JPH0624867A - Heat resistant stratiform silica porous body and production thereof - Google Patents

Heat resistant stratiform silica porous body and production thereof

Info

Publication number
JPH0624867A
JPH0624867A JP4200255A JP20025592A JPH0624867A JP H0624867 A JPH0624867 A JP H0624867A JP 4200255 A JP4200255 A JP 4200255A JP 20025592 A JP20025592 A JP 20025592A JP H0624867 A JPH0624867 A JP H0624867A
Authority
JP
Japan
Prior art keywords
silica porous
porous body
layered
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4200255A
Other languages
Japanese (ja)
Other versions
JP3295973B2 (en
Inventor
Shinji Inagaki
伸二 稲垣
Yoshiaki Fukushima
喜章 福嶋
Akane Okada
茜 岡田
Kazuhiro Fukumoto
和広 福本
Kazuyuki Kuroda
一幸 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP20025592A priority Critical patent/JP3295973B2/en
Priority to US08/087,440 priority patent/US5382558A/en
Publication of JPH0624867A publication Critical patent/JPH0624867A/en
Application granted granted Critical
Publication of JP3295973B2 publication Critical patent/JP3295973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • C04B14/206Mica or vermiculite modified by cation-exchange; chemically exfoliated vermiculate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a heat resistant stratiform silica porous body having excellent performance as a catalyst carrier, excellent adsorptivity to organic compounds such as fuel and heat resistance and large specific surface area and the producing method thereof. CONSTITUTION:In the stratiform silica porous body, a plate-like sheet layer 91 is formed from a crystalline stratiform silicate, a plurality of the sheet layer 91 is laminated and the adjacent sheet layers 91 are partially bonded with each other at bonding points 93 by silicate bond. The stratiform silica porous body forms a honeycomb porous structure, the distance between the adjacent sheet layers 91 is reduced at the bonding points 93 and fine pores 92 are formed with enlarged width between the bonding points 93. The content of alkali metal contained in the crystalline stratiform silicate is <=0.2wt.% and specific surface area is >=1000m<2>/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,触媒担体及び有機物の
吸着材等として用いられる,耐熱性の層状シリカ多孔体
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant layered silica porous material used as a catalyst carrier and an adsorbent for organic substances, and a method for producing the same.

【0002】[0002]

【従来技術】クラッキング触媒や排気ガス浄化用触媒で
は,触媒が比較的高温(700℃以上)にさらされる。
従って,その触媒単体としては,高温でも活性成分の分
散性を維持するために,高比表面積を維持するものが望
ましい。しかし,従来使用されてきたゼオライト,シリ
カ−アルミナ,アルミナ,シリカゲル等は必ずしも耐熱
性が良くなく,また耐熱性が優れていても細孔径分布に
問題があった。一方,例えば自動車のキャニスタに充填
する蒸発燃料の吸収剤等の用途のため,吸着能力の大き
な吸着剤が求められている。
2. Description of the Related Art In a cracking catalyst and an exhaust gas purifying catalyst, the catalyst is exposed to a relatively high temperature (700 ° C. or higher).
Therefore, it is desirable that the catalyst itself has a high specific surface area in order to maintain the dispersibility of the active ingredient even at high temperatures. However, conventionally used zeolite, silica-alumina, alumina, silica gel, etc. do not necessarily have good heat resistance, and even if they have excellent heat resistance, there is a problem in the pore size distribution. On the other hand, there is a demand for an adsorbent having a large adsorbing capacity for use as an adsorbent for evaporative fuel filled in a canister of an automobile.

【0003】最近,細孔径分布が均一なシリカ多孔体が
合成された(Bull.Chem.Soc.Jpn.,
Vol.63,988〜992(1990))。このシ
リカ多孔体は結晶性層状ケイ酸塩の層間を拡幅すること
により得られる。そして,このシリカ多孔体は,積層し
た板状のシリカ層が細かく湾曲することにより,隣接す
る上記シリカ層がシロキサン結合により部分的に結合し
て三次元骨格を形成し,均一な細孔径分布を有する微孔
を形成しているため,断面がハニカム状を呈する多孔構
造体となっている。
Recently, a silica porous material having a uniform pore size distribution has been synthesized (Bull. Chem. Soc. Jpn.,
Vol. 63, 988-992 (1990)). This porous silica material is obtained by widening the layers of the crystalline layered silicate. In this silica porous body, the laminated plate-like silica layers are finely curved, so that the adjacent silica layers are partially bonded by a siloxane bond to form a three-dimensional skeleton, and a uniform pore size distribution is obtained. Since it has the micropores, it has a honeycomb structure in cross section.

【0004】上記の層状シリカ多孔体を製造するに当た
っては,まず,結晶性層状ケイ酸塩を合成する。次に,
結晶性層状ケイ酸塩中の水分を乾燥する。次いで,有機
物陽イオンとのイオン交換及び水洗により,結晶性層状
ケイ酸塩の層間の拡幅と,Na+ 等のアルカリ金属イオ
ンの除去をとを行っている。
In producing the above layered silica porous material, first, a crystalline layered silicate is synthesized. next,
The water content in the crystalline layered silicate is dried. Then, by ion exchange with organic cations and washing with water, the width of the crystalline layered silicate layer is widened and alkali metal ions such as Na + are removed.

【0005】[0005]

【解決しようとする課題】しかしながら,結晶性層状ケ
イ酸塩は上記乾燥により凝集してしまい,上記イオン交
換及び洗浄により,アルカリ金属イオンを十分に取り除
くことができない。そのため,アルカリ金属イオンが,
シート層の層間に残存し,クリストラバイト等への結晶
化のため比表面積を低下させる。
However, the crystalline layered silicate aggregates due to the above-mentioned drying, and alkali metal ions cannot be sufficiently removed by the above-mentioned ion exchange and washing. Therefore, the alkali metal ion
It remains between the layers of the sheet layer and reduces the specific surface area due to crystallization into crystals and the like.

【0006】即ち,これらの層状シリカ多孔体は,比表
面積が最大でも900m2 /gであり,800℃以上の
高温下で表面積が著しく低下してしまい,耐熱性が悪い
(図3参照)。本発明は,かかる問題点に鑑み,高比表
面積を有し,かつ耐熱性に優れた耐熱性層状シリカ多孔
体及びその製造方法を提供しようとするものである。
That is, the specific surface area of these layered silica porous materials is 900 m 2 / g at the maximum, and the surface area is remarkably reduced at a high temperature of 800 ° C. or higher, resulting in poor heat resistance (see FIG. 3). In view of such problems, the present invention aims to provide a heat-resistant layered silica porous body having a high specific surface area and excellent heat resistance, and a method for producing the same.

【0007】[0007]

【課題の解決手段】本発明の耐熱性層状シリカ多孔体
は,結晶性層状ケイ酸塩の板状のシート層が複数積層
し,隣接する上記シート層の層間がシロキサン結合によ
る結合点において縮幅し,該結合点の間においては拡幅
して微孔を形成しているハニカム状多孔構造の層状シリ
カ多孔体において,上記結晶性層状ケイ酸塩中に含まれ
るアルカリ金属イオンの含有率は0.2wt%以下で,
かつ比表面積は1000m2 /g以上であることを特徴
とする。
A heat-resistant layered silica porous material of the present invention comprises a plurality of plate-like sheet layers of crystalline layered silicate laminated, and the adjacent sheet layers are reduced in width at a bonding point by a siloxane bond. However, in the layered silica porous body having a honeycomb porous structure in which fine pores are widened between the bonding points, the content of alkali metal ions contained in the crystalline layered silicate is 0. Below 2 wt%,
In addition, the specific surface area is 1000 m 2 / g or more.

【0008】本発明において最も注目すべきことは,層
状シリカ多孔体に含まれるアルカリ金属イオンの含有率
は0.2wt%以下で,かつ比表面積は1000m2
g以上であるという点である。アルカリ金属イオンの含
有率が0.2wt%を越えた場合には,比較的低温で原
子の移動が促進され,クリストバライト等への結晶化が
起こる。そのため,層状シリカ多孔体の比表面積が減少
し,更には耐熱性が低下してしまう。また,層状シリカ
多孔体の比表面積が1000m2 /g未満の場合には,
層状シリカ多孔体に触媒を担持させるとき,触媒の活性
を十分に発揮させることができず,また,吸着剤として
使用するときに有機物等に対する吸着能力が低い。
What is most noticeable in the present invention is that the content of alkali metal ions contained in the layered silica porous material is 0.2 wt% or less and the specific surface area is 1000 m 2 /
The point is that it is g or more. If the content of alkali metal ions exceeds 0.2 wt%, the movement of atoms is promoted at a relatively low temperature and crystallization into cristobalite or the like occurs. Therefore, the specific surface area of the layered silica porous material is reduced, and further the heat resistance is reduced. When the specific surface area of the layered silica porous material is less than 1000 m 2 / g,
When the catalyst is loaded on the layered silica porous material, the activity of the catalyst cannot be sufficiently exerted, and when it is used as an adsorbent, its adsorption ability for organic substances is low.

【0009】本発明の層状シリカ多孔体は,図1(a)
〜図1(c)に示すように,骨格の組成がSiO2 で,
板状のシート91が上下に重なった構造を有し,各シー
ト91は上下方向に湾曲又は屈曲している。そして上下
の各シート91間が部分的に結合し,ハニカム状の骨格
を形成している。ハニカムの微孔92の直径は,1〜6
0Åである。
The layered silica porous material of the present invention is shown in FIG.
~ As shown in Fig. 1 (c), the composition of the skeleton is SiO 2 ,
It has a structure in which plate-shaped sheets 91 are vertically stacked, and each sheet 91 is curved or bent in the vertical direction. The upper and lower sheets 91 are partially connected to each other to form a honeycomb-shaped skeleton. The diameter of the fine holes 92 of the honeycomb is 1 to 6
It is 0Å.

【0010】上記シート層は,SiO4 四面体が2次元
的に結合することにより形成されるシリケート層であ
り,前記SiO4 四面体の結合点が屈曲可能であるた
め,シート層全体としても湾曲又は屈曲が可能である。
シート層は,マグネシウムイオン(Mg2+),アルミニ
ウムイオン(Al3+)等のシート層の屈曲性を妨げる八
面体を含まない。また,上記シート層は,Na+ 等のア
ルカリ金属イオン及びH+を挟んで,複数枚積層してい
る。また,具体的には,結晶性層状ケイ酸塩としては,
例えば,カネマイト(NaHSi2 5 ・3H2 O)が
好ましい。
[0010] The seat layer is a silicate layer SiO 4 tetrahedra are formed by two-dimensionally linked, because the point of attachment of the SiO 4 tetrahedra are bendable, even curved as a whole sheet layer Or it can be bent.
The sheet layer does not include an octahedron such as magnesium ion (Mg 2+ ) or aluminum ion (Al 3+ ) that interferes with the flexibility of the sheet layer. Further, the above-mentioned sheet layers are laminated by sandwiching an alkali metal ion such as Na + and H + . Further, specifically, as the crystalline layered silicate,
For example, kanemite (NaHSi 2 O 5 .3H 2 O) is preferable.

【0011】また,他の結晶性層状ケイ酸塩としては,
ジケイ酸ナトリウム(Na2 Si23 ),マカタイト
(Na2 Si4 9 ・5H2 O),アイラアイト(Na
2 Si8 17・XH2 O),マガディアイト(Na2
1429・XH2 O),ケニヤアイト(Na2 Si20
41・XH2 O)等が代表的であるが,これらに限定され
ない。
Further, as another crystalline layered silicate,
Sodium disilicate (Na 2 Si 2 O 3 ), Macatite (Na 2 Si 4 O 9 / 5H 2 O), Iraite (Na
2 Si 8 O 17 · XH 2 O), Magadiite (Na 2 S
i 14 O 29 · XH 2 O), Kenyaite (Na 2 Si 20 O)
41 · XH 2 O) or the like are typically, but not limited to.

【0012】上記層状シリカ多孔体の製造方法について
は,含水率10wt%以上の結晶性層状ケイ酸塩中の層
間に存在するアルカリ金属イオンを有機物陽イオンとイ
オン交換させ,該有機物陽イオンを層間に導入する層間
拡幅工程と,上記イオン交換により遊離した上記アルカ
リ金属イオンを除去する洗浄工程と,洗浄した上記結晶
性層状ケイ酸塩を焼成することにより,上記有機物陽イ
オンを燃焼せしめて多孔性の層状シリカ多孔体を得る多
孔体化工程とを含むことを特徴とする耐熱性層状シリカ
多孔体の製造方法がある。
Regarding the method for producing the above layered silica porous material, the alkali metal ion existing between the layers in the crystalline layered silicate having a water content of 10 wt% or more is ion-exchanged with the organic cation, and the organic cation is intercalated. The step of widening the inter-layer, the step of removing the alkali metal ions released by the ion exchange, and the step of burning the washed crystalline layered silicate to burn the organic cations and thereby to obtain the porosity. The method for producing a heat-resistant layered silica porous body is characterized by including the step of forming a porous body of the layered silica porous body.

【0013】上記合成工程においては,非晶質ケイ酸塩
から結晶性層状ケイ酸塩を合成する。非晶質ケイ酸塩と
しては,市販の粉末ケイ酸ナトリウム,水ガラスを乾燥
して粉末としたもの等がある。例えば,結晶性層状ケイ
酸塩の1種であるカネマイトを合成する場合,Na2
/SiO2 =2に出来るだけ近い組成の非晶質のケイ酸
ナトリウムを用いることが好ましい。
In the above synthesis step, a crystalline layered silicate is synthesized from an amorphous silicate. As the amorphous silicate, there are commercially available powdered sodium silicate, those obtained by drying water glass into powder, and the like. For example, in the case of synthesizing kanemite, which is a type of crystalline layered silicate, Na 2 O
It is preferable to use amorphous sodium silicate having a composition as close as possible to / SiO 2 = 2.

【0014】この非晶質ケイ酸ナトリウムを空気中,6
50℃〜750℃で焼成すると,δ型Na2 Si2 5
に結晶化する。650℃より低い温度ではβ又はγ型N
2Si2 5 に,750℃を越える温度ではα型Na
2 Si2 5 に結晶化する。α,β,γ型では水との反
応で結晶性層状ケイ酸塩が生成しない。次に,このδ型
Na2 Si2 5 を2倍から50倍の水に分散させ,1
〜5時間攪拌した後,濾過する。これにより,δ型Na
2 Si2 5 のNa+ の一部が水中のH+ と置換し,N
aHSi2 5 ・3H2 Oとなり,結晶性層状ケイ酸塩
であるカネマイトが得られる。
This amorphous sodium silicate was mixed with 6
When fired at 50 ° C to 750 ° C, δ type Na 2 Si 2 O 5
Crystallize into. Β or γ type N at temperatures lower than 650 ° C
in a 2 Si 2 O 5, at temperatures above 750 ° C. alpha-type Na
Crystallized to 2 Si 2 O 5 . In the α, β and γ forms, crystalline layered silicate does not form upon reaction with water. Next, disperse this δ-type Na 2 Si 2 O 5 in 2 to 50 times water,
After stirring for ~ 5 hours, filter. As a result, δ-type Na
Part of Na + of 2 Si 2 O 5 is replaced with H + in water, and N
It becomes aHSi 2 O 5 .3H 2 O, and kanemite which is a crystalline layered silicate is obtained.

【0015】上記結晶性層状ケイ酸塩における含水率は
10wt%以上である。10wt%未満では,結晶性層
状ケイ酸塩が凝集し,次の層間拡幅工程において,水中
での分散性が低下し,有機物陽イオンとアルカリ金属イ
オンとのイオン交換が起こりにくくなる。10wt%以
上であれば,結晶性ケイ酸塩が,次の層間拡幅工程の際
に水によく分散し,層間のアルカリ金属イオンと有機物
陽イオンとのイオン交換がスムーズに短時間で行われ
る。その結果,層状シリカ多孔体の比表面積が1000
2 /g以上となり,また,アルカリ金属イオンの残存
量が0.2wt%以下の優れた耐熱性層状シリカ多孔体
を得ることができる。
The water content of the crystalline layered silicate is 10 wt% or more. If it is less than 10 wt%, the crystalline layered silicate aggregates, the dispersibility in water decreases in the next interlayer widening step, and ion exchange between organic cations and alkali metal ions becomes difficult to occur. When it is 10 wt% or more, the crystalline silicate is well dispersed in water in the next interlayer widening step, and the ion exchange between the interlayer alkali metal ion and the organic cation is smoothly performed in a short time. As a result, the specific surface area of the layered silica porous material is 1000
It is possible to obtain an excellent heat-resistant layered silica porous body having a m 2 / g or more and a residual amount of alkali metal ions of 0.2 wt% or less.

【0016】上記層間拡幅工程においては,結晶性層状
ケイ酸塩中にあるアルカリ金属イオンが,有機物陽イオ
ンとイオン交換される。有機物陽イオンはアルカリ金属
イオンよりも嵩高のため,結晶性層状ケイ酸塩の層間は
拡幅される。これにより,シート層は有機物陽イオンを
取り囲む形で湾曲する。
In the interlayer widening step, alkali metal ions in the crystalline layered silicate are ion-exchanged with organic cations. Since organic cations are bulkier than alkali metal ions, the layers of crystalline layered silicate are widened. As a result, the sheet layer is curved so as to surround the organic cations.

【0017】それと同時に,有機物陽イオンが導入され
た部分を除く,隣合うシート層中のシラノール(Si−
OH)同志が,脱水縮合されシロキサン結合(Si−O
−Si)が形成される。これにより,隣合うシート層同
志が,部分的にシロキサン結合により結合され,三次元
的ハニカム状の層構造を形成する。
At the same time, the silanol (Si- in the adjacent sheet layers, excluding the portion into which the organic cations are introduced, is removed.
OH) are dehydrated and condensed to form siloxane bonds (Si-O).
-Si) is formed. As a result, adjacent sheet layers are partially bonded by siloxane bonds to form a three-dimensional honeycomb layer structure.

【0018】上記有機物陽イオンとしては,アルキルト
リメチルアンモニウム,ジメチルジアルキルアンモニウ
ム,アルキルアンモニウム,ベンジルトリメチルアンモ
ニウム等がある。上記イオン交換の際,pHを8〜9に
調整することが好ましい。更に,その後,30〜90℃
にて加熱することが好ましい。
Examples of the organic cations include alkyl trimethyl ammonium, dimethyl dialkyl ammonium, alkyl ammonium and benzyl trimethyl ammonium. During the ion exchange, it is preferable to adjust the pH to 8-9. Furthermore, after that, 30 ~ 90 ℃
It is preferable to heat at.

【0019】上記洗浄工程においては,上記イオン交換
により遊離したアルカリ金属イオン,有機物陽イオンの
対イオン,又は未反応の有機物陽イオンが除去される。
特に,遊離したアルカリ金属イオンは,完全に洗浄,除
去される。これにより,アルカリ金属イオンの含有率が
0.2wt%以下となる。
In the washing step, alkali metal ions liberated by the ion exchange, counterions of organic cations, or unreacted organic cations are removed.
Particularly, the released alkali metal ions are completely washed and removed. As a result, the content of alkali metal ions becomes 0.2 wt% or less.

【0020】上記多孔体化工程においては,層間に取り
込まれた有機物陽イオンを燃焼させ,微細な微孔を形成
させる。また,シロキサン結合の三次元骨格を安定化さ
せる。焼成は,酸化雰囲気中で,温度600〜1200
℃で行うことが望ましい。600℃未満の場合,或いは
酸化雰囲気以外の場合には,有機物陽イオンを十分に除
去することはできない。一方,1200℃を越える場
合,焼結が進み過ぎ,微孔が破れ,比表面積が低下す
る。
In the above-mentioned porous body forming step, the organic cations taken in between the layers are burned to form fine micropores. It also stabilizes the three-dimensional skeleton of the siloxane bond. Firing is performed in an oxidizing atmosphere at a temperature of 600 to 1200.
It is desirable to carry out at ℃. If the temperature is lower than 600 ° C., or if the temperature is outside the oxidizing atmosphere, the organic cations cannot be sufficiently removed. On the other hand, when the temperature exceeds 1200 ° C, the sintering proceeds too much, the micropores are broken, and the specific surface area decreases.

【0021】[0021]

【作用及び効果】本発明の層状シリカ多孔体は,アルカ
リ金属イオンの含有量が0.2wt%以下であるので,
800℃以上の高温下でも結晶化しにくく,微孔も安定
である。そのため,耐熱性に優れている。また,100
0m2 /g以上の比表面積を有するため,触媒担体,燃
料等の有機物の吸収材等に優れた吸着性能を発揮する。
[Operation and effect] Since the layered silica porous material of the present invention has an alkali metal ion content of 0.2 wt% or less,
It is difficult to crystallize even at a high temperature of 800 ° C or higher, and the micropores are stable. Therefore, it has excellent heat resistance. Also, 100
Since it has a specific surface area of 0 m 2 / g or more, it exhibits excellent adsorption performance for catalyst carriers, absorbent materials for organic substances such as fuel, and the like.

【0022】また,上記層状シリカ多孔体の表面には,
市販のシリカゲルと比べて孤立水酸基の量が少ない。一
般に,表面の疎水性は孤立水酸基の量と逆比例の関係に
あり,そのため,層状シリカ多孔体の表面は,疎水的で
あると考えられる。従って,本発明の層状シリカ多孔体
は,オクタンや燃料等の有機物に対する吸着性が優れて
いる。
On the surface of the layered silica porous material,
The amount of isolated hydroxyl groups is smaller than that of commercially available silica gel. Generally, the hydrophobicity of the surface is inversely related to the amount of isolated hydroxyl groups, and therefore the surface of the layered silica porous material is considered to be hydrophobic. Therefore, the layered silica porous material of the present invention has excellent adsorptivity to organic substances such as octane and fuel.

【0023】また,上記製造方法によれば,上記のごと
き優れた耐熱性層状シリカ多孔体を製造することができ
る。以上のごとく,本発明によれば,燃料等の有機物に
対する吸着性,耐熱性共に優れた耐熱性層状シリカ多孔
体及びその製造方法を提供することができる。
Further, according to the above manufacturing method, it is possible to manufacture the excellent heat-resistant layered silica porous material as described above. As described above, according to the present invention, it is possible to provide a heat-resistant layered silica porous body having excellent adsorbability to organic substances such as fuel and heat resistance, and a method for producing the same.

【0024】[0024]

【実施例】【Example】

実施例1,2 本発明の実施例につき,図1を用いて説明する。本例の
層状シリカ多孔体9は,図1(a)に示すごとく,骨格
の組成がSiO2 で,図1(b)に示すごとく,基本的
に板状のシート層91が重なったハニカム状の構造を有
する。そして,シート層91は,図1(c)に示すごと
く,細く湾曲しており,上のシート層91と下のシート
層91が部分的に結合点93で結合することにより,三
次元的な骨格を形成している。
Examples 1 and 2 Examples of the present invention will be described with reference to FIG. The layered silica porous body 9 of the present example has a skeleton composition of SiO 2 as shown in FIG. 1 (a), and as shown in FIG. 1 (b), basically has a honeycomb shape in which plate-like sheet layers 91 are superposed. It has the structure of. As shown in FIG. 1C, the sheet layer 91 is thinly curved, and the upper sheet layer 91 and the lower sheet layer 91 are partially joined at a joining point 93 to form a three-dimensional shape. It forms the skeleton.

【0025】各シート層91の層間と上記結合点93と
の間には,微孔92が形成されている。微孔92は,シ
ート層91が拡幅することにより形成されている。本例
の層状シリカ多孔体9中のアルカリ金属イオンの含有率
は,0.2wt%以下である。また,層状シリカ多孔体
の比表面積は1000m2 /g以上である。
Micropores 92 are formed between the layers of each sheet layer 91 and the connecting points 93. The fine holes 92 are formed by widening the sheet layer 91. The content of the alkali metal ions in the layered silica porous material 9 of this example is 0.2 wt% or less. The specific surface area of the layered silica porous material is 1000 m 2 / g or more.

【0026】上記層状シリカ多孔体の製造方法につき説
明する。まず合成工程において,粉末ケイ酸ソーダ(N
2 O/SiO2 =2.00)を電気炉で700℃,6
時間焼成した。得られた試料は,X線回折の結果,δ−
Na2 Si2 5 結晶であった。このδ−Na2 Si2
5 結晶150gを1.5リットルの水に浸漬し,3時
間攪拌した。
A method for producing the above layered silica porous material will be described. First, in the synthesis process, powdered sodium silicate (N
a 2 O / SiO 2 = 2.00) in an electric furnace at 700 ° C., 6
Burned for hours. The obtained sample was δ-
It was a Na 2 Si 2 O 5 crystal. This δ-Na 2 Si 2
150 g of O 5 crystal was immersed in 1.5 liter of water and stirred for 3 hours.

【0027】次いで,固形分をろ過し,湿った状態で3
つのシャーレに分け,自然乾燥した。自然乾燥時間を変
えることにより,3つの含水率の異なる試料を用意し
た。その含水率は,真空乾燥した試料を基準として,1
03%(重量比。以下同じ)(実施例2用),53.9
%(実施例3用),6.6%(比較例1用)であった。
乾燥した試料はX線回折により,カネマイト(NaHS
2 5 ・3H2 O)であることを確認した。
Then, the solid content is filtered, and the solid content is reduced to 3
Divided into two petri dishes and dried naturally. Three samples with different water contents were prepared by changing the natural drying time. Its water content is 1 based on the vacuum dried sample.
03% (weight ratio; the same applies hereinafter) (for Example 2), 53.9
% (For Example 3) and 6.6% (for Comparative Example 1).
The dried sample was analyzed by X-ray diffraction to obtain kanemite (NaHS
i 2 O 5 .3H 2 O) was confirmed.

【0028】次いで,層間拡幅工程において,含水率の
異なる上記3種のカネマイト10g(乾燥重量)をそれ
ぞれ,0.1Nヘキサデシルトリメチルアンモニウムク
ロライド水溶液1リットルに分散させ,2NHC1水溶
液を加えてpHを8.5に調整し,そのまま攪拌しなが
ら70℃で3時間加熱した。次に,洗浄工程において,
固形分をろ過し,1リットルの水で4回洗浄した。
Next, in the interlayer widening step, 10 g (dry weight) of the above-mentioned three kinds of kanemite having different water contents are dispersed in 1 liter of 0.1N hexadecyltrimethylammonium chloride aqueous solution, and 2NHC1 aqueous solution is added to adjust pH to 8. It was adjusted to 0.5 and heated at 70 ° C. for 3 hours with stirring. Next, in the cleaning process,
The solid content was filtered and washed 4 times with 1 liter of water.

【0029】その後,多孔体化工程において,得られた
試料を,空気流通下で700℃で焼成し,3種類の層状
シリカ多孔体を合成した。このようにして,含水率10
3%,53.9%,及び6.6%のカネマイトから合成
された層状シリカ多孔体を,それぞれ実施例2,実施例
3及び比較例とした。
Then, in the step of forming a porous body, the obtained sample was fired at 700 ° C. under air flow to synthesize three kinds of layered silica porous bodies. In this way, the water content is 10
Layered silica porous materials synthesized from 3%, 53.9%, and 6.6% kanemite were designated as Example 2, Example 3, and Comparative Example, respectively.

【0030】次に,カネマイトの含水率と層状シリカ多
孔体の比表面積の関係を図2に示した。層状シリカ多孔
体の比表面積は,層状シリカ多孔体の窒素吸着量で評価
した。図2より知られるごとく,含水率10%以上のカ
ネマイトを用いて作製した層状シリカ多孔体は1000
2 /g以上の比表面積を有していることが確認され
た。尚7%未満の場合では,層状シリカ多孔体の比表面
積が急激に小さくなる傾向であった。
The relationship between the water content of kanemite and the specific surface area of the layered silica porous material is shown in FIG. The specific surface area of the layered silica porous material was evaluated by the nitrogen adsorption amount of the layered silica porous body. As is known from FIG. 2, the layered silica porous body produced using kanemite having a water content of 10% or more is 1000
It was confirmed to have a specific surface area of m 2 / g or more. If it is less than 7%, the specific surface area of the layered silica porous material tends to decrease rapidly.

【0031】次に,層状シリカ多孔体(実施例2,比較
例1)について,耐熱性実験を行った。該実験は,層状
シリカ多孔体を,600〜1000℃,空気中で6時間
加熱し,その後,前実施例と同様に層状シリカ多孔体の
比表面積を測定した。その結果を図3に示す。
Next, a heat resistance experiment was conducted on the layered silica porous material (Example 2, Comparative Example 1). In the experiment, the layered silica porous body was heated in the air at 600 to 1000 ° C. for 6 hours, and then the specific surface area of the layered silica porous body was measured as in the previous example. The result is shown in FIG.

【0032】図3より知られるごとく,いずれの焼成温
度においても,実施例2の製法により得られた層状シリ
カ多孔体は,比較例2の層状シリカ多孔体よりも大きな
比表面積となった。また,実施例2における層状シリカ
多孔体は,1000℃で焼成した場合でも,比表面積は
750m2 /gを維持した。一方,比較例1おおける層
状シリカ多孔体は,1000℃で焼成した場合,10m
2 /gの比表面積であった。
As is known from FIG. 3, at any firing temperature, the layered silica porous material obtained by the production method of Example 2 had a larger specific surface area than the layered silica porous body of Comparative Example 2. Further, the layered silica porous material in Example 2 maintained a specific surface area of 750 m 2 / g even when fired at 1000 ° C. On the other hand, the layered silica porous material in Comparative Example 1 has a thickness of 10 m when fired at 1000 ° C.
The specific surface area was 2 / g.

【0033】次に,1000℃で焼成した後における,
上記層状シリカ多孔体(実施例2,比較例1)につい
て,粉末X線回折を行った。実施例2の層状シリカ多孔
体は,層状構造を保持していた。一方,比較例1の層状
シリカ多孔体には,部分的にクリストバライトの結晶が
形成されていた。
Next, after firing at 1000 ° C.,
Powder X-ray diffraction was performed on the layered silica porous body (Example 2, Comparative Example 1). The layered silica porous material of Example 2 retained the layered structure. On the other hand, in the layered silica porous body of Comparative Example 1, cristobalite crystals were partially formed.

【0034】実施例3 次に,層状シリカ多孔体について,Na残存量と比表面
積の関係を調査した。Na残存量は原子吸光光度法によ
り求めた。層状シリカ多孔体の比表面積の測定は,上記
測定と同様に行った。その結果を図4に示す。
Example 3 Next, the relationship between the residual Na amount and the specific surface area of the layered silica porous material was investigated. The residual Na amount was determined by the atomic absorption spectrophotometry. The specific surface area of the layered silica porous material was measured in the same manner as the above measurement. The result is shown in FIG.

【0035】上記層状シリカ多孔体のNa残存量は,実
施例1,2の製造方法の洗浄工程で洗浄回数を変えるこ
とにより,変化させた。その他は,実施例1,2と同様
である。図4より知られるごとく,Na残存量が0.2
wt%以下の場合では,層状シリカ多孔体の比表面積は
1000m2 /g以上である。0.2wt%を超えた場
合には,Na残存量の増加に伴い,層状シリカ多孔体の
比表面積が急激に減少していることが分かる。
The amount of Na remaining in the layered silica porous material was changed by changing the number of times of washing in the washing step of the manufacturing method of Examples 1 and 2. Others are the same as in the first and second embodiments. As is known from FIG. 4, the residual Na content is 0.2
In the case of less than wt%, the specific surface area of the layered silica porous material is 1000 m 2 / g or more. It can be seen that when the content exceeds 0.2 wt%, the specific surface area of the layered silica porous body is rapidly reduced as the residual Na amount is increased.

【0036】実施例4〜6 本例においては,洗浄工程中の洗浄回数変化に対する,
層状シリカ多孔体の比表面積の変化,及びNa+ 残存量
の変化を評価した。まず,層状シリカ多孔体の製造方法
について説明すると,合成工程においては,粉末ケイ酸
ソーダ3870gを電気炉で700℃,6時間焼成し
た。得られたδ−Na2 Si2 5 結晶3000gを3
0リットルの水に浸漬し,3時間攪拌した。固形分をろ
過し,含水率約100wt%のカネマイトが得られた。
Examples 4 to 6 In this example, the change in the number of times of cleaning during the cleaning process
Changes in the specific surface area of the layered silica porous material and changes in the amount of Na + remaining were evaluated. First, the method for manufacturing the layered silica porous material will be described. In the synthesis step, 3870 g of sodium silicate powder was fired at 700 ° C. for 6 hours in an electric furnace. 3000 g of the obtained δ-Na 2 Si 2 O 5 crystal was added to 3
It was immersed in 0 liter of water and stirred for 3 hours. The solid content was filtered, and kanemite having a water content of about 100 wt% was obtained.

【0037】次いで,層間拡幅工程において,このカネ
マイト3000g(乾燥重量)を0.1Nヘキサデシル
トリメチルアンモニウムクロライド水溶液60リットル
に分散し,2HNC1水溶液を加えてpHを8.5に調
整した。そのまま,70℃で3時間攪拌した。
Then, in the interlayer widening step, 3000 g (dry weight) of this kanemite was dispersed in 60 liters of a 0.1N hexadecyltrimethylammonium chloride aqueous solution, and a 2HNC1 aqueous solution was added to adjust the pH to 8.5. The mixture was stirred as it was at 70 ° C. for 3 hours.

【0038】次に,洗浄工程において,固形分をろ過
し,120リットルの水で洗浄した。ここで,洗浄回数
が0回〜4回の5種類の試料を用意する。その後,多孔
体化工程において,これらの試料をそれぞれ空気流通下
で,700℃,6時間焼成し,5種類の層状シリカ多孔
体を合成した(比較例2,比較例3,実施例4〜実施例
6)。
Next, in the washing step, the solid content was filtered and washed with 120 liters of water. Here, five kinds of samples having the number of cleaning times of 0 to 4 are prepared. Then, in the porous body forming step, these samples were respectively fired at 700 ° C. for 6 hours under air flow to synthesize five types of layered silica porous bodies (Comparative Example 2, Comparative Example 3, Example 4 to Example). Example 6).

【0039】上記測定の結果を図5に示す。同図におい
て,横軸は層状シリカ多孔体の洗浄回数を,左縦軸及び
○は層状シリカ多孔体の比表面積を,右縦軸及び●はN
a残存量を示す。図5より知られるごとく,Na+ 残存
量の低下と共に比表面積が向上することが分かる。即
ち,洗浄回数が2回以上の場合,Na残存量は0.2w
t%以下で,かつ,比表面積が1000m2 /g以上で
あった。一方,洗浄回数が0又は1回では,Na残存量
は0.2wt%よりも多く,また,比表面積は900m
2 /g未満であった。
The results of the above measurements are shown in FIG. In the figure, the horizontal axis represents the number of times the layered silica porous body is washed, the left vertical axis and ◯ represent the specific surface area of the layered silica porous body, and the right vertical axis and ● represent N.
a Remaining amount is shown. As is known from FIG. 5, the specific surface area is improved as the residual amount of Na + is decreased. That is, when the number of washings is two or more, the residual Na amount is 0.2 w
It was t% or less and the specific surface area was 1000 m 2 / g or more. On the other hand, when the number of washings is 0 or 1, the residual Na amount is more than 0.2 wt% and the specific surface area is 900 m.
It was less than 2 / g.

【0040】実施例7 本例においては,層状シリカ多孔体の蒸発燃料の吸着能
力及び層状シリカ多孔体の微孔直径を測定した。まず,
層状シリカ多孔体の製造方法につき説明すると,合成工
程において,粉末ケイ酸ソーダ(Na2 O/SiO2
2.00)を電気炉で700℃,6時間焼成し,δ−N
2 Si2 5 結晶を得た。δ−Na2 Si2 5 結晶
15gを150ミリリットルの水に浸漬し,3時間攪拌
後,ろ過した。
Example 7 In this example, the ability of the layered silica porous body to adsorb evaporated fuel and the micropore diameter of the layered silica porous body were measured. First,
The method for producing the layered silica porous material will be described. In the synthesis step, powdered sodium silicate (Na 2 O / SiO 2 =
2.00) is fired in an electric furnace at 700 ° C for 6 hours to obtain δ-N
An a 2 Si 2 O 5 crystal was obtained. 15 g of δ-Na 2 Si 2 O 5 crystal was immersed in 150 ml of water, stirred for 3 hours, and then filtered.

【0041】次いで,層間拡幅工程において,含水率約
100wt%のカネマイト15g(乾燥重量)を0.1
Nヘキサデシルトリチメルアンモニウムクロライド水溶
液300ミリリットルに分散させて,そのままテフロン
製のオートクレーブに入れ,65℃で一週間加熱した。
Next, in the interlayer widening step, 15 g (dry weight) of kanemite having a water content of about 100 wt% was added to 0.1 wt.
The solution was dispersed in 300 ml of an aqueous solution of N-hexadecyltrithymelammonium chloride, put into an autoclave made of Teflon as it was, and heated at 65 ° C. for one week.

【0042】次に洗浄工程において,その後,固形分を
ろ過し,十分に洗浄した。その後,多孔体化工程におい
て,得られた試料を空気流通下,700℃で6時間焼成
し層状シリカ多孔体を得た。得られた多孔体の比表面積
を実施例1,2と同様に求めた結果,1450m2 /g
であった。
Next, in the washing step, the solid content was then filtered and thoroughly washed. Then, in the step of forming a porous body, the obtained sample was fired at 700 ° C. for 6 hours under an air stream to obtain a layered silica porous body. The specific surface area of the obtained porous body was determined in the same manner as in Examples 1 and 2, and was 1450 m 2 / g.
Met.

【0043】次に,上記多孔体について,吸着能力を測
定した。また,この際比較のために活性炭(クラレコー
ル),シリカゲル(富士デヴィソン#923),シリカ
ーアルミナ(日揮N631L)の結果についても上記吸
着能力につき行い,併示した。
Next, the adsorption capacity of the porous body was measured. At this time, for comparison, the results of activated carbon (Kuraray Coal), silica gel (Fuji Davison # 923), and silica-alumina (JGC N631L) were also shown and shown together.

【0044】上記吸着能力測定に当たっては,粒径1.
0〜3.0mmの粒状体に成形した試料を用い,吸着さ
せる有機物としてオクタンを用いた。得られた吸着特性
は,図6において,オクタンの吸着等温線(25℃)と
して表されている。また,上記測定時には,最大吸着量
を吸着させた後,吸着オクタンを脱着させた。そして,
脱着後の残留吸着量を同図に●印で示した。
In measuring the adsorption capacity, the particle size of 1.
A sample formed into a granular body of 0 to 3.0 mm was used, and octane was used as an organic substance to be adsorbed. The obtained adsorption characteristic is represented as an adsorption isotherm (25 ° C.) of octane in FIG. In the above measurement, the adsorption octane was desorbed after adsorbing the maximum adsorption amount. And
The residual adsorption amount after desorption is shown by ● in the figure.

【0045】同図において,横軸はオクタンの相対蒸気
圧(P/Po)を,縦軸はオクタンの吸着量(wt%)
を示す。図6より知られるごとく,層状シリカ多孔体と
活性炭との間には,オクタンの吸着量に余り差異がな
い。しかし,脱着後の残存吸着量(同図の●印)は,層
状シリカ多孔体,シリカゲル,シリカーアルミナが0%
であるのに対し,活性炭は8.4%を示している。ま
た,活性炭の最大吸着量は42%である。そのため,活
性炭は,最大吸着量の20%が脱着されないことにな
る。
In the figure, the horizontal axis indicates the relative vapor pressure of octane (P / Po), and the vertical axis indicates the adsorption amount of octane (wt%).
Indicates. As is known from FIG. 6, there is not much difference in octane adsorption amount between the layered silica porous body and the activated carbon. However, the residual adsorption amount (● in the figure) after desorption was 0% for the layered silica porous material, silica gel, and silica-alumina.
On the other hand, activated carbon shows 8.4%. The maximum adsorption amount of activated carbon is 42%. Therefore, 20% of the maximum adsorption amount of activated carbon is not desorbed.

【0046】また,上記4種の吸着剤について,その微
孔容量(cc/g),BET表面積(m2 /g)を,表
1に,また微孔分布曲線を図7に示す。表1,図7より
知られるごとく,層状シリカ多孔体は,他の3種類の吸
着剤に比して,BET表面積が大きく微孔容量が小さ
い。なお,上記微分微孔容量は,微孔容量を微孔直径で
微分した値(cc/gA)である。
The micropore volume (cc / g) and BET surface area (m 2 / g) of the above four kinds of adsorbents are shown in Table 1, and the micropore distribution curve is shown in FIG. As known from Table 1 and FIG. 7, the layered silica porous material has a larger BET surface area and a smaller micropore volume than the other three kinds of adsorbents. The differential micropore volume is a value (cc / gA) obtained by differentiating the micropore volume by the micropore diameter.

【0047】実施例8 図8に示すごとく,吸収剤容器79内に本発明の層状シ
リカ多孔体75を充填し,キャニスタ7の吸着能力を測
定した。該キャニスタ7は,上方にオクタン蒸気の導入
パイプ71とパージパイプ72とを有すると共に,吸収
剤容器79下方に空気送入パイプ73を連結してある。
また,吸収剤容器79の容量は,1.4リットルであ
る。この中に,粒径1〜5mmに成形した層状シリカ多
孔体75を,630g充填した。
Example 8 As shown in FIG. 8, an absorbent container 79 was filled with the layered silica porous material 75 of the present invention, and the adsorption capacity of the canister 7 was measured. The canister 7 has an octane vapor introduction pipe 71 and a purge pipe 72 in the upper part, and an air inlet pipe 73 is connected in the lower part of the absorbent container 79.
The capacity of the absorbent container 79 is 1.4 liters. In this, 630 g of a layered silica porous material 75 molded to have a particle size of 1 to 5 mm was filled.

【0048】次に,吸着能力測定に当たっては,キャニ
スタ7を室温下においてRH(相対蒸気圧)100%の
状態で,1時間放置した。その後,オクタン蒸気を導入
パイプ71よりキャニスタ7内に導入し,オクタンの吸
着量(吸着剤量)を測定した。その結果を表2に示す。
この吸着量は,層状シリカ多孔体630gに吸着された
オクタンの重量(g)である。上記吸着の後,空気送入
パイプ73よりパージ用空気を送入して,吸着量されて
いるオクタンを脱着させた。
Next, in measuring the adsorption capacity, the canister 7 was left at room temperature for 1 hour in a state of RH (relative vapor pressure) of 100%. Then, octane vapor was introduced into the canister 7 through the introduction pipe 71, and the octane adsorption amount (adsorbent amount) was measured. The results are shown in Table 2.
This adsorption amount is the weight (g) of octane adsorbed on 630 g of the layered silica porous material. After the adsorption, purging air was fed through the air feeding pipe 73 to desorb the adsorbed octane.

【0049】次に,第2回目以降の吸着能力測定のため
に,上記と同様の操作を2回繰り返した。そして,第1
回〜第3回までの各オクタン吸着量(g/吸着剤量)を
測定し,これを表2に示した。また,比較のため,活性
炭(クラレコール)560gを,上記キャニスタ7に充
填し,同様の測定を行った。その結果を同表に示す。
Next, the same operation as above was repeated twice for the second and subsequent adsorption capacity measurements. And the first
Each octane adsorption amount (g / adsorbent amount) from the 3rd to 3rd measurements was measured and is shown in Table 2. For comparison, the canister 7 was filled with 560 g of activated carbon (Kuraray Coal) and the same measurement was performed. The results are shown in the table.

【0050】同表より知られるごとく,本発明にかかる
層状シリカ多孔体を充填したキャニスタは,第3回目の
吸着においても,第1回目と殆ど変わらず,優れた吸着
能力を有し,その劣化もないことが分かる。一方,活性
炭は,第2回目の吸着においては,第1回目の80%程
度の吸着能力しか示さず,また回を重ねるごとに吸着能
力が劣化していることが分かる。
As can be seen from the table, the canister filled with the layered silica porous material according to the present invention has an excellent adsorption capacity even in the third adsorption, which is almost the same as that in the first adsorption, and the deterioration thereof. You can see that there is no. On the other hand, it can be seen that activated carbon shows only about 80% adsorption capacity in the first adsorption in the second adsorption, and the adsorption ability deteriorates with each repetition.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1,2の層状シリカ多孔体の説明図。FIG. 1 is an explanatory view of a layered silica porous material of Examples 1 and 2.

【図2】実施例1,2における,カネマイトの含水率と
層状シリカ多孔体の比表面積の関係を示す線図。
FIG. 2 is a graph showing the relationship between the water content of kanemite and the specific surface area of a layered silica porous material in Examples 1 and 2.

【図3】実施例2における,焼成温度に伴う比表面積の
変化を示す線図。
FIG. 3 is a diagram showing a change in specific surface area with firing temperature in Example 2.

【図4】実施例3における,層状シリカ多孔体のNa残
存量と比表面積の関係を示す線図。
FIG. 4 is a diagram showing the relationship between the residual Na amount and the specific surface area of the layered silica porous material in Example 3.

【図5】実施例4〜6における,洗浄回数に対する比表
面積とNa+ 残存量の関係を示す線図。
FIG. 5 is a graph showing the relationship between the specific surface area and the amount of Na + remaining with respect to the number of washings in Examples 4 to 6.

【図6】実施例7における,オクタンの吸着等温線図。FIG. 6 is an adsorption isotherm diagram of octane in Example 7.

【図7】実施例7における,層状シリカ多孔体及び各吸
収体の微孔分布曲線図。
7 is a micropore distribution curve diagram of the layered silica porous material and each absorber in Example 7. FIG.

【図8】実施例8におけるキャニスタの説明図。FIG. 8 is an explanatory diagram of a canister according to an eighth embodiment.

【符号の説明】[Explanation of symbols]

9...層状シリカ多孔体, 91...シート層, 92...微孔, 93...結合点, 9. . . Layered silica porous body, 91. . . Sheet layer, 92. . . Micropores, 93. . . Connection point,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/04 311 D 7821−4G (72)発明者 岡田 茜 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 福本 和広 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 黒田 一幸 東京都新宿区大久保3丁目4番1号 早稲 田大学理工学部内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location B01J 35/04 311 D 7821-4G (72) Inventor Akane Okada Nagakute-cho, Aichi-gun, Aichi Prefecture 1st at Yokochi 41 Toyota Central Research Institute Co., Ltd. (72) Inventor Kazuhiro Fukumoto 1-chome, Nagakute Town, Aichi-gun, Aichi-gun 1st Toyota Central Research Institute (72) Inventor Kazuyuki Kuroda Shinjuku, Tokyo 3-4-1 Okubo, Ward, Faculty of Science and Engineering, Waseda University

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶性層状ケイ酸塩の板状のシート層が
複数積層し,隣接する上記シート層の層間がシロキサン
結合による結合点において縮幅し,該結合点の間におい
ては拡幅して微孔を形成しているハニカム状多孔構造の
層状シリカ多孔体において,上記結晶性層状ケイ酸塩中
に含まれるアルカリ金属イオンの含有率は0.2wt%
以下で,かつ比表面積は1000m2 /g以上であるこ
とを特徴とする耐熱性層状シリカ多孔体。
1. A plurality of plate-like sheet layers of crystalline layered silicate are laminated, and the layers of the adjacent sheet layers are narrowed at a bonding point by a siloxane bond and widened between the bonding points. In the layered silica porous body having a honeycomb-shaped porous structure having fine pores, the content of alkali metal ions contained in the crystalline layered silicate is 0.2 wt%.
A heat-resistant layered silica porous material having the following specific surface area of 1000 m 2 / g or more.
【請求項2】 含水率10wt%以上の結晶性層状ケイ
酸塩中の層間に存在するアルカリ金属イオンを有機物陽
イオンとイオン交換させ,該有機物陽イオンを層間に導
入する層間拡幅工程と,上記イオン交換により遊離した
上記アルカリ金属イオンを除去する洗浄工程と,洗浄し
た上記結晶性層状ケイ酸塩を焼成することにより,上記
有機物陽イオンを燃焼せしめて多孔性の層状シリカ多孔
体を得る多孔体化工程とを含むことを特徴とする耐熱性
層状シリカ多孔体の製造方法。
2. An interlayer widening step of ion-exchanging an alkali metal ion existing between layers in a crystalline layered silicate having a water content of 10 wt% or more with an organic cation and introducing the organic cation between the layers. A porous body for obtaining a porous layered silica porous material by burning the organic cation by burning the washed crystalline layered silicate to remove the alkali metal ions released by ion exchange A method for producing a heat-resistant layered silica porous body, comprising:
JP20025592A 1992-01-13 1992-07-03 Heat-resistant layered porous silica material and method for producing the same Expired - Fee Related JP3295973B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20025592A JP3295973B2 (en) 1992-07-03 1992-07-03 Heat-resistant layered porous silica material and method for producing the same
US08/087,440 US5382558A (en) 1992-01-13 1993-07-02 Heat resistant layered porous silica and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20025592A JP3295973B2 (en) 1992-07-03 1992-07-03 Heat-resistant layered porous silica material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0624867A true JPH0624867A (en) 1994-02-01
JP3295973B2 JP3295973B2 (en) 2002-06-24

Family

ID=16421335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20025592A Expired - Fee Related JP3295973B2 (en) 1992-01-13 1992-07-03 Heat-resistant layered porous silica material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3295973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159850A (en) * 2000-11-28 2002-06-04 Japan Petroleum Exploration Co Ltd Storage medium of non-polar gas molecule and storage method for the same
EP2133198A1 (en) * 2007-03-27 2009-12-16 Ngk Insulators, Ltd. Assembly, method for production of the assembly, joint composition, and method for production of the joint composition
US7927406B2 (en) 2007-06-01 2011-04-19 Denso Corporation Water droplet generating system and method for generating water droplet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159850A (en) * 2000-11-28 2002-06-04 Japan Petroleum Exploration Co Ltd Storage medium of non-polar gas molecule and storage method for the same
EP2133198A1 (en) * 2007-03-27 2009-12-16 Ngk Insulators, Ltd. Assembly, method for production of the assembly, joint composition, and method for production of the joint composition
EP2133198A4 (en) * 2007-03-27 2012-05-23 Ngk Insulators Ltd Assembly, method for production of the assembly, joint composition, and method for production of the joint composition
US7927406B2 (en) 2007-06-01 2011-04-19 Denso Corporation Water droplet generating system and method for generating water droplet

Also Published As

Publication number Publication date
JP3295973B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
US10189716B2 (en) Zeolite monolith and method of making the same, composite with zeolite monolith and method of making the same, and method for incorporating two or more zeolite monoliths
US7378076B2 (en) Process for production of macrostructures of a microporous material
El Hanache et al. Performance of surfactant-modified* BEA-type zeolite nanosponges for the removal of nitrate in contaminated water: Effect of the external surface
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Inagaki et al. Adsorption isotherm of water vapor and its large hysteresis on highly ordered mesoporous silica
KR102194141B1 (en) Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
US5382558A (en) Heat resistant layered porous silica and process for producing the same
JP2016215126A (en) Water vapor adsorbent having hygroscopic salt carried on granulated body of amorphous aluminum silicate
JP6707743B2 (en) Method for manufacturing desiccant
JP3757041B2 (en) Vapor absorption / release material
JP4025228B2 (en) Preparation method of molecular sieve adsorbent for selective separation of air size / morphology
JP3391155B2 (en) Method for manufacturing porous body
JP2005520680A (en) Process for the preparation of molecular sieve adsorbents for selective adsorption of nitrogen and argon
JPH0624867A (en) Heat resistant stratiform silica porous body and production thereof
JP4566537B2 (en) Silica-based mesoporous material and method for producing the same
JP4769927B2 (en) Method for producing silica adsorbent
Guo et al. Promoting effect of surface acidities on efficiency of copper modifier for ordered mesoporous carbon-SiO2-Al2O3 nanocomposites in adsorptive desulfurization
JP5495054B2 (en) Method for producing aluminum silicate composite
JPH08173797A (en) Adsorbent
KR20150066787A (en) Manufacturing method of Copper nano-zeolite and removing method of phenol using thereof
JP3436470B2 (en) Deodorant
JP3400262B2 (en) Silica-based porous material and separation method using the same
JP3945369B2 (en) Deodorant
Sanfeliu et al. Ceramic foam supported active materials for boron remediation in water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees