影条件は、配管10の管径、配管10の周囲の状況等に応
じて適宜決定すればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 shows the piping 10 in the actual machine to be inspected.
The state of implementation of a radiation transmission test using radiation such as γ-rays for estimating the metal thinning depth is shown. A radiation generator 20 as a radiation source that emits γ rays or the like is attached to the outside of the pipe 10, and a film 30 for radiography is attached to the opposite side of the radiation generator 20 across the pipe 10. ing. The γ-rays or the like emitted from the radiation generator 20 penetrate the pipe 10 and reach the film 30, and an imaging mark of the pipe 10 at this time is obtained on the film 30. Then, as will be described in detail later, by measuring the density of the film 30 photographed in the state of FIG. 1, the thinning depth of the pipe 10 is estimated. Here, as a radiation source of γ rays, etc.,
For example, an Iridium 192 radiation source is used, and
The shooting distance (the distance between the pipe 10 and the radiation generator 20 and the distance between the pipe 10 and the film 30), the shooting time, the radiation source strength, etc., are the pipe diameter of the pipe 10, the surroundings of the pipe 10, etc. It may be appropriately determined according to

【0009】本実施例では、配管10の中央部11(フィル
ム30上で図中Aの範囲に照射される部分)の減肉深さを
推定するにあたって、予め別途の実験で配管10の減肉部
の減肉率の近似式(例えば、後述の数6等)を求めてお
き、図1の状態で撮影されたフィルム30のフィルム濃度
を測定し、この測定値を近似式(数6等)に代入するこ
とにより減肉深さの推定を行う。フィルム濃度の測定
は、一般のデジタル式のフィルム濃度計等により行うこ
とができる。この際、配管10の減肉率の近似式は、例え
ば、以下の五つのステップ(1)〜(5)に示されるよ
うな実験により求めておくことができる。先ず、配管10
の中央部11は、図1に示すように図中上側の中央部12と
図中下側の中央部13とによる二重壁構造となっており、
γ線等はこれらの二重の中央部12, 13を透過するように
なっている。従って、この二重になった中央部11の状態
を想定し、図2に示すような上下二枚の鋼板試験片41,
42を用いた実験を行い、配管10の減肉率の近似式を得る
ために、その基礎となる鋼板における基準減肉率の近似
式を後述する三つのステップ(1)〜(3)により求め
る。
In this embodiment, in estimating the metal thinning depth of the central portion 11 of the pipe 10 (the portion of the film 30 irradiated in the range A in the figure), the metal thinning of the pipe 10 is conducted in advance by a separate experiment. Approximate formula (for example, the following formula 6) of the part thinning rate is obtained, the film density of the film 30 photographed in the state of FIG. 1 is measured, and this measured value is approximated by the formula (6). By substituting into, the depth of thinning is estimated. The film density can be measured with a general digital film densitometer or the like. At this time, the approximate expression of the wall thinning rate of the pipe 10 can be obtained, for example, by an experiment as shown in the following five steps (1) to (5). First, piping 10
As shown in FIG. 1, the central portion 11 has a double wall structure including an upper central portion 12 and a lower central portion 13 in the figure,
Gamma rays and the like are transmitted through these double central portions 12 and 13. Therefore, assuming the doubled state of the central portion 11, two upper and lower steel plate test pieces 41, 41 as shown in FIG.
In order to obtain an approximate expression of the metal thinning rate of the pipe 10 by performing an experiment using 42, an approximate expression of the reference metal thinning rate of the steel plate which is the basis is obtained by the three steps (1) to (3) described later. .

【0010】図2(A)には、γ線等を鋼板試験片41,
42に照射する撮影配置状況が示されており、図2(B)
は、下側の鋼板試験片42の平面図、図2(C)は、鋼板
試験片41,42の断面図である。図2(A)において、γ
線等の線源である放射線発生装置20および放射線撮影用
のフィルム30は、図1の実機における配管10を対象とし
た放射線透過試験におけるものと同一のものである。こ
の二枚の鋼板試験片41, 42を対象とした放射線透過試験
は、前述した図1の配管10を対象とした放射線透過試験
と同様に、放射線発生装置20から鋼板試験片41, 42を透
してフィルム30に向けてγ線等を照射して撮影を行い、
撮影後にフィルム30のフィルム濃度を測定する。図2
(B),(C)において、鋼板試験片41, 42は、ともに
横長さXが 300mm,縦長さYが90mmであり、検査対象と
なる配管10のサイズとして1B〜6Bの範囲の肉厚を想定し
て鋼板厚さTが 3.0mm,5.5mm,9.2mmの三種類の厚さのも
のを用意した。従って、透過厚さFとしては、それぞれ
6.0mm,11.0mm,18.4mmとなる。
In FIG. 2 (A), gamma rays and the like are applied to steel plate test pieces 41,
The shooting arrangement condition for irradiating 42 is shown in FIG. 2 (B).
2C is a plan view of the lower steel plate test piece 42, and FIG. 2C is a cross-sectional view of the steel plate test pieces 41, 42. In FIG. 2A, γ
The radiation generator 20, which is a source of rays such as rays, and the film 30 for radiography are the same as those used in the radiation transmission test for the pipe 10 in the actual machine of FIG. The radiation transmission test for the two steel plate test pieces 41, 42 is performed by transmitting the steel sheet test pieces 41, 42 from the radiation generator 20 in the same manner as the radiation transmission test for the pipe 10 of FIG. 1 described above. Then, shoot the film 30 by irradiating γ rays etc.
After photographing, the film density of the film 30 is measured. Figure 2
In (B) and (C), the steel plate test pieces 41, 42 both have a horizontal length X of 300 mm and a vertical length Y of 90 mm, and have a wall thickness in the range of 1B to 6B as the size of the pipe 10 to be inspected. Assuming that the steel plate thickness T is 3.0 mm, 5.5 mm and 9.2 mm, three kinds of thickness are prepared. Therefore, as the transmission thickness F,
It will be 6.0mm, 11.0mm and 18.4mm.

【0011】また、下側の各鋼板試験片42には、鋼板試
験片42の鋼板厚さTに対し、計画深さが20%,40%,60%,80
%,100%の五種類の深さの人工減肉部43, 44, 45, 46, 47
が設けられている。なお、下側の鋼板試験片42だけに人
工減肉部43〜47が設けられているのは、下側の中央部13
に減肉部が生じた場合を想定しているためである。一般
に、このような放射線透過試験では、上側の中央部12に
減肉部が生じていても、放射線発生装置20からの距離が
近いため放射線強度が強く、健全部と減肉部とで放射線
の透過量があまり変化しない。従って、この部分の減肉
部の存在は下側の中央部13の測定に際し不都合を生じ
ず、上側の中央部12および内部の流体を透過した後の放
射線が当たる下側の中央部13に生じた減肉部の存在のみ
確認できる。撮影条件は、撮影距離(放射線発生装置20
から鋼板試験片41の上面までの距離H)が 600mmで一定
であり、撮影時間が各透過厚さF 6.0mm,11.0mm,18.4mm
(各鋼板厚さT 3.0mm,5.5mm,9.2mm)に対してそれぞれ
14, 17, 22分で異なっており、線源強さは 140GBq で一
定である。
Further, in each of the lower steel plate test pieces 42, the planned depth is 20%, 40%, 60%, 80 with respect to the steel plate thickness T of the steel plate test piece 42.
%, 100% 5 kinds of artificial thickness reduction parts 43, 44, 45, 46, 47
Is provided. In addition, only the lower steel plate test piece 42 is provided with the artificial thickness reduction parts 43 to 47 is that the lower central part 13
This is because it is assumed that there is a thinned part in the. Generally, in such a radiation transmission test, even if a thinned portion occurs in the central portion 12 on the upper side, the radiation intensity is strong because the distance from the radiation generation device 20 is short, and the radiation in the healthy portion and the thinned portion The transmission amount does not change much. Therefore, the presence of the thinned portion in this portion does not cause inconvenience in the measurement of the lower central portion 13, and occurs in the upper central portion 12 and the lower central portion 13 where the radiation after passing through the internal fluid hits the lower central portion 13. Only the presence of the thinned part can be confirmed. The shooting conditions are the shooting distance (radiation generator 20
The distance H) from the steel plate test piece 41 to the upper surface of the steel plate test piece 41 is constant at 600 mm, and the photographing time is at each transmission thickness F 6.0 mm, 11.0 mm, 18.4 mm.
(For each steel plate thickness T 3.0 mm, 5.5 mm, 9.2 mm)
It is different at 14, 17, and 22 minutes, and the source intensity is constant at 140GBq.

【0012】このような二枚の鋼板試験片41, 42を対象
とした放射線透過試験を行い、その結果から以下の三つ
のステップ(1)〜(3)により鋼板における基準減肉
率の近似式を求める。ステップ(1)では、鋼板試験片
42の減肉率PPと、濃度差ΔD/Dとの関係を三つの各厚
さTの鋼板試験片42について二次曲線に近似した近似曲
線として求める。図2(A)の状態で撮影されたフィル
ム30に現れた人工減肉部43〜47のフィルム濃度と、この
人工減肉部43〜47以外の部分である健全部(母材部)の
フィルム濃度とを測定し、人工減肉部43〜47のフィルム
濃度から健全部のフィルム濃度(平均値)を引いた値Δ
Dを求め、さらにこの濃度差ΔDを健全部のフィルム濃
度(平均値)で除してΔD/Dを求める。また、各人工
減肉部43〜47の正確な加工深さを測定しておき、これら
の加工深さを各鋼板厚さTで除して各部分の正確な減肉
率PPを計算しておく(表1参照)。
A radiation transmission test was carried out on such two steel plate test pieces 41, 42, and from the results, an approximate expression of the reference thinning rate in the steel plate was obtained by the following three steps (1) to (3). Ask for. In step (1), steel plate test piece
The relationship between the wall-thickness reduction ratio PP of 42 and the concentration difference ΔD / D is obtained as an approximate curve approximate to a quadratic curve for the steel plate test pieces 42 of three thicknesses T. The film density of the artificially thinned portions 43 to 47 appearing in the film 30 photographed in the state of FIG. 2A and the film of the sound portion (base material portion) other than the artificially thinned portions 43 to 47 The value obtained by subtracting the film density (average value) of the sound part from the film density of the artificially thinned parts 43 to 47 by measuring the density
D is obtained, and this density difference ΔD is further divided by the film density (average value) of the sound portion to obtain ΔD / D. In addition, the accurate machining depth of each of the artificial metal thinning portions 43 to 47 is measured, and the machining depth is divided by each steel plate thickness T to calculate the accurate metal thinning rate PP of each part. (See Table 1).

【0013】[0013]

【表1】 [Table 1]

【0014】こうして得られた鋼板試験片42の減肉率PP
の値と、濃度差ΔD/Dの値とを、グラフ化した結果が
図3に示されている。同図において、鋼板厚さTが 3.0
mmの場合には、減肉率PP−濃度差ΔD/D曲線は略直線
であり、鋼板厚さTが 5.5mm,9.2mmの場合には、若干の
曲線を呈するものとなっており、鋼板厚さTが増すにつ
れて勾配が急になっている。これらの各鋼板厚さTにつ
いての三本の曲線を二次曲線で近似し、その係数B,C
の値を最小二乗法により求める。三本の曲線は、次式の
ように定義する。
The thinning rate PP of the steel plate test piece 42 thus obtained
The results of graphing the value of and the value of the density difference ΔD / D are shown in FIG. In the figure, the steel plate thickness T is 3.0.
In the case of mm, the thickness reduction ratio PP-concentration difference ΔD / D curve is substantially linear, and when the steel plate thickness T is 5.5 mm and 9.2 mm, it shows a slight curve. The slope becomes steeper as the thickness T increases. These three curves for each steel plate thickness T are approximated by a quadratic curve, and the coefficients B, C
The value of is calculated by the method of least squares. The three curves are defined by the following equation.

【数1】ΔD/D(PP)=B×PP+C×PP2 最小二乗法により求めた各鋼板厚さTについての三本の
曲線の係数B,Cの値が表2に示されている。
## EQU1 ## ΔD / D (PP) = B × PP + C × PP 2 Table 2 shows the values of the coefficients B and C of the three curves for each steel plate thickness T obtained by the least squares method.

【0015】[0015]

【表2】 [Table 2]

【0016】ステップ(2)では、ステップ(1)で求
めた減肉率PP−濃度差ΔD/D曲線の近似式(数1)の
係数B,Cは、表2に示すように各鋼板厚さT毎に異な
る値となっているが、これらを鋼板厚さTの関数として
捉え、二次曲線で近似する作業を行う。図4,5は、横
軸を鋼板厚さT、縦軸を係数B,Cとして表2をグラフ
化したものである。図4,5に現れた曲線は、次式のよ
うに定義して二次曲線で近似する。
In step (2), the coefficients B and C of the approximate expression (Equation 1) of the thickness reduction rate PP-concentration difference ΔD / D curve obtained in step (1) are as shown in Table 2 below. The values are different for each thickness T, but these are treated as a function of the steel plate thickness T, and the work of approximating with a quadratic curve is performed. 4 and 5 are graphs of Table 2 in which the horizontal axis represents the steel plate thickness T and the vertical axis represents the coefficients B and C. The curves appearing in FIGS. 4 and 5 are defined by the following equation and approximated by a quadratic curve.

【数2】B(T)=B1+B2×T+B3×T2 [Equation 2] B (T) = B1 + B2 × T + B3 × T 2

【数3】C(T)=C1+C2×T+C3×T2 最小二乗法によりこれらの近似式の各係数B1, B2, B3,
C1, C2, C3の値を求めた結果が表3に示されている。
[Equation 3] C (T) = C1 + C2 × T + C3 × T 2 Each coefficient B1, B2, B3, of these approximate expressions is calculated by the least squares method.
The results of calculating the values of C1, C2 and C3 are shown in Table 3.

【0017】[0017]

【表3】 [Table 3]

【0018】ステップ(3)では、ステップ(1)で求
めた減肉率PP−濃度差ΔD/D曲線の近似式(数1)
と、ステップ(2)で求めたこの近似式(数1)の係数
B,Cの関数(数2,3)とにより、鋼板における基準
減肉率の近似式を求める。減肉率PP−濃度差ΔD/D曲
線の近似式(数1)を減肉率PPについて展開し、その
後、係数B,Cに関数(数2,3)を代入すると、次式
に示される鋼板における基準減肉率の近似式が得られ
る。
In step (3), an approximate expression (Equation 1) of the metal thinning rate PP-concentration difference ΔD / D curve obtained in step (1)
And the function of the coefficients B and C (Equations 2 and 3) of the approximation expression (Equation 1) obtained in step (2), the approximation expression of the reference thinning rate in the steel plate is obtained. Thinning rate PP-concentration difference ΔD / D Curve approximation formula (Equation 1) is developed for the thinning rate PP, and then the functions (Equations 2 and 3) are substituted into the coefficients B and C to obtain the following equation. An approximate expression of the standard thinning rate for steel sheets can be obtained.

【数4】 PP(ΔD/D,T) =〔−B(T)+{B(T)2 +4C(T)ΔD/D}1/2 〕/2C(T) このように鋼板試験片42の減肉率PPは、濃度差ΔD/D
と、鋼板厚さTとの関数として得ることができる。
## EQU00004 ## PP (.DELTA.D / D, T) = [-B (T) + {B (T) 2 + 4C (T) .DELTA.D / D} 1/2 ] / 2C (T) The thinning rate PP of is the density difference ΔD / D
And as a function of the steel plate thickness T.

【0019】次に、ステップ(1)〜(3)の二枚の鋼
板試験片41, 42を対象とした放射線透過試験により得ら
れた鋼板における基準減肉率の近似式(数4)から、配
管10の減肉率の近似式を導くために、以下のステップ
(4)〜(5)に示すような対比試験片を用いた実験を
行い、鋼板と配管との間の較正を行う。図6には、外径
60.5mm,肉厚 3.8mmの配管材を用いた対比試験片50が示
されている。対比試験片50には、人工減肉部51が設けら
れており、その減肉率はP1%である。この人工減肉部51
の減肉率P1%は、図6では、加工深さが 2.2mmであるこ
とから、P1=57.9%( 2.2/3.8 =0.579 )とされてい
るが、50%等いずれの値を用いてもよい。このように人
工減肉部51が設けられた対比試験片50を、図1に示す配
管10の位置に、人工減肉部51が下側の中央部13になるよ
うに配置し、前述した図1の実機における配管10を対象
とした放射線透過試験の場合と同様に、放射線発生装置
20から対比試験片50を透してフィルム30に向けてγ線等
を照射して撮影を行い、撮影後にフィルム30のフィルム
濃度を測定する。
Next, from the approximate expression (Equation 4) of the reference thinning rate in the steel plate obtained by the radiation transmission test for the two steel plate test pieces 41, 42 in steps (1) to (3), In order to derive an approximate expression of the wall thinning rate of the pipe 10, an experiment using a comparative test piece as shown in the following steps (4) to (5) is performed to calibrate between the steel plate and the pipe. Figure 6 shows the outer diameter
A comparative test piece 50 using 60.5 mm and 3.8 mm thick pipe material is shown. The comparison test piece 50 is provided with an artificial metal thinning portion 51, and the metal thinning rate is P1%. This artificial thinning part 51
The thickness reduction rate P1% of Fig. 6 is P1 = 57.9% (2.2 / 3.8 = 0.579) because the working depth is 2.2 mm in Fig. 6, but any value such as 50% is used. Good. The comparative test piece 50 thus provided with the artificial metal-reducing portion 51 is arranged at the position of the pipe 10 shown in FIG. 1 so that the artificial metal-reducing portion 51 becomes the lower central portion 13, and As in the case of the radiation transmission test for the pipe 10 in the actual machine of No. 1, the radiation generator
The film 30 is photographed by irradiating the film 30 with γ-rays or the like through the contrast test piece 50 from 20, and the film density of the film 30 is measured after photographing.

【0020】ステップ(4)では、鋼板の基準減肉率PP
から配管10の減肉率Pへの変換を行うための較正定数K
を求める。撮影されたフィルム30に現れた人工減肉部51
のフィルム濃度と、この人工減肉部51以外の部分である
健全部(母材部)のフィルム濃度とを測定し、人工減肉
部51のフィルム濃度から健全部のフィルム濃度(平均
値)を引いた値ΔDを求め、さらにこの濃度差ΔDを健
全部のフィルム濃度(平均値)で除してΔD/Dを求め
る。求めた濃度差ΔD/Dおよび配管材の肉厚 3.8mmを
前述した鋼板における基準減肉率の近似式(数4)のΔ
D/DおよびTに代入する。代入して計算で得られた値
をP2とすると、本来ならばP1%となるはずの減肉率がP2
%となったわけであるから、これらの実際の配管10の減
肉率Pと、鋼板における基準減肉率の近似式(数4)に
より計算で得られる値PPとの間に比例関係があるとすれ
ば、較正定数Kは、次式のように一定値として定めるこ
とができる。
In step (4), the standard thinning rate PP of the steel sheet
Calibration constant K for converting from the pipe to the wall thinning rate P of the pipe 10
Ask for. Artificial wall-thinning part 51 that appeared in the film 30 taken
And the film density of the sound part (base material part) that is a part other than the artificially-thinned part 51 are measured, and the film density of the sound part (average value) is calculated from the film density of the artificially-thinned part 51. The subtracted value ΔD is obtained, and this density difference ΔD is further divided by the film density (average value) of the sound part to obtain ΔD / D. Based on the calculated concentration difference ΔD / D and the wall thickness of the pipe material of 3.8 mm, Δ in the approximate expression (equation 4) of the standard thinning rate in the steel plate described above.
Substitute for D / D and T. If the value obtained by substituting is P2, the metal loss rate that would otherwise be P1% is P2.
Therefore, there is a proportional relationship between the actual metal loss rate P of the pipe 10 and the value PP obtained by calculation using the approximate expression (equation 4) of the standard metal loss rate of the steel plate. Then, the calibration constant K can be determined as a constant value as in the following equation.

【数5】K=P1/P2 この較正定数Kは、検査対象となる配管10の肉厚Tには
無関係な一定値とされるが、撮影距離、線源強さ等の撮
影条件が異なる場合には、各撮影条件についての較正定
数Kを求める必要がある。
[Equation 5] K = P1 / P2 This calibration constant K is a constant value that is unrelated to the wall thickness T of the pipe 10 to be inspected, but when the shooting conditions such as the shooting distance and the radiation source strength are different. Therefore, it is necessary to obtain the calibration constant K for each shooting condition.

【0021】ステップ(5)では、ステップ(4)で求
めた較正定数Kを用いて配管10の減肉率Pの近似式を求
める。実際の配管10の減肉率Pと、鋼板における基準減
肉率の近似式(数4)により計算で得られる値PPとの間
に比例関係があるものと仮定しているので、 P1:P2=減肉率P:基準減肉率PP という比例式が成立し、この比例式と較正定数Kの定義
式(数5)とにより、配管10の減肉率Pの近似式は、次
式のように求めることができる。
In step (5), an approximate expression of the wall thinning rate P of the pipe 10 is obtained using the calibration constant K obtained in step (4). Since it is assumed that there is a proportional relationship between the actual metal thinning rate P of the pipe 10 and the value PP obtained by the calculation using the approximate expression (equation 4) of the standard metal thinning rate of the steel sheet, P1: P2 = Thinning rate P: Standard thinning rate PP is established, and the approximate expression of the thinning rate P of the pipe 10 is calculated by the following equation using this proportional expression and the defining equation of the calibration constant K (Equation 5). Can be asked to.

【数6】P(ΔD/D,T)=PP(ΔD/D,T)×K 従って、配管10の減肉率Pは、配管10の減肉部と健全部
とのフィルム濃度の差ΔD/Dと、配管10の肉厚Tとの
関数として得られる。以上のステップ(1)〜(5)に
より、実機における配管10の減肉深さを推定する際に使
用する配管10の減肉率の近似式を、前処理として予め求
めておくことができる。
[Equation 6] P (ΔD / D, T) = PP (ΔD / D, T) × K Therefore, the thinning rate P of the pipe 10 is the difference ΔD in the film density between the thinned portion and the sound portion of the pipe 10. It is obtained as a function of / D and the wall thickness T of the pipe 10. By the above steps (1) to (5), an approximate expression of the metal thinning rate of the pipe 10 used when estimating the metal thinning depth of the pipe 10 in the actual machine can be obtained in advance as preprocessing.

【0022】また、このような本実施例においては、減
肉率の近似式(数6)による配管10の中央部13の減肉深
さの推定と合わせて、配管10の両側の端部14, 15(図1
参照)の位置に生じた減肉部の減肉深さの推定を前述し
た図9の従来例の方法で同時に行う。つまり、一回の放
射線照射で配管10の両側端部14, 15および中央部13の減
肉深さの推定を行う。ここで、配管10がその長手方向を
水平に配設されている場合等には、通常、配管10の上側
の中央部12(図1参照)に減肉部が生じることは稀であ
るが、検査の必要がある場合(例えば、外部から異常が
確認された場合等)には、放射線発生装置20およびフィ
ルム30の取り付け位置を変更して再度別方向から放射線
照射を行う。
Further, in this embodiment, together with the estimation of the metal thinning depth of the central portion 13 of the pipe 10 by the approximate expression of the metal thinning ratio (Equation 6), the end portions 14 on both sides of the pipe 10 are combined. , 15 (Fig. 1
The estimation of the metal thinning depth of the metal thinning portion occurring at the position (see) is simultaneously performed by the method of the conventional example of FIG. 9 described above. That is, the thickness reduction of both side end portions 14 and 15 and the central portion 13 of the pipe 10 is estimated with one irradiation. Here, when the pipe 10 is arranged horizontally in the longitudinal direction, etc., it is rare that a thinned portion is usually formed in the central portion 12 (see FIG. 1) on the upper side of the pipe 10, When the inspection is necessary (for example, when an abnormality is confirmed from the outside), the mounting positions of the radiation generator 20 and the film 30 are changed, and the radiation is irradiated from another direction again.

【0023】このような本実施例によれば、次のような
効果がある。すなわち、予め実験で減肉率の近似式(数
6)を求めておくので、これを用いて配管10の中央部13
の減肉深さの推定を行うことができる。このため、従来
の経験に基づく中央部13の減肉深さの大まかな把握に比
べ、正確な推定を行うことができる。また、従来方法で
は、配管10の中央部13の減肉深さを正確に推定しようと
する場合、放射線発生装置20およびフィルム30の取り付
け位置を何度も変更して撮影する方向を変え、複数回の
撮影を行わなければならないが、本実施例の方法では、
一回の撮影で配管10の両側端部14, 15および中央部13の
減肉深さの推定を行うことができるため、検査にかかる
手間を省略することができる。
According to this embodiment, the following effects are obtained. That is, the approximate expression of the wall thinning rate (Equation 6) is obtained in advance by an experiment, and it is used to calculate the central portion 13 of the pipe 10.
It is possible to estimate the metal thinning depth. Therefore, it is possible to make an accurate estimation as compared with the rough understanding of the metal thinning depth of the central portion 13 based on the conventional experience. Further, in the conventional method, in order to accurately estimate the thickness reduction depth of the central portion 13 of the pipe 10, the mounting positions of the radiation generator 20 and the film 30 are repeatedly changed to change the shooting direction, and a plurality of Although it is necessary to take a number of shots, in the method of this embodiment,
Since it is possible to estimate the metal thinning depths of the both end portions 14 and 15 and the central portion 13 of the pipe 10 with one shot, it is possible to save the labor for the inspection.

【0024】さらに、配管10の減肉率の近似式(数6)
は、ステップ(1)〜(3)の二枚の鋼板試験片41, 42
を用いた実験を行うことにより、この実験で得られた鋼
板における基準減肉率の近似式(数4)を基礎とした形
でかなり正確な近似式として確立することができる。そ
して、この鋼板における基準減肉率の近似式(数4)
は、ステップ(4)〜(5)の対比試験片50を用いた実
験で得られた較正定数Kにより較正されて配管10の減肉
率の近似式(数6)とされるため、鋼板と配管との間の
変換が精度よく行われ、さらに減肉深さの推定の信頼性
を向上させることができる。
Further, an approximate expression of the wall thinning rate of the pipe 10 (Equation 6)
Is the two steel plate test pieces 41, 42 in steps (1) to (3).
It is possible to establish a fairly accurate approximation formula based on the approximation formula (Equation 4) of the standard thinning rate in the steel plate obtained in this experiment by conducting an experiment using. Then, the approximate expression of the standard thinning rate in this steel plate (Equation 4)
Is calibrated by the calibration constant K obtained in the experiment using the comparative test piece 50 in steps (4) to (5) to be an approximate expression (Equation 6) of the wall thinning rate of the pipe 10, and The conversion between the pipe and the pipe is performed accurately, and the reliability of the estimation of the metal thinning depth can be further improved.

【0025】また、鋼板における基準減肉率の近似式
(数4)は、複雑な高次曲線ではなく比較的単純な二次
曲線を用いて近似されているため展開が容易であり、さ
らにこの近似式(数4)の係数B,Cおよび係数B,C
の中の各係数B1〜B3, C1〜C3を求める際の最小二乗法に
よる処理も既存のソフト等を用いることができるため、
本実施例の方法は、計算のための新たな設備、ソフト等
を必要とせずに容易に実施することができる。さらに、
図4,5に示された鋼板の板厚Tと、鋼板における基準
減肉率の近似式(数4)中の係数B,Cとの関係を示す
曲線は、二次曲線で近似されているが、直線に略近い曲
線であるため、より厚い肉厚の範囲まで基準減肉率の近
似式(数4)を適用することができる。
Further, the approximation formula (equation 4) of the standard metal thinning rate in the steel sheet is easy to develop because it is approximated by using a relatively simple quadratic curve instead of a complicated high-order curve. Coefficients B and C and coefficients B and C of the approximate expression (Equation 4)
Since existing software etc. can be used for the processing by the least square method when obtaining each coefficient B1 ~ B3, C1 ~ C3 in
The method of the present embodiment can be easily implemented without the need for new equipment or software for calculation. further,
The curves showing the relationship between the plate thickness T of the steel plate shown in FIGS. 4 and 5 and the coefficients B and C in the approximate expression (Equation 4) of the reference thinning rate of the steel plate are approximated by a quadratic curve. However, since it is a curve substantially close to a straight line, it is possible to apply the approximate expression (Equation 4) of the reference wall thinning rate to a range of thicker wall thickness.

【0026】なお、本発明の効果を確かめるために、以
下のような確認実験を行った。公称径1B,2B,4
B,6Bを有する各種の配管10に人工減肉部(加工深さ
および減肉率は表4参照)を三または五種類設け、これ
らの配管10を図7(A),(B)に示す配置の異なる二
条件につき、表5に示す各種撮影条件で合計五条件の放
射線透過試験を行った。また、同時に公称径2Bの対比
試験片により較正定数Kも求めた。図7(A)の配置条
件においては、線源強さおよび撮影距離の異なる二条件
について求め、図7(B)の配置条件においても、別途
に求め、合計三条件の較正定数Kを求めた。表6には、
この確認実験の結果が示されている。これによれば、得
られた推定減肉率とダイアルデプスゲージで測定した実
際の減肉率(表中()内の値)との差異はほとんどな
く、本発明の効果が顕著に現れている。
In order to confirm the effect of the present invention, the following confirmation experiment was conducted. Nominal diameter 1B, 2B, 4
Three or five types of artificial wall-thinning parts (see Table 4 for processing depth and wall-thinning ratio) are provided in various pipes 10 having B and 6B, and these pipes 10 are shown in FIGS. 7 (A) and (B). A radiation transmission test was conducted under a total of five conditions under the various imaging conditions shown in Table 5 for the two conditions with different arrangements. At the same time, a calibration constant K was also obtained from a test piece having a nominal diameter of 2B. In the arrangement condition of FIG. 7 (A), two conditions with different radiation source strength and shooting distance were obtained, and also in the arrangement condition of FIG. 7 (B), the calibration constant K of a total of three conditions was obtained. . Table 6 shows
The results of this confirmatory experiment are shown. According to this, there is almost no difference between the obtained estimated metal loss rate and the actual metal loss rate (value in parentheses in the table) measured by the dial depth gauge, and the effect of the present invention is remarkable.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】また、自然欠陥により生じた減肉部60につ
いても確認実験を行った。図8(A)には、フィルム30
に撮影された減肉部60の状態が示されており、図8
(B)には、この減肉部60が開孔してしまった後の断面
が示されている。撮影条件は、図7(A)の状態と同様
で、較正定数Kもこの状態の値を用いた。実験によれ
ば、減肉部60のフィルム濃度が1.76、その周囲の健全部
61, 62のフィルム濃度がそれぞれ1.54, 1.55となり、こ
れらにより減肉部60の推定減肉率は75%となっている。
表7には、この実験結果が示されている。減肉部60のう
ち開孔した部分の面積は微小なものであり、開孔した部
分近傍(開孔した部分を略中心として図8(B)中のL
の範囲)の平均残肉は、配管10の肉厚 3.9mmに対して
1.0mmとなっていてこれを減肉率にすると74%となるの
で、推定減肉率の75%という値は、平均残肉に対する減
肉率には良く一致しており、本発明の効果が顕著に現れ
ている。
A confirmation experiment was also conducted on the thinned portion 60 caused by a natural defect. The film 30 is shown in FIG.
8 shows the state of the thinned portion 60 photographed in FIG.
(B) shows a cross section after the thinned portion 60 has been opened. The imaging conditions are the same as those in the state of FIG. 7A, and the calibration constant K also uses the value in this state. According to the experiment, the film density of the thinned portion 60 is 1.76, and the sound portion around it is healthy.
The film densities of 61 and 62 are 1.54 and 1.55, respectively, and the estimated thinning rate of the thinned portion 60 is 75%.
Table 7 shows the results of this experiment. The area of the opened portion of the thinned portion 60 is very small, and the vicinity of the opened portion (L in FIG. 8B with the opened portion as the center)
The average residual thickness in the range) is for pipe wall thickness 3.9 mm.
The thickness reduction rate of 1.0 mm is 74%, which is 74%. Therefore, the value of 75% of the estimated metal loss rate is in good agreement with the average thickness reduction rate. It is noticeable.

【0031】[0031]

【表7】 [Table 7]

【0032】なお、本発明は前記実施例に限定されるも
のではなく、本発明の目的を達成できる他の構成も含
み、例えば以下に示すような変形等も本発明に含まれる
ものである。すなわち、前記実施例では、撮影されたフ
ィルム30に現れた人工減肉部51のフィルム濃度と、この
人工減肉部51以外の部分である健全部(母材部)のフィ
ルム濃度とを測定し、人工減肉部51のフィルム濃度から
健全部のフィルム濃度(平均値)を引いた値ΔDを求
め、さらにこの濃度差ΔDを健全部のフィルム濃度(平
均値)で除してΔD/Dを求め、このΔD/Dを減肉率
の近似式(数6)に代入して配管10の減肉深さを推定し
ていたが、減肉率の近似式はΔD/Dの関数とする必要
はなく、要するに人工減肉部51のフィルム濃度と、健全
部(母材部)のフィルム濃度とを用いた近似式であれば
よい。また、配管10の減肉率の近似式(数6)は、配管
10の肉厚Tの関数とされているが、各肉厚Tの配管10毎
に較正定数Kを変えるなどして濃度差ΔD/Dのみの関
数としてもよい。
The present invention is not limited to the above-mentioned embodiments, but includes other configurations that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention. That is, in the above-described example, the film density of the artificially-thinned portion 51 appearing in the film 30 that was photographed and the film density of the sound portion (base material portion) other than the artificially-thinned portion 51 were measured. Then, a value ΔD obtained by subtracting the film density (average value) of the sound part from the film density of the artificially thinned part 51 is obtained, and this density difference ΔD is further divided by the film density (average value) of the sound part to obtain ΔD / D. This was calculated, and this ΔD / D was substituted into the approximate expression of the metal thinning rate (Equation 6) to estimate the metal thinning depth of the pipe 10. However, the approximate expression of the metal thinning rate must be a function of ΔD / D. Instead, it is only necessary to use an approximate expression using the film density of the artificially thinned portion 51 and the film density of the sound portion (base material portion). In addition, the approximate expression (Equation 6) of the wall thinning rate of the pipe 10 is
Although it is a function of the wall thickness T of 10, the calibration constant K may be changed for each pipe 10 of each wall thickness T, and the function of only the concentration difference ΔD / D may be used.

【0033】さらに、二枚の鋼板試験片41, 42を対象と
した放射線透過試験により得られた鋼板における基準減
肉率の近似式(数4)を、配管10の減肉率の近似式(数
6)の基礎として用いているが、必ずしもこのような鋼
板における放射線透過試験により基準減肉率の近似式を
得る必要はなく、例えば、配管10に類似した管類等を用
いて基準減肉率の近似式を導いてもよく、この場合に
は、較正定数Kの値を、1.0に近ずけることができる。
Further, the approximate expression (equation 4) of the reference metal thinning rate in the steel plate obtained by the radiation transmission test for the two steel plate test pieces 41, 42 is changed to the approximate expression of the metal thinning rate of the pipe 10 ( Although it is used as the basis of Equation 6), it is not always necessary to obtain an approximate expression of the standard metal thinning rate by a radiation transmission test on such a steel plate. It is also possible to derive an approximate expression for the rate, in which case the value of the calibration constant K can approach 1.0.

【0034】また、前記実施例では、鋼板における減肉
率PP−濃度差ΔD/D曲線およびその係数B,Cと鋼板
厚さTとの関係を二次曲線で近似しているが、これらを
他の高次の曲線あるいは直線で近似してもよく、高次の
曲線で近似した場合には、計算機等を用いて複雑な演算
を行えばよく、より正確な推定を行うことができるよう
になり、直線で近似した場合には、推定の精度には欠け
る反面、計算が容易で手間がかからないという利点があ
る。さらに、前記実施例では、これらを二次曲線で近似
する際に、その係数を決定する方法として最小二乗法が
用いられているが、高次の曲線あるいは直線とする場合
も含めて他の方法を用いてもよく、例えば、手で引いた
線により近似を行ってもよい。
Further, in the above-mentioned embodiment, the thinning rate PP-concentration difference ΔD / D curve of the steel sheet and the relationship between the coefficients B and C and the steel sheet thickness T are approximated by a quadratic curve. It may be approximated by another higher-order curve or straight line, and when it is approximated by a higher-order curve, a complicated operation may be performed using a computer or the like so that more accurate estimation can be performed. However, when approximated by a straight line, the accuracy of the estimation is lacking, but there is an advantage that the calculation is easy and it does not take time. Further, in the above embodiment, the least squares method is used as a method for determining the coefficient when these are approximated by a quadratic curve, but other methods including the case of using a higher order curve or a straight line May be used, and for example, approximation may be performed by a line drawn by hand.

【0035】また、撮影されたフィルム30の現像条件ま
たは現像時間が異なる場合には、その影響は減肉率とし
て3%程度の違いであることが調査の結果により明らか
にされているが、配管10の減肉率の近似式(数6)にこ
の分の補正を行ってもよく、あるいは実用上許容できる
範囲の違いであるため、この分を考慮しなくても不都合
はない。そして、検査対象となる配管10に保温材がある
場合には、対比試験片50に同じ材質、厚さの保温材を施
し、その撮影方法も配管10の撮影条件と同じ条件として
較正定数Kを求めればよい。
Further, when the developing conditions or the developing time of the filmed film 30 are different, it is clear from the result of the investigation that the effect is a difference of about 3% in the thickness reduction rate. The approximate expression (Equation 6) of the wall thinning ratio of 10 may be corrected by this amount, or there is no problem even if this amount is not taken into consideration because it is a difference in the practically allowable range. If the pipe 10 to be inspected has a heat insulating material, the comparison test piece 50 is provided with the heat insulating material of the same material, and the photographing method is the same as the photographing condition of the pipe 10 and the calibration constant K is set. Just ask.

【0036】さらに、減肉部が酸化スケールで覆われて
いる場合には、見掛けの減肉深さが真の減肉深さよりも
小さい値となる。このため、酸化スケールを鋼に換算し
た厚さの分だけ減肉深さを補正する必要がある。求める
真の減肉深さをY、見掛けの減肉深さをY1、酸化スケー
ルを鋼に換算した厚さをY2、酸化スケールの比重をρS
(1700〜2100kg/m3,平均的に 1900kg/m3)、鋼の比重を
ρFe(7800kg/m3 )とすると、 Y1 =Y−Y2 =Y−Y×(ρS /ρFe) =Y×(1−ρS /ρFe) =Y×(1/1.32) となり、真の減肉深さYは、見掛けの減肉深さY1を1.32
倍して得られるので、減肉部が酸化スケールで覆われて
いる場合の真の減肉率の値は、見掛けの減肉率を1.32倍
して得ることができる。従って、このような場合には、
減肉率の近似式(数6)により得られた値に1.32を乗ず
る補正を行うことが望ましい。
Further, when the metal thinning portion is covered with the oxide scale, the apparent metal thinning depth becomes a value smaller than the true metal thinning depth. Therefore, it is necessary to correct the thickness reduction depth by the thickness of the oxide scale converted to steel. The true thinning depth to be obtained is Y, the apparent thinning depth is Y1, the thickness converted from the oxide scale to steel is Y2, and the specific gravity of the oxide scale is ρ S
(1700~2100kg / m 3, on average, 1900kg / m 3), when the specific gravity of steel and ρ Fe (7800kg / m 3) , Y1 = Y-Y2 = Y-Y × (ρ S / ρ Fe) = Y × (1-ρ S / ρ Fe ) = Y × (1 / 1.32), and the true thickness reduction depth Y is the apparent thickness reduction Y1 of 1.32.
Since the value is obtained by multiplying, the value of the true metal thinning rate when the metal thinning portion is covered with the oxide scale can be obtained by multiplying the apparent metal thinning rate by 1.32. Therefore, in such a case,
It is desirable to perform correction by multiplying the value obtained by the approximate expression of the thickness reduction rate (Equation 6) by 1.32.

【0037】[0037]

【発明の効果】以上に述べたように本発明によれば、配
管の健全部および減肉部のフィルム濃度を測定し、これ
らのフィルム濃度を用いて予め実験で得られた減肉率の
近似式により配管の減肉深さを推定するので、配管の両
側端部の間に位置する中央部に生じた減肉部の減肉深さ
を定量的に推定することができるという効果がある。
As described above, according to the present invention, the film densities of the sound portion and the wall-thinning portion of the pipe are measured, and the film-thickness ratio is used to approximate the thinning rate obtained in advance by an experiment. Since the metal thinning depth of the pipe is estimated by the formula, it is possible to quantitatively estimate the metal thinning depth of the metal thinning portion generated in the central portion located between the both side ends of the pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】前記実施例の鋼板試験片を用いた実験の状態を
示す構成図。
FIG. 2 is a configuration diagram showing a state of an experiment using the steel plate test piece of the example.

【図3】前記実施例の鋼板の減肉率とフィルム濃度差と
の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the thickness reduction rate and the film density difference of the steel sheets of the above-mentioned examples.

【図4】前記実施例の近似式の係数と板厚との関係を示
すグラフ。
FIG. 4 is a graph showing the relationship between the coefficient of the approximate expression and the plate thickness of the above embodiment.

【図5】前記実施例の近似式の別の係数と板厚との関係
を示すグラフ。
FIG. 5 is a graph showing the relationship between the plate thickness and another coefficient of the approximate expression of the above-described embodiment.

【図6】前記実施例の対比試験片を示す断面図。FIG. 6 is a cross-sectional view showing a comparative test piece of the example.

【図7】本発明の確認実験の状態を示す構成図。FIG. 7 is a configuration diagram showing a state of a confirmation experiment of the present invention.

【図8】本発明の別の確認実験に使用した配管の状態を
示す説明図。
FIG. 8 is an explanatory view showing a state of piping used in another confirmation experiment of the present invention.

【図9】従来例を示す構成図。FIG. 9 is a configuration diagram showing a conventional example.

【符号の説明】 10 配管 11,12,13 中央部 14,15 端部 20 放射線発生装置 30 フィルム 41,42 鋼板試験片 43〜47 人工減肉部 50 対比試験片 51 人工減肉部 60 自然欠陥により生じた減肉部 61,62 健全部[Explanation of symbols] 10 Piping 11,12,13 Central part 14,15 End part 20 Radiation generator 30 Film 41,42 Steel plate test piece 43 to 47 Artificial wall loss part 50 Contrast test piece 51 Artificial wall loss part 60 Natural defects Thinning part caused by 61,62 Healthy part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検査対象となる配管の外側に放射線発生
装置および放射線撮影用のフィルムを取り付け、この放
射線発生装置から前記配管を透して前記フィルムに向け
て放射線を照射し、撮影後の前記フィルムから前記配管
の健全部および減肉部のフィルム濃度を測定し、これら
のフィルム濃度を用いて予め実験で得られた減肉率の近
似式により前記配管の減肉深さを推定することを特徴と
する配管の減肉深さの推定方法。
1. A radiation generator and a film for radiation imaging are attached to the outside of a pipe to be inspected, the radiation is irradiated from the radiation generator to the film through the pipe, and the film is photographed. It is possible to measure the film concentration of the sound portion and the thinned portion of the pipe from the film, and to estimate the thinning depth of the pipe by an approximate expression of the thinning ratio obtained in advance by an experiment using these film concentrations. A method for estimating the thinning depth of a characteristic pipe.
JP03978693A 1993-03-01 1993-03-01 Estimation method of pipe wall thinning depth Expired - Fee Related JP3273647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03978693A JP3273647B2 (en) 1993-03-01 1993-03-01 Estimation method of pipe wall thinning depth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03978693A JP3273647B2 (en) 1993-03-01 1993-03-01 Estimation method of pipe wall thinning depth

Publications (2)

Publication Number Publication Date
JPH06249637A true JPH06249637A (en) 1994-09-09
JP3273647B2 JP3273647B2 (en) 2002-04-08

Family

ID=12562630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03978693A Expired - Fee Related JP3273647B2 (en) 1993-03-01 1993-03-01 Estimation method of pipe wall thinning depth

Country Status (1)

Country Link
JP (1) JP3273647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665179A3 (en) * 1993-12-28 1996-04-24 Sharp Kk Paper-punching for use in an image-forming apparatus.
JP2010038598A (en) * 2008-08-01 2010-02-18 Nippon Kogyo Kensa Kk Residual thickness estimation method of metal pipe
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665179A3 (en) * 1993-12-28 1996-04-24 Sharp Kk Paper-punching for use in an image-forming apparatus.
JP2010038598A (en) * 2008-08-01 2010-02-18 Nippon Kogyo Kensa Kk Residual thickness estimation method of metal pipe
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method

Also Published As

Publication number Publication date
JP3273647B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US7480363B2 (en) Converting a digital radiograph to an absolute thickness map
JPH06249637A (en) Method for estimating thickness of thin wall part of pipe
Ewert et al. Corrosion monitoring with tangential radiography and limited view computed tomography
Zscherpel et al. New concepts for corrosion inspection of pipelines by digital industrial radiology (DIR)
JP3632898B2 (en) Method for determining the usefulness of existing metal pipes using a radiographic inspection method, and a specimen used for carrying out this method
JPH07119593B2 (en) Pipe diagnosis method by comparing X-ray radiographic density
JP3792322B2 (en) Method for estimating pipe thinning depth
Kajiwara Improvement to X-ray piping diagnostic system through simulation (measuring thickness of piping containing rust)
Lee et al. Thickness evaluation of pipes using density profile on radiographs
HU187820B (en) Method and device /modification body/ for generating radiology image, preferably for applying at material testing
Amoah et al. Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique
SU1536215A1 (en) Method of photometric estimation of defect dimensions in direction of exposure to radiation
JP3453040B2 (en) Measuring method of pipe wall thickness and inner wall deposit thickness
JP2954479B2 (en) Measurement method of internal defect size and test piece used for it
JP3147272B2 (en) Defect height measurement method for ultrasonic flaw detector
RU2392609C1 (en) Method for estimate of defect size in transmission direction
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
RU2399908C1 (en) Method of measuring size of defects in transillumination direction
Jensen et al. A model of X-ray film response
JP2888367B2 (en) Measuring method of thickness of deposits in pipe
Kajiwara Examination of the X-ray Piping Diagnostic System Using EGS4
JPS582643A (en) Investigation for corrosion of submarine pipe
Zirnhelt et al. Radiographic evaluation of corrosion and deposits: An IAEA Co–ordinate Research Project
JPH01148249A (en) Method for measuring bone-salt amount
Halmshaw et al. Radiographic techniques: principles

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees