JPH06249190A - Controller of number of turbo compressor - Google Patents

Controller of number of turbo compressor

Info

Publication number
JPH06249190A
JPH06249190A JP3571593A JP3571593A JPH06249190A JP H06249190 A JPH06249190 A JP H06249190A JP 3571593 A JP3571593 A JP 3571593A JP 3571593 A JP3571593 A JP 3571593A JP H06249190 A JPH06249190 A JP H06249190A
Authority
JP
Japan
Prior art keywords
compressor
pressure
flow rate
load
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3571593A
Other languages
Japanese (ja)
Inventor
Hidenori Matsuno
秀紀 松野
Haruki Sakai
春樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3571593A priority Critical patent/JPH06249190A/en
Publication of JPH06249190A publication Critical patent/JPH06249190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE:To constantly control force-feed pressure by detecting force-feed flow rate to load from a common discharge piping for connecting to compressive medium discharge load sides of a plurality of turbo compressors, and selecting the number of machines to be driven according to the detected flow rate. CONSTITUTION:Respective turbo compressors 10, 20, 30 suck atomosphere by suction throttle valves 13, 23, 33, and forcibly feed it by main bodies 14, 24, 34, and pressure-detect it by pressure controllers 16, 26, 36 and control the suction throttle, valves 13, 23, 33 according to the load fluctuation. And it forcibly feed the atmosphere to the load through a common discharge pipe through the respective check valves 17, 27, 37. Two flow meters 2 are interposed in this discharge piping, so as to detect the flow rate in the discharge piping and input in the number control board 1. The number control board 1 determines the number of machines to be driven according to the detected flow rate, and outputs the starting/stopping command to respective machine side boards 11, 21, 31 so as to control them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は工場空気源等一般産業用
に用いられるターボ圧縮機設備に係り、特に様々な負荷
変動に応じて効率良く圧縮機を稼動させるターボ圧縮機
の台数制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo compressor facility used for general industry such as a factory air source, and more particularly to a turbo compressor number control device for efficiently operating a compressor in response to various load fluctuations. It is a thing.

【0002】[0002]

【従来の技術】圧縮機の台数制御装置の従来技術として
は「日立評論VOL.70 No2(1988年2月号
第41頁〜第46頁)」に記載されている技術がある。
上記従来技術は複数台のスクリュー形あるいはレシプロ
形の容積形圧縮機の台数制御装置であり、圧縮空気貯蔵
用レシーバタンクの圧送圧力の増減に応じて圧縮機をロ
ード・アンロード切換運転を行ない、さらにロード運転
時間から圧縮機の負荷状態を算出して圧縮機を起動・停
止させる制御である。
2. Description of the Related Art As a conventional technology of a control device for the number of compressors, "Hitachi Review Vol. 70 No. 2 (February 1988)
Page 41 to page 46) ".
The above-mentioned conventional technology is a number control device of a plurality of screw type or reciprocating type positive displacement compressors, and performs load / unload switching operation of the compressors according to increase / decrease in the pumping pressure of the compressed air storage receiver tank, Further, it is a control for starting and stopping the compressor by calculating the load state of the compressor from the load operation time.

【0003】またターボ圧縮機では吐出側の流量が減少
するとサージングに入り圧力変動が生じ、圧送できなく
なるとともにロータの振動や過渡変動トルクによるギヤ
や軸受に過大に荷重が加わり機器の損傷につながるため
運転不能となる現象がある。このサージングを防止し運
転を継続する方法として、吐出側の流量がサージング発
生流量に近づいたとき吐出ラインに設けた放風バルブを
開き大気に空気を放出することにより、大気に放出され
る流量と後流へ圧送される流量の合計がサージング発生
流量以下とならないように放風バルブを制御する方法が
一般に用いられている。
Further, in a turbo compressor, when the flow rate on the discharge side decreases, surging causes pressure fluctuation, which makes it impossible to carry out pressure feeding and causes excessive load on gears and bearings due to rotor vibration and transient fluctuation torque, resulting in damage to equipment. There is a phenomenon that operation becomes impossible. As a method of preventing this surging and continuing the operation, when the flow rate on the discharge side approaches the surging generation flow rate, the air blow valve provided in the discharge line is opened and air is released to the atmosphere, A method is generally used in which the blow-off valve is controlled so that the total flow rate pumped to the wake does not fall below the surging generation flow rate.

【0004】尚、この種の装置として関連するものには
例えば特開昭56−77583号、特開昭56−775
84号、特開昭60−1394号、特開昭61−534
79号、特開昭63−239399号公報等が挙げられ
る。
Incidentally, as a device related to this kind of device, for example, JP-A-56-77583 and JP-A-56-775.
84, JP-A-60-1394, JP-A-61-534.
79 and JP-A-63-239399.

【0005】[0005]

【発明が解決しようとする課題】上記「日立評論VO
L.70 No2」に記載されている技術では次のような
問題がある。すなわち圧送圧力の増減により圧力スイッ
チ等により圧力上限設定値及び圧力下限設定値を検知し
ロード・アンロード切換を行なうため、圧送圧力を一定
に保つことができない(圧力偏差約0.5kg/cm2G)。こ
のため圧送圧力を一定に保つことが要求される場合には
上記従来技術を用いることはできない。
[Problems to be Solved by the Invention]
L. The technology described in "70 No. 2" has the following problems. That is, the pressure upper limit setting value and the pressure lower limit setting value are detected by a pressure switch or the like as the pumping pressure increases or decreases and the load / unload switching is performed, so the pumping pressure cannot be kept constant (pressure deviation of about 0.5 kg / cm 2 G). For this reason, when it is required to keep the pumping pressure constant, the above conventional technique cannot be used.

【0006】また上記の問題を解決するために圧送圧力
一定制御を行なった場合には、従来技術では容積形圧縮
機を用いているため次のような問題がある。すなわち容
積形圧縮機の圧送圧力一定制御としては次の方法があ
る。圧縮機の圧送圧力を検出する圧力調節器と圧縮機吸
込部の吸込絞り弁を設け、圧縮機の負荷変動に応じて圧
送圧力が一定となるよう吸込絞り弁の開度を調節する方
法がある。しかし、容積形圧縮機の消費動力は次式で求
められるため、圧縮機の負荷が減少して吸込絞り弁を絞
ったとしても、吸込圧力Psは低下するが圧力比 Pd/P
sは増加するため、消費動力の低減効果は少ないという
問題がある。
Further, in the case where the constant pressure feeding pressure control is performed to solve the above-mentioned problem, the following problems occur because the prior art uses the positive displacement compressor. That is, there is the following method for controlling the constant pumping pressure of the positive displacement compressor. There is a method to adjust the opening of the suction throttle valve so that the pressure feed pressure becomes constant according to the load change of the compressor by providing a pressure controller that detects the pressure feed pressure of the compressor and a suction throttle valve of the compressor suction section. . However, since the power consumption of the positive displacement compressor is calculated by the following formula, even if the suction load is reduced and the suction throttle valve is throttled, the suction pressure Ps decreases but the pressure ratio Pd / P
Since s increases, there is a problem that the effect of reducing power consumption is small.

【数1】 L :消費動力(kw) Ps:吸込圧力(ata) Qs:吸込流量(m3/s) Pd:吐出圧力(ata) k :比熱比[Equation 1] L: Power consumption (kw) Ps: Suction pressure (ata) Qs: Suction flow rate (m 3 / s) Pd: Discharge pressure (ata) k: Specific heat ratio

【0007】またターボ圧縮機の定風圧・非サージ制御
には次のような問題がある。すなわちサージング発生を
防止するために実際に圧送が必要な流量が減少したとし
ても大気に放風することによりサージング発生流量以上
の流量を圧送していることになり、またターボ圧縮機の
動力が重量流量と圧力比より決まることから、大気に放
風している流量を圧縮するための動力分は全てロスとな
ってしまう。つまりターボ圧縮機の動力は下式で与えら
れる。
The constant wind pressure / non-surge control of the turbo compressor has the following problems. In other words, even if the flow rate that actually needs to be pumped to prevent the occurrence of surging decreases, it means that the air is blown into the atmosphere to pump more than the surging generation flow rate. Since it is determined by the flow rate and the pressure ratio, the power for compressing the flow released to the atmosphere is all lost. That is, the power of the turbo compressor is given by the following formula.

【数2】 L :消費動力(kw) R :ガス定数 Ts:吸込温度(゜K) Pd:吐出圧力(ata) Ps:吸込圧力(ata) K :比熱比 そこで大気に放風している流量を△Gとすれば、その圧
縮に要する動力△Lは下式で与えられ、全てロスとして
消費していることになる。
[Equation 2] L: Power consumption (kw) R: Gas constant Ts: Suction temperature (° K) Pd: Discharge pressure (ata) Ps: Suction pressure (ata) K: Specific heat ratio At that point, the flow rate to the atmosphere is ΔG. If so, the power ΔL required for the compression is given by the following equation, and it is consumed as a loss.

【数3】 [Equation 3]

【0008】さらに従来の技術では圧送圧力の増減を少
なくするためには、圧縮空気を貯蔵するためのレシーバ
ータンクを設け、該レシーバータンクに圧縮空気を貯え
ることにより、圧送流量の変動に対して圧送圧力の変動
を少なく抑えていた。
Further, in the prior art, in order to reduce the increase / decrease in the pressure-feeding pressure, a receiver tank for storing the compressed air is provided, and the compressed air is stored in the receiver tank so that the pressure-feeding can be performed against the fluctuation of the pressure-feeding flow rate. The pressure fluctuation was kept low.

【0009】本発明の第1の目的は、圧縮機の圧送圧力
の変動を抑え、圧送圧力一定制御を行うことのできるタ
ーボ圧縮機の台数制御装置を提供することにある。本発
明の第2の目的は圧送圧力を一定に制御する台数制御装
置にターボ圧縮機を用いて、放風運転をできるだけ少な
くし、圧縮機の負荷変動に応じて消費動力を減少させる
効率の良いターボ圧縮機の台数制御装置を提供すること
にある。本発明の第3の目的は容量の異なるターボ圧縮
機を組合せることにより放風運転の領域を解消し、動力
のロスを低減することにある。本発明の第4の目的は圧
送圧力の増減を少なくするための圧縮空気貯蔵用のレシ
ーバータンクを用いずに風量変化に応じた予測制御によ
り圧送圧力を一定に保つことのできるターボ圧縮機の台
数制御装置を提供することにある。
A first object of the present invention is to provide a number controller for turbo compressors capable of suppressing fluctuations in the pressure-feeding pressure of the compressor and performing constant pressure-feeding pressure control. A second object of the present invention is to use a turbo compressor as a number-of-units control device for controlling the pumping pressure to be constant, to reduce the blowing operation as much as possible, and to reduce the power consumption according to the load fluctuation of the compressor with good efficiency. It is to provide a unit control device for a turbo compressor. A third object of the present invention is to eliminate the range of blow-off operation and reduce power loss by combining turbo compressors having different capacities. A fourth object of the present invention is to provide a number of turbo compressors capable of keeping the pumping pressure constant by predictive control according to the change in air volume without using a receiver tank for storing compressed air for reducing the increase or decrease of the pumping pressure. It is to provide a control device.

【0010】[0010]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明のターボ圧縮機の台数制御装置は、タ
ーボ圧縮機吸込側の気体の供給量を調節し圧縮機の吐出
圧力を一定に制御するための吸込絞り弁と、圧縮気体を
外部に放出することによりサージングを防止し吐出圧力
を一定に制御するための放風弁と、圧縮機の吐出圧力を
検出し該吸入絞り弁及び該放風弁の開度を制御するため
の圧力調節計とを有する吐出圧力一定制御の複数台の並
列運転のターボ圧縮機を有し、該圧縮機設備負荷への圧
送流量を流量計により検出し、該流量計により検出した
圧送流量に応じて台数制御盤により必要台数のターボ圧
縮機を起動・停止あるいはロード・アンロード切換運転
を行うようにしたものである(請求項1、請求項2)。
In order to achieve the first object, the number control device for a turbo compressor according to the present invention adjusts the gas supply amount on the suction side of the turbo compressor to adjust the discharge pressure of the compressor. To control the discharge pressure of the compressor by controlling the discharge pressure of the compressor and the suction throttle valve for controlling the discharge pressure of the compressor by discharging the compressed gas to the outside. A plurality of parallel-operated turbo compressors for constant discharge pressure control, each of which has a valve and a pressure controller for controlling the opening degree of the blow-off valve, and a flow meter for measuring a pumping flow rate to the compressor facility load. The number of required turbo compressors is started / stopped or the load / unload switching operation is performed by the unit control panel according to the flow rate detected by the flow meter (Claim 1, Claim 1). Item 2).

【0011】また上記第2の目的を達成するために、本
発明の台数制御装置に容積形の圧縮機に代えて、上記吐
出圧力一定制御のターボ圧縮機を用いることにより、放
風運転をできるだけ少なくして圧縮機の負荷変動に応
じ、消費動力を減少させて高効率化を図ったものであ
る。
In order to achieve the second object, the blower operation can be performed as much as possible by using the constant discharge pressure control turbo compressor instead of the positive displacement compressor in the unit number control device of the present invention. By reducing the power consumption, the power consumption is reduced according to the load fluctuation of the compressor to improve the efficiency.

【0012】また上記第3の目的を達成するために、容
量の異なるターボ圧縮機3台以上を組合せることによ
り、例えば吸込絞りにより放風せずに容調可能な範囲が
70〜100%、100〜140%、140〜200%
のターボ圧縮機を各1台組合せて流量による台数制御を
行えば、70〜440%まで放風によるロスの無い台数
制御が行えるようにしたものである(請求項3)。
Further, in order to achieve the third object, by combining three or more turbo compressors having different capacities, for example, the range that can be adjusted without blowing air by a suction throttle is 70 to 100%, 100-140%, 140-200%
If one of the turbo compressors is combined and the number of units is controlled according to the flow rate, the number of units can be controlled without loss due to blowing up to 70 to 440% (claim 3).

【0013】更に上記第4の目的を達成するために、上
記レシーバタンクを省略した場合には負荷使用流量が急
激に増大した時に、圧送開始までの時間が制御の遅れ時
間となり圧力低下をきたすことが考えられるが、この圧
送開始までの時間遅れによる圧力低下防止のためには流
量変化を予測計算し、時間遅れ分だけ常に流量を先行予
測し、この流量と台数制御の設定流量とを比較し、起動
又はロードの指令を出すようにしたものである(請求項
4)。
Further, in order to achieve the above-mentioned fourth object, when the receiver tank is omitted, when the load use flow rate increases rapidly, the time until the start of pumping becomes a control delay time and causes a pressure drop. However, in order to prevent pressure drop due to the time delay until the start of pumping, the flow rate change is predicted and calculated, the flow rate is always predicted in advance by the time delay, and this flow rate is compared with the set flow rate for unit control. A command for starting or loading is issued (claim 4).

【0014】[0014]

【作用】本発明では、吐出圧力一定制御のターボ圧縮機
の複数台を、圧縮機設備負荷への圧送流量を流量計によ
り検出し、該流量計により検出した流量に応じて台数制
御盤により必要な台数の圧縮機を起動停止あるいはロー
ド・アンロード切換運転させる台数制御装置となってい
るので、圧送圧力が変動することなく圧送圧力一定に制
御することができる(請求項1、請求項2)。
According to the present invention, a plurality of turbo compressors having constant discharge pressure control are required to be detected by the flow meter to detect the flow rate of pumping to the compressor equipment load, and the unit control panel is required according to the flow rate detected by the flow meter. Since it is a device number control device that starts and stops a large number of compressors or performs load / unload switching operation, the pumping pressure can be controlled to be constant without fluctuations (claims 1 and 2). .

【0015】また本発明では、吐出圧力一定制御の複数
台のターボ圧縮機による台数制御装置となっており、タ
ーボ圧縮機の消費動力は上式(数2)で与えられるの
で、負荷が減少して吸込絞り弁を絞った場合に重量流量
Gが減少するため、上記容積形圧縮機による吐出圧力一
定制御と比べ負荷低下時の消費動力低減効果が大きく効
率の良い台数制御を行うことができる。
Further, according to the present invention, the unit number control device is constituted by a plurality of turbo compressors for constant discharge pressure control. Since the power consumption of the turbo compressors is given by the above equation (Equation 2), the load is reduced. Since the weight flow rate G is reduced when the suction throttle valve is throttled, the power consumption reduction effect at the time of load reduction is large and efficient unit number control can be performed as compared with the discharge pressure constant control by the positive displacement compressor.

【0016】また本発明では、容量の異なるターボ圧縮
機3台以上を組合せることにより、圧送が必要な流量に
応じて運転する圧縮機の組合せを変化させることで、小
流量から大流量まで放風による動力のロスのない運転が
可能となる(請求項3)。
Further, according to the present invention, by combining three or more turbo compressors having different capacities, the combination of compressors to be operated is changed according to the flow rate required for pumping, so that a small flow rate to a large flow rate is discharged. This enables operation without loss of power due to wind (claim 3).

【0017】さらに本発明では、流量に応じて各ターボ
圧縮機が容量を調整するので圧力変動が無く、圧縮空気
貯蔵用のレシーバータンクが不用となる。
Further, in the present invention, since the capacity of each turbo compressor is adjusted according to the flow rate, there is no pressure fluctuation, and the receiver tank for storing compressed air becomes unnecessary.

【0018】[0018]

【実施例】以下に本発明の実施例を図1から図6により
説明する。図1は、本発明によるターボ圧縮機の台数制
御装置を適用した圧縮機設備の一実施例を示す構成図で
ある。図2は、図1の台数制御装置において負荷変動に
応じて圧縮機を起動・停止させる実施例の制御フロー図
であり、図3は図1の台数制御装置において負荷変動に
応じて圧縮機をロード・アンロード切換運転させる実施
例の制御フロー図である。図4(a)、(b)は図1の
台数請求項装置においてそれぞれ容量の異なる圧縮機3
台を組み合わせた実施例と、同一容量の圧縮機3台を組
み合わせた実施例の制御フロー図であり、図5は図1の
台数制御装置において流量変化に応じた予測制御を行う
実施例の動作説明図である。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram showing an embodiment of compressor equipment to which a number control device for turbo compressors according to the present invention is applied. FIG. 2 is a control flow diagram of an embodiment in which the number control system of FIG. 1 starts and stops the compressor in response to a load change, and FIG. 3 shows the number control system of FIG. It is a control flow figure of an example which carries out load / unload switching operation. 4 (a) and 4 (b) are compressors 3 having different capacities in the claim device of FIG.
FIG. 5 is a control flow diagram of an embodiment in which three compressors having the same capacity are combined and an embodiment in which three compressors having the same capacity are combined, and FIG. 5 is an operation of an embodiment in which predictive control is performed according to a flow rate change in the unit number control device of FIG. FIG.

【0019】図1の実施例の圧縮機設備は、3台のター
ボ圧縮機10,20,30とこれらの圧縮機より圧縮機
設備負荷へ圧送される気体の流量を測定するための流量
計2と、該流量に応じて圧縮機の台数制御を行う台数制
御盤1とにより構成されるターボ圧縮機の台数制御装置
である。各ターボ圧縮機10、20、30は、圧縮機本
体14、24、34の圧縮機吸込側の気体の供給量を調
節し圧縮機の吐出圧力を一定に制御するための吸込絞り
弁13、23、33と、圧縮気体を外部に放出すること
によりサージングを防止し吐出圧力を一定に制御するた
めの放風弁15、25、35と、圧縮機の吐出圧力を検
出し上記吸込絞り弁及び放風弁の開度を制御するための
圧力調節計16、26、36と、始動・停止またはロー
ド・アンロード切換運転等を行う機側盤11、21、3
1と、上記吸込絞り弁を一定開度に絞るたるのローリミ
ットリレー12、22、32と、圧縮機出側の逆流を防
止するための逆止弁17、27、37とを有する。
The compressor equipment of the embodiment shown in FIG. 1 comprises three turbo compressors 10, 20, 30 and a flow meter 2 for measuring the flow rate of the gas pumped from these compressors to the compressor equipment load. And a unit number control panel 1 for controlling the number of compressors according to the flow rate. The turbo compressors 10, 20, 30 are suction throttle valves 13, 23 for adjusting the supply amount of gas on the compressor suction side of the compressor bodies 14, 24, 34 and controlling the discharge pressure of the compressor to be constant. , 33, blow-off valves 15, 25, 35 for preventing surging by releasing the compressed gas to the outside and controlling the discharge pressure constant, and the suction throttle valve and the discharge valve for detecting the discharge pressure of the compressor. Pressure controllers 16, 26, 36 for controlling the opening of the wind valve, and machine side panels 11, 21, 3 for performing start / stop or load / unload switching operation, etc.
1, low limit relays 12, 22, 32 for narrowing the suction throttle valve to a constant opening degree, and check valves 17, 27, 37 for preventing reverse flow on the compressor outlet side.

【0020】上記の構成で、各ターボ圧縮機10,2
0,30は吸込絞り弁13、23、33より吸込んだ大
気を圧縮機本体14,24,34により圧送し、該圧送
圧力を圧力調節計16、26、36により検出し、圧縮
機の負荷変動に対して負荷減少した時には吸込絞り弁1
3、23、33の開度を絞って圧送流量を減少させ、更
に負荷が大巾に減少した時にはローリミットリレー1
2,22,32により吸込絞り弁13,23,33の開
度を一定開度まで絞った状態を維持しながら放風弁1
5,25,35により必要流量以上の風量を大気へ放風
することにより圧縮機のサージングを回避しながら圧送
圧力を一定に制御する装置となっている。上記ターボ圧
縮機10,20,30から圧送された気体の流量を流量
計2により測定し、該測定流量台数制御盤1に入力す
る。該台数制御盤1では流量計2より入力された流量に
応じて、圧送に要するターボ圧縮機の運転台数を選定
し、各圧縮機の機側盤11、12,13に対し起動・停
止指令またはロード・アンロード切換指令を出力し、こ
の指令により各圧縮機が機側盤により起動・停止または
ロード・アンロード切換運転する。尚ロード運転とは上
記吸込絞り弁及び放風弁開度を制御しながら負荷へ圧送
する運転状態をいい、アンロード運転とは上記吸込絞り
弁を全開かつ放風弁を全開して負荷へ圧送しない運転状
態をいう。また起動・停止は電源のオン・オフによる。
この結果、圧縮機設備としては常に設備負荷に必要な最
小限の台数の圧縮機が圧送を行うため設備全体の省力化
を図ることができる。
With the above configuration, each turbo compressor 10, 2
0, 30 pressure-feeds the air sucked from the suction throttle valves 13, 23, 33 by the compressor bodies 14, 24, 34, detects the pressure-feeding pressure by the pressure regulators 16, 26, 36, and changes in the load of the compressor. Suction throttle valve 1 when the load decreases
When the load of pumping is reduced by narrowing the openings of 3, 23, 33 and the load is greatly reduced, the low limit relay 1
Blow-off valve 1 while maintaining the state in which the openings of suction throttle valves 13, 23, 33 are throttled to a constant opening by 2, 22, 32.
5,25,35 is a device for controlling the pumping pressure to be constant while avoiding the surging of the compressor by discharging a larger amount of air than required to the atmosphere. The flow rate of the gas pressure-fed from the turbo compressors 10, 20, 30 is measured by the flow meter 2 and input to the measured flow rate unit control panel 1. In the unit number control panel 1, the operating number of turbo compressors required for pumping is selected according to the flow rate input from the flow meter 2, and a start / stop command is issued to the machine side panels 11, 12, 13 of each compressor. A load / unload switching command is output, and each command causes the compressor to start / stop or load / unload switching operation by the machine side panel. Note that the load operation refers to an operating state in which the suction throttle valve and the blow-off valve are controlled to be pressure-fed to the load. Not refers to the operating state. In addition, start / stop depends on turning the power on / off.
As a result, as the compressor equipment, the minimum number of compressors required for the equipment load always perform the pressure feeding, so that the labor of the entire equipment can be saved.

【0021】図2は図1の実施例において台数制御盤1
によりターボ圧縮機10,20,30を起動・停止させ
る実施例の制御フローを示している。図2の実施例にお
いて、圧送圧力が一定で圧送流量が増加した時には、順
次に圧縮機を起動させ運転台数を増加させることにより
設備負荷への圧送流量が不足しないようにし、逆に圧送
流量が減少した時には、順次に圧縮機を停止させること
により設備負荷への圧送流量が余らないようにする装置
となっている。
FIG. 2 shows a unit control panel 1 in the embodiment of FIG.
The control flow of the embodiment in which the turbo compressors 10, 20, and 30 are started / stopped is shown. In the embodiment of FIG. 2, when the pumping pressure is constant and the pumping flow rate increases, the compressors are sequentially started to increase the number of operating units so that the pumping flow rate to the equipment load is not insufficient, and conversely When it decreases, the compressor is stopped one after another so that the pumping flow rate to the equipment load is not excessive.

【0022】図3は図1の実施例において台数制御盤1
によりターボ圧縮機10、20、30をロード・アンロ
ード切換運転を行う実施例の制御フローを示している。
図2の実施例において、圧送流量が増加した時には、ロ
ード運転を行う圧縮機の台数を増加させ設備の圧送流量
が不足しないようにし、逆に圧送流量が減少した時に
は、アンロード運転を行う圧縮機の台数を増加させ設備
負荷への圧送流量が余らないようにする装置となってい
る。
FIG. 3 shows a unit control panel 1 in the embodiment of FIG.
2 shows a control flow of an embodiment in which the turbo compressors 10, 20, 30 are switched between load / unload switching operations.
In the embodiment of FIG. 2, when the pumping flow rate increases, the number of compressors performing load operation is increased so that the pumping flow rate of the equipment does not become insufficient, and conversely, when the pumping flow rate decreases, unloading operation is performed. It is a device that increases the number of machines and prevents the excess pumping flow to the equipment load.

【0023】上記図2の実施例も、図3の実施例も圧送
流量に応じて圧送運転する圧縮機の台数を増減させるの
で、圧縮機設備の省力化が図られる。また圧送流量によ
り台数制御を行う装置となっているので、圧送圧力を一
定に保つことができる。さらに、各圧縮機が吸入絞り弁
による圧力一定制御のターボ圧縮機であるので、各圧縮
機の圧送流量が減少すれば消費動力も流量に応じて減少
するので、容積形圧縮機を使用した装置よりも効率の良
い装置となっている。
In both the embodiment shown in FIG. 2 and the embodiment shown in FIG. 3, the number of compressors that perform the pumping operation is increased or decreased according to the pumping flow rate, so that the labor of the compressor equipment can be saved. Moreover, since the number of units is controlled by the pressure-feeding flow rate, the pressure-feeding pressure can be kept constant. Furthermore, since each compressor is a turbo compressor with constant pressure control by a suction throttle valve, if the pumping flow rate of each compressor decreases, the power consumption also decreases according to the flow rate, so a device using a positive displacement compressor It is a more efficient device.

【0024】図4(a)、(b)は図1の実施例におい
てそれぞれ容量の異なる圧縮機3台を組み合わせた実施
例と、同一容量の圧縮機3台を組み合わせた実施例の制
御をフローしている。図4(a)の実施例において、例
えば吸込絞り弁13、23、33の絞りによって放風弁
15、25、35で放風せずに容調可能な流量範囲が7
0〜100%、100〜140%、140〜200%の
ターボ圧縮機、、を各1台組み合わせて流量計2
の検出流量による台数制御盤1での台数制御例えばロー
ド・アンロード切換運転を行えば、流量範囲70〜44
0%まで放風による動力ロスのない台数制御が実現でき
る。図4(a)の特性を図4(b)おいて例えば放風せ
ずに容調可能な流量範囲が70〜100%同一のターボ
圧縮機、、を組み合わせて同じく台数制御を行っ
た実施例の特性と比較すると、斜線で示す範囲の放風に
よる動力ロスが明らかに少なくなっている。尚起動・停
止を行った場合も同様である。
FIGS. 4 (a) and 4 (b) are flow charts of control of an embodiment in which three compressors having different capacities are combined in the embodiment of FIG. 1 and an embodiment in which three compressors having the same capacity are combined. is doing. In the embodiment of FIG. 4 (a), the flow rate range that can be adjusted without being blown by the blowoff valves 15, 25, 35 by the throttles of the suction throttle valves 13, 23, 33 is 7
0-100%, 100-140%, 140-200% turbo compressors, each one combined, flow meter 2
Controlling the number of units in the unit control panel 1 based on the detected flow rate of, for example, load / unload switching operation
It is possible to realize unit control without power loss due to blown air up to 0%. An embodiment in which the characteristics of FIG. 4 (a) are combined in FIG. 4 (b), for example, a turbo compressor having the same adjustable flow rate range of 70 to 100% without being blown, and the same number control is performed Compared with the characteristics of, the power loss due to the blown air in the range shown by the diagonal line is obviously smaller. Note that the same applies when starting and stopping.

【0025】また上記図1から図4(a)、(b)のど
の実施例も圧送圧力一定制御のターボ圧縮機が圧力・流
量の変動に応じて容量調整を行いかつ、各圧縮機の起動
・停止またはロード・アンロード切換運転を負荷圧送圧
力ではなく圧送流量の変化を検出して行うので、圧縮空
気貯蔵用のレシーバータンクが不要となる。 但しレシ
ーバタンクが無い場合には、急激な使用流量の増大が実
際の圧送開始までの時間おくれのため圧力低下を引き起
す可能性があるから、これを防止するには流量変化に応
じた予測制御を行うのが好ましい。
Further, in any of the embodiments shown in FIGS. 1 to 4 (a) and 4 (b), the turbo compressor having the constant pumping pressure control adjusts the capacity according to the fluctuation of the pressure and the flow rate, and starts each compressor. -Since the stop or load / unload switching operation is performed by detecting the change in the pressure feed flow rate, not the load pressure feed pressure, a receiver tank for storing compressed air is not required. However, if there is no receiver tank, a sudden increase in the used flow rate may cause a pressure drop due to the delay until the actual pumping starts, so to prevent this, predictive control according to the flow rate change is required. Is preferably performed.

【0026】図5は図1の実施例において台数制御装置
が流量変化に応じた先行予測制御を行う動作を示してい
る。図5の実施例において、台数制御盤1は時間tの変
化Δtに対する流量計2の検出流量f(t)をとらえ、
時間tと流量f(t)の特性により時刻t=tOにおけ
る流量f(t0)から時刻t=t0+Δtにおける予測流
量f(t0+Δt)を次の予測式によって求められる。
FIG. 5 shows the operation of the number-of-units control device in the embodiment of FIG. 1 to perform the advance prediction control according to the flow rate change. In the embodiment of FIG. 5, the unit control panel 1 detects the detected flow rate f (t) of the flow meter 2 with respect to the change Δt of the time t,
Time t and the flow rate f rate f at time t = t O the characteristics of (t) (t 0) from the time t = t 0 + prediction in Delta] t flow f (t 0 + Δt) obtained by the following prediction equation.

【数4】 この予測流量f(t0+Δt)を設定流量fNと比較して
次の判別式を満足する時には並列運転台数を1台増加し
て1台追加起動またはロード運転を行わせる。
[Equation 4] When this predicted flow rate f (t 0 + Δt) is compared with the set flow rate f N and the following discriminant is satisfied, the number of parallel operation units is increased by 1 and one additional start or load operation is performed.

【数5】 尚上式(数4)は直線近似式であるが、これに限定され
ない。
[Equation 5] Although the above equation (Equation 4) is a linear approximation equation, it is not limited to this.

【0027】[0027]

【発明の効果】本発明によれば、圧送流量を検出して圧
送流量の変化に対し予測制御も加え複数台のターボ圧縮
機を起動・停止またはロード・アンロード切換運転させ
る新規の機能が得られる効果がある。またこれにより圧
送流量に応じて圧縮機を起動・停止またはロード・アン
ロード切換運転させるので、圧縮機を無駄に運転するこ
とがなくなり、設備の省力化が図られる。また吸入絞り
弁による圧力一定制御のターボ圧縮機を使用しているた
め、流量の減少に応じて負荷も減少するので圧縮機設備
の省力化が図られる。また圧送圧力一定制御のターボ圧
縮機が圧力・流量の変動に応じて各量調整を行い、かつ
各圧縮機の起動・停止またはロード・アンロード切換を
圧送圧力ではなく流量の変化を検出して行うので、圧縮
空気貯蔵用のレシーバータンクが不要となるなどの効果
がある。さらに圧送流量により台数制御を行っているた
め、圧力変動がなく圧力一定制御となっており、また先
行予測により急激な負荷増大に対しても圧力低下を防止
できるので性能・効率の向上が図れる効果がある。
According to the present invention, a novel function for detecting the pumping flow rate and predicting the change in the pumping flow rate and for starting / stopping a plurality of turbo compressors or switching between load / unload switching operations is obtained. It is effective. Further, as a result, the compressor is started / stopped or the load / unload switching operation is carried out in accordance with the flow rate of the pressure to be fed, so that the compressor is not wastefully operated and the equipment can be saved in labor. Further, since the turbo compressor whose pressure is controlled by the suction throttle valve is used, the load also decreases as the flow rate decreases, so the labor of the compressor equipment can be saved. In addition, the turbo compressor with constant pumping pressure control adjusts each amount according to the fluctuation of pressure and flow rate, and the start / stop of each compressor or load / unload switching is detected by detecting the change of the flow rate instead of the pumping pressure. Since this is performed, there is an effect that a receiver tank for storing compressed air is unnecessary. In addition, since the number of units is controlled by the pumping flow rate, there is no pressure fluctuation and the pressure is constant. In addition, it is possible to improve the performance and efficiency because the pressure drop can be prevented even if the load suddenly increases due to advance prediction. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるターボ圧縮機の台数制御装置を適
用した圧縮機設備の一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of compressor equipment to which a number control device for turbo compressors according to the present invention is applied.

【図2】図1の台数制御装置において負荷変動に応じて
圧縮機を起動・停止させる実施例の制御フロー図であ
る。
2 is a control flow diagram of an embodiment in which the compressor is started / stopped according to a load change in the unit number control apparatus of FIG. 1. FIG.

【図3】図1の台数制御装置において負荷変動に応じて
圧縮機をロード・アンロード切換運転させる実施例の制
御フロー図である。
FIG. 3 is a control flow diagram of an embodiment in which the compressor is operated to switch between loading and unloading in accordance with load fluctuations in the unit number control device of FIG. 1.

【図4】(a)、(b)は図1の台数制御装置において
それぞれ容量の異なる圧縮機3台を組み合わせた実施例
と、同一容量の圧縮機3台を組み合わせた実施例の制御
フロー図である。
4A and 4B are control flow charts of an embodiment in which three compressors having different capacities are combined in the unit number control apparatus of FIG. 1 and an embodiment in which three compressors having the same capacity are combined. Is.

【図5】図1の台数制御装置において流量変化に応じた
予測制御を行う実施例の説明図である。
5 is an explanatory diagram of an example of performing predictive control according to a flow rate change in the unit number control device of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1 台数制御盤 2 流量計 10,20,30 ターボ圧縮機 13,23,33 吸込絞り弁 14,24,34 圧縮機本体 15,25,35 放風弁 16,26,36 圧力調節計 17、27、37 逆止弁 1 Number control panel 2 Flow meter 10,20,30 Turbo compressor 13,23,33 Suction throttle valve 14,24,34 Compressor body 15,25,35 Blow-off valve 16,26,36 Pressure regulator 17,27 , 37 Check valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ターボ圧縮機吸込気体流量を絞る吸込絞
り弁と、該圧縮機吐出気体を放風する放風弁と、該圧縮
機吐出圧力を検出し該吐出圧力一定制御するべく上記の
吸込絞り弁及び放風弁開度を制御する圧力調節計と、を
有する、複数台のターボ圧縮機と、 該複数台のターボ圧縮機の圧縮気体吐出負荷側を共通接
続した共通の吐出配管と、 該配管から負荷への圧送流量を検出する流量計と、 該流量計の検出流量に応じて該圧縮機の運転台数を選定
したうえ起動・停止運転せしめる台数制御盤と、 より成るターボ圧縮機の台数制御装置。
1. A suction throttle valve that throttles a flow rate of a suction gas of a turbo compressor, a blow-off valve that blows the discharge gas of the compressor, and a suction valve that detects the discharge pressure of the compressor and controls the discharge pressure to be constant. A plurality of turbo compressors each having a throttle valve and a pressure controller for controlling a blow-off valve opening; and a common discharge pipe in which the compressed gas discharge load sides of the plurality of turbo compressors are commonly connected. A turbo compressor comprising: a flow meter for detecting a flow rate of pressure fed from the pipe to the load; and a unit control panel for selecting the number of operating compressors according to the detected flow rate of the flow meter and for starting / stopping the compressor. Number control device.
【請求項2】 ターボ圧縮機吸込気体流量を絞る吸込絞
り弁と、該圧縮機吐出気体を放風する放風弁と、該圧縮
機吐出圧力を検出し該吐出圧力一定制御するべく上記の
吸込絞り弁及び放風弁開度を制御する圧力調節計と、を
有する、複数台のターボ圧縮機と、 該複数台のターボ圧縮機の圧縮気体吐出負荷側を共通接
続した共通の吐出配管と、 該配管から負荷への圧送流量を検出する流量計と、 該流量計の検出流量に応じて該圧縮機の運転台数を選定
したうえ上記吸込絞り弁及び放風弁開度を制御しながら
負荷へ圧送するロード運転と上記吸込絞り弁を全閉かつ
放風弁を全開にして負荷へ圧送しないアンロード運転と
を切り換え運転せしめる台数制御盤と、 より成るターボ圧縮機の台数制御装置。
2. A suction throttle valve that throttles a flow rate of a suction gas of a turbo compressor, a blowoff valve that blows off the discharge gas of the compressor, and a suction valve that detects the discharge pressure of the compressor and controls the discharge pressure to be constant. A plurality of turbo compressors each having a throttle valve and a pressure controller for controlling a blow-off valve opening; and a common discharge pipe in which the compressed gas discharge load sides of the plurality of turbo compressors are commonly connected. A flow meter for detecting the flow rate of the pressure fed from the pipe to the load, and the number of compressors operating according to the flow rate detected by the flow meter, and then controlling the suction throttle valve and blow-off valve opening to the load. A unit control device for a turbo compressor, which comprises a unit control panel for switching between load operation in which pressure is fed and unload operation in which the suction throttle valve is fully closed and the blowoff valve is fully opened and pressure is not fed to the load.
【請求項3】 上記複数台並列運転ターボ圧縮機は、上
記ターボ圧縮機の放風弁による放風運転となる上記圧縮
機負荷への圧送流量範囲を無くするべく3台以上組み合
わせた異容量ターボ圧縮機より成る請求項2または請求
項3に記載のターボ圧縮機の台数制御装置。
3. The different-capacity turbo compressors in which the plurality of parallel-operated turbo compressors are combined in combination of three or more in order to eliminate a pumping flow rate range to the compressor load, which is a blowing operation by a blow valve of the turbo compressor. The number control device of the turbo compressor according to claim 2 or 3 which consists of a compressor.
【請求項4】 上記台数制御盤は該台数制御盤の上記起
動またはロードの指令が上記ターボ圧縮機に入ってから
該圧縮機が吐出気体圧送開始するまでの時間遅れ分だ
け、上記流量計の検出流量変化を先行予測して上記起動
またはロード指令を出すようにした請求項1または請求
項2記載のターボ圧縮機の台数制御装置。
4. The unit control panel of the flow meter is provided with a time delay from when the start or load command of the unit control panel enters the turbo compressor to when the compressor starts to discharge gas pressure. The number control device of the turbo compressor according to claim 1 or 2, wherein the start or load command is issued by predicting a change in the detected flow rate in advance.
【請求項5】 上記複数台のターボ圧縮機の圧縮気体吐
出負荷側と共通吐出配管との間に逆流防止用の逆止弁を
設けた請求項1または2記載のターボ圧縮機の台数制御
装置。 【0001】
5. A turbo compressor number control apparatus according to claim 1, wherein a check valve for preventing backflow is provided between the compressed gas discharge load side of said plurality of turbo compressors and a common discharge pipe. . [0001]
JP3571593A 1993-02-24 1993-02-24 Controller of number of turbo compressor Pending JPH06249190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3571593A JPH06249190A (en) 1993-02-24 1993-02-24 Controller of number of turbo compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3571593A JPH06249190A (en) 1993-02-24 1993-02-24 Controller of number of turbo compressor

Publications (1)

Publication Number Publication Date
JPH06249190A true JPH06249190A (en) 1994-09-06

Family

ID=12449567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3571593A Pending JPH06249190A (en) 1993-02-24 1993-02-24 Controller of number of turbo compressor

Country Status (1)

Country Link
JP (1) JPH06249190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161754A (en) * 2004-12-09 2006-06-22 Kobe Steel Ltd Compressor equipment and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161754A (en) * 2004-12-09 2006-06-22 Kobe Steel Ltd Compressor equipment and its control method

Similar Documents

Publication Publication Date Title
KR101167556B1 (en) Number-of-compressors controlling system
US6287083B1 (en) Compressed air production facility
US7922457B2 (en) System and method for controlling a variable speed compressor during stopping
US6652240B2 (en) Method and control system for controlling multiple throttled inlet rotary screw compressors
JP4786443B2 (en) Compressed air production facility
US6499504B2 (en) Control system for controlling multiple compressors
JP2754079B2 (en) Control method and control device for compressor system
JP5721309B2 (en) Multi-stage high pressure compressor
JP2008534842A (en) Complex compressor control system
US6860103B2 (en) Multiple-compressor system having base and trim compressors
JP2004514870A (en) Pressure distribution and pressure regulation system and method for heating / air conditioning unit, and skyscraper using the same
JP2005048755A (en) Compressor number control system
JP6997648B2 (en) Compressor system
JPH06249190A (en) Controller of number of turbo compressor
JPS60147586A (en) Control of compressor
JP2004316462A (en) Method and device for controlling displacement of centrifugal compressor
JP4351623B2 (en) Compressor equipment and control method thereof
JP3573877B2 (en) Operation control device for gas compressor
JP3384894B2 (en) Turbo compressor capacity control method
JPH07332248A (en) Method and device for controlling combination number of turbo-compressors and displacement compressors and air source for compressor equipment
JP2005023818A (en) Compressor system
JP4425768B2 (en) Screw compressor
JP4496886B2 (en) Operation method of turbo compressor system
JPH07119644A (en) Compressor equipment and method and system for controlling number of combination of compressors
JP4399655B2 (en) Compressed air production facility