JPH0624833A - Production of sintered compact of dolomite and magnesia - Google Patents

Production of sintered compact of dolomite and magnesia

Info

Publication number
JPH0624833A
JPH0624833A JP4177058A JP17705892A JPH0624833A JP H0624833 A JPH0624833 A JP H0624833A JP 4177058 A JP4177058 A JP 4177058A JP 17705892 A JP17705892 A JP 17705892A JP H0624833 A JPH0624833 A JP H0624833A
Authority
JP
Japan
Prior art keywords
dolomite
magnesia
particle size
sintered compact
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4177058A
Other languages
Japanese (ja)
Other versions
JP3073100B2 (en
Inventor
Shingo Ito
信吾 伊藤
Yoshimi Goto
義己 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahashi Kogyo KK
Original Assignee
Yahashi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahashi Kogyo KK filed Critical Yahashi Kogyo KK
Priority to JP04177058A priority Critical patent/JP3073100B2/en
Publication of JPH0624833A publication Critical patent/JPH0624833A/en
Application granted granted Critical
Publication of JP3073100B2 publication Critical patent/JP3073100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/06Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on oxide mixtures derived from dolomite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To efficiently produce a sintered compact of a dolomite or magnesia used for a dolomite or a magnesia clinker as a raw material for producing a refractory material for refining iron and steel, a slag making agent for steel making, a plaster, etc. CONSTITUTION:The sintered compact of a dolomite or magnesia is produced by crashing a dolomite raw ore or a natural magnesite, adjusting the average particle size so as to be at an average size on below of a carbonate crystal consisting of the dolomite raw ore and then firing at >=900 deg.C or >=550 deg.C, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として鉄鋼の精練のた
めの耐火物を製造するための原料となるドロマイトおよ
びマグネシアクリンカー、あるいは製鋼用造滓剤やプラ
スター等として用いられる軽焼ドロマイトおよび軽焼マ
グネシアの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to dolomite and magnesia clinker which are raw materials for producing refractory for refining steel, and light burned dolomite and light burn used as a slag forming agent and plaster for steelmaking. The present invention relates to a method of manufacturing magnesia.

【0002】[0002]

【従来の技術】金属の精練、主として鉄鋼の精練に用い
られる耐火物の原料となるドロマイトおよびマグネシア
クリンカーをドロマイト原石および天然マグネサイトよ
り製造するには、大別すると溶融によるものと焼成によ
るものがある。溶融する方法では原料として純度の点か
ら天然物を用いることは少なく、また溶融という方法自
体コストがかかるという短所を持っている。焼成による
方法は、微粉砕しながら、あるいは微粉砕後に助剤を添
加し焼成する方法か、粗砕後に分級により細粉を除いた
原料に助剤を添加して焼成する粗粒焼成法が用いられる
のが普通である。微粉砕する方法では純度の向上を目的
として微粉砕後、浮上選鉱する場合もある。しかし前述
のような方法では助剤としてSiO2 やFe23 を添
加するため、高純度のクリンカーを得ることが困難であ
った。
2. Description of the Related Art Dolomite and magnesia clinker, which are raw materials for refractories used for metal refining, mainly iron and steel refining, can be roughly classified into those by melting and those by burning. is there. In the melting method, a natural product is rarely used as a raw material in terms of purity, and the melting method itself has a disadvantage in that the cost is high. As the method by firing, a method in which an auxiliary agent is added and fired while finely pulverizing or after finely pulverizing, or a coarse grain firing method in which an auxiliary agent is added to a raw material obtained by removing fine powder by classification and then firing is used. It is usually done. In the method of fine pulverization, flotation may be carried out after fine pulverization for the purpose of improving the purity. However, since SiO 2 or Fe 2 O 3 is added as an auxiliary agent by the above-mentioned method, it is difficult to obtain a high-purity clinker.

【0003】一方、製鋼用造滓剤やプラスター等として
用いられ、一般に軽焼ドロマイトおよび軽焼マグネシア
と呼ばれる焼成度の低いドロマイトおよびマグネシアを
製造する場合には破砕して得られた塊をそのまま焼成す
ることが多い。しかしドロマイト原石や天然マグネサイ
トはその原石を構成している炭酸塩の結晶の大きさが大
きい場合が多く、焼成時に粉化、崩壊が激しいため歩留
り低下等の原因となりやすい。
On the other hand, when producing dolomite and magnesia, which are used as a slag forming agent for steelmaking, plasters, etc. I often do it. However, rough crystals of dolomite or natural magnesite are often large in size, and the crystals of the carbonates that make up the rough are often pulverized or collapsed during firing, which is likely to cause a decrease in yield.

【0004】尚、本願は、本発明者等による先行出願で
ある。「石灰焼結体の製造方法」(特願平4−1679
16)および「カルシアクリンカーの製造方法」(特願
平4−164869号)の要旨をドロマイト、マグネシ
アに応用し、使用する原料の炭酸塩の結晶の大きさによ
り、得られる焼結体の物性および焼成に必要な経済的粉
砕粒度について解明した。
The present application is a prior application by the present inventors. "Manufacturing method of lime sintered body" (Japanese Patent Application No. 4-1679)
16) and “Producing method of calcia clinker” (Japanese Patent Application No. 4-164869) are applied to dolomite and magnesia, and the physical properties of a sintered body to be obtained are The economic crushing particle size required for firing was clarified.

【0005】[0005]

【発明が解決しようとする課題】本発明はドロマイト原
石および天然マグネサイトから助剤を添加することなし
に、高比重で耐水和性に優れたドロマイトおよびマグネ
シアクリンカーを製造することを、また軽焼ドロマイト
および軽焼マグネシアを低粉化で効率よく製造すること
を目的とする。
The present invention is to produce dolomite and magnesia clinker having high specific gravity and excellent resistance to hydration without adding an auxiliary agent from rough dolomite and natural magnesite, and to light burning. The purpose is to efficiently produce dolomite and light-burned magnesia with low powder.

【0006】[0006]

【課題を解決するための手段】ドロマイト原石あるいは
天然マグネサイトを粉砕して得られた粉体の平均粒度が
その原料を構成している炭酸塩の結晶の大きさの平均以
下になるよう調整して成形後、ドロマイトの場合は90
0°C以上で、マグネシアの場合は550°C以上で焼
成することにより、クリンカーにおいては助剤の添加な
しに高純度、高比重であり耐水和性に優れたものの、軽
焼物においては焼成時に粉化が少なく高効率な製造方法
を提供する。
[Means for Solving the Problem] The average particle size of the powder obtained by crushing rough dolomite or natural magnesite is adjusted to be equal to or smaller than the average crystal size of the carbonate constituting the raw material. After molding, 90 for Dolomite
By firing at 0 ° C or higher, and in the case of magnesia at 550 ° C or higher, high purity, high specific gravity and excellent hydration resistance are obtained in the clinker without addition of an auxiliary agent, but in the light burned product, it is excellent in hydration resistance. A highly efficient manufacturing method with less powdering is provided.

【0007】[0007]

【作用】ドロマイト原石や天然マグネサイトを塊のまま
焼成すると、構成している炭酸塩の結晶の大きさが大き
いものが多いため粉化、崩壊が激しく、静置した状態で
焼成しても焼成中に自身で崩壊するものもある。本発明
では原料となるドロマイト原石や天然マグネサイトを粉
砕することにより、見かけの結晶径を小さくして焼結性
を向上させ、かつ、これを成形することで成形体中に適
度の空隙を持たせることにより焼成時の歪みを緩衝させ
ることで粉化、崩壊の防止を実現する。
[Function] If dolomite rough or natural magnesite is burned as a lump, many of the constituent carbonate crystals are large in size, causing pulverization and disintegration. Some of them collapse on their own. In the present invention, by crushing raw dolomite ore and natural magnesite as raw materials, the apparent crystal diameter is reduced to improve the sinterability, and by molding this, an appropriate void is formed in the molded body. By doing so, the strain at the time of firing is buffered to prevent pulverization and collapse.

【0008】この場合の粉砕された粉体の粒度は、原料
の構成している炭酸塩の結晶の大きさより大きいと、粉
砕された粒子は原料の炭酸塩の結晶の数個以上の集合体
であり、これを成形、焼成しても焼成時の歪みによる粉
化、崩壊は防止できるが粉砕粒どおしの焼成が進まない
ため、剥離、脱落による粉化は改善されない。従って粉
砕は原料の構成している炭酸塩の結晶の大きさ以下まで
行い、見かけの結晶径を小さくすることで、焼結性を向
上させる必要がある。しかし天然マグネサイトの場合、
粉砕粒子径を小さくしていくとかさ比重は増加しても吸
水率が改善されないことがある。このことは粉砕粒子径
を小さくするほどかさ比重が増加し、吸水率が低下する
ドロマイトとは異なっており、マグネシア焼結体を製造
する場合は原料を必要以上に細かく粉砕することはコス
ト的に無駄である。
In this case, if the particle size of the crushed powder is larger than the size of the carbonate crystal constituting the raw material, the crushed particle is an aggregate of several or more carbonate crystals of the raw material. Even if this is molded and fired, pulverization and disintegration due to strain during firing can be prevented, but calcination of crushed particles does not proceed, so pulverization due to peeling and falling is not improved. Therefore, it is necessary to improve the sinterability by crushing to the crystal size of the carbonate constituting the raw material or less and reducing the apparent crystal diameter. But in the case of natural magnesite,
When the crushed particle size is reduced, the water absorption may not be improved even if the bulk specific gravity is increased. This is different from dolomite in which the bulk specific gravity increases as the crushed particle size decreases, and the water absorption rate decreases.When manufacturing a magnesia sintered body, it is costly to crush the raw material more than necessary. It's useless.

【0009】また原料の炭酸塩の結晶の大きさが0.2
5mm以上あるような粗晶の場合、炭酸塩の結晶の大き
さ以下に粉砕しても成形が困難なことがある。この時は
成形性、ハンドリング強度等を考えて粉砕粒子径が0.
2mm以下にする必要がある。
The crystal size of the raw material carbonate is 0.2
In the case of a coarse crystal having a size of 5 mm or more, it may be difficult to mold even if it is crushed to a size not larger than the crystal size of the carbonate. At this time, the crushed particle size is less than 0.1 considering the moldability and handling strength.
It should be 2 mm or less.

【0010】本発明の範囲で得られた原料粉体は、一般
的な成形方法、例えばプレス成形や押し出し成形等によ
り成形することができ、必要に応じてバインダーを用い
ることもできる。成形密度は焼成中の成形体どおしや耐
火物との摩擦、落下の衝撃等を考慮すると1.5g/c
3 以上とすることが望ましい。
The raw material powder obtained within the scope of the present invention can be molded by a general molding method such as press molding or extrusion molding, and a binder can be used if necessary. The molding density is 1.5g / c considering the friction between the molded products during firing and the refractory, the impact of dropping, etc.
It is desirable that it is m 3 or more.

【0011】得られた成形体は次いでドロマイトの場合
900°C以上で、マグネサイトの場合550°C以上
で焼成される。ドロマイトおよびマグネサイトの脱炭酸
が終了するのが各々900、550°Cであるのでこれ
以上の温度で焼成する必要がある。
The obtained molded body is then fired at 900 ° C. or higher for dolomite and 550 ° C. or higher for magnesite. Since the decarboxylation of dolomite and magnesite is completed at 900 and 550 ° C., respectively, it is necessary to calcine at a temperature higher than this.

【0012】[0012]

【実施例】原料としてドロマイト原石Aと天然マグネサ
イトBを用意した。各々の原料の切断面を研磨して走査
型電子顕微鏡や光学顕微鏡で観察したところAおよびB
の炭酸塩の結晶の大きさは各々0.13mmおよび3.
5mmであった。A,Bを各々約35mmの塊とハンマ
ークラッシャーで粉砕して100μmで分級した粉体お
よびこの粉体をさらにボールミルで粉砕して平均粒子径
4.5μmとした粉体とに調整した。粉体とした試料は
直径40mmの金型を用いて圧力500kg/cm2
円盤状の成形体とした。ついで塊および成形体を110
0、1300、1500および1700°Cで3時間焼
成した。
[Example] Raw dolomite ore A and natural magnesite B were prepared as raw materials. The cut surface of each raw material was polished and observed with a scanning electron microscope or optical microscope.
The carbonate crystal sizes of 0.13 mm and 3.
It was 5 mm. Each of A and B was crushed with a lump of about 35 mm, crushed with a hammer crusher and classified to 100 μm, and this powder was further crushed with a ball mill to prepare a powder having an average particle size of 4.5 μm. The powdered sample was formed into a disc-shaped compact at a pressure of 500 kg / cm 2 using a die having a diameter of 40 mm. Then, the lump and the molded body are 110
Baking at 0, 1300, 1500 and 1700 ° C for 3 hours.

【0013】得られた焼結体についてはかさ比重、吸水
率、および粉化度を測定した。ただしここでいう吸水率
とは温度30°Cでの飽和蒸気圧中にドロマイト焼結体
の場合は120時間、マグネシア焼結体の場合は30日
放置したときの重量増加率であり、粉化度とは内径約7
5mm、高さ120mmの磁器製のポットに試料3個と
直径10mmの磁器ボール10個を入れて約60rpm
で30分回転させた時の3mm以下の粉の発生率であ
る。
The bulk density, water absorption, and pulverization degree of the obtained sintered body were measured. However, the water absorption here is the weight increase rate when the dolomite sintered body is left for 120 hours and the magnesia sintered body is left for 30 days in a saturated vapor pressure at a temperature of 30 ° C. The degree is about 7 inside diameter
Approximately 60 rpm with 3 samples and 10 porcelain balls with a diameter of 10 mm placed in a porcelain pot of 5 mm and height of 120 mm
It is the generation rate of powder of 3 mm or less when rotated for 30 minutes.

【0014】A,Bの化学分析値を第1表に、結果を第
2表に示す。ただしBの塊については各温度共、焼成中
に崩壊、飛散し、焼結体が得られなかったため第2表に
は記載していない。A,B共に各温度で粉砕粒子径が小
さいほど粉化率が小さく、粉化防止には効果がある。ま
たAについては粉砕粒子径が小さいほどかさ比重が増加
し、吸水率が低下しているので耐水和性には効果がある
が、Bについては粉砕粒子径を小さくすると、かさ比重
の増加に効果があっても吸水率は減少していない。従っ
てマグネシア焼結体を製造する場合は粉化率や焼結体の
気孔率などの物性により粉砕粒度を決定する必要があ
る。
The chemical analysis values of A and B are shown in Table 1 and the results are shown in Table 2. However, the lump of B was not described in Table 2 at each temperature because it collapsed and scattered during firing and a sintered body was not obtained. In both A and B, the smaller the pulverized particle size at each temperature, the smaller the pulverization rate, which is effective in preventing pulverization. For A, the smaller the crushed particle size is, the larger the bulk specific gravity is and the lower the water absorption is, which is effective for the hydration resistance. However, the water absorption rate did not decrease. Therefore, when producing a magnesia sintered body, it is necessary to determine the pulverized particle size based on physical properties such as the pulverization rate and the porosity of the sintered body.

【0015】[0015]

【表1】 [Table 1]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】本発明により助剤を添加しないために高
純度でかつ、耐水和性に優れたドロマイトおよびマグネ
シアクリンカーを、あるいは低粉化のため効率良く軽焼
ドロマイトおよびマグネシアを製造することができる。
EFFECTS OF THE INVENTION According to the present invention, dolomite and magnesia clinker having high purity and excellent hydration resistance can be produced without adding an auxiliary agent, or light burned dolomite and magnesia can be efficiently produced due to low powdering. it can.

【0017】また、本発明の範囲のドロマイト原石粉体
あるいは天然マグネサイト粉体に、本発明者等の先行出
願である特開平4−130046号の炭酸カルシウム
や、前記「石灰焼結体の製造方法」の範囲の石灰石粉体
を混合して、成形、焼成することにより、酸化カルシウ
ムと酸化マグネシウムの比率を自由に設定でき、かつ低
粉化で耐水和性に優れた合成ドロマイト焼結体を得るこ
とができる。
Further, in addition to the dolomite rough stone powder or the natural magnesite powder within the scope of the present invention, calcium carbonate of Japanese Patent Application Laid-Open No. 4-130046, which is a prior application of the present inventors, and the above-mentioned "production of lime sintered body". By mixing limestone powder in the range of `` Method '', molding and firing, it is possible to freely set the ratio of calcium oxide and magnesium oxide, and to obtain a synthetic dolomite sintered body with low powder and excellent hydration resistance. Obtainable.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ドロマイト原石を粉砕して得られた粉体
の平均粒度がそのドロマイト原石を構成している炭酸塩
の結晶の大きさの平均以下になるよう調整して成形後9
00°C以上で焼成することを特徴とするドロマイト焼
結体の製造方法。
1. After the molding, the average particle size of the powder obtained by crushing the dolomite raw ore is adjusted to be equal to or less than the average crystal size of the carbonate constituting the dolomite raw ore.
A method for producing a dolomite sintered body, which comprises firing at a temperature of 00 ° C or higher.
【請求項2】 天然マグネサイトを粉砕して得られた粉
体の平均粒度がその天然マグネサイトを構成している炭
酸塩の結晶の大きさの平均以下になるよう調整して成形
後550°C以上で焼成することを特徴とするマグネシ
ア焼結体の製造方法。
2. 550 ° after molding by adjusting the average particle size of the powder obtained by crushing natural magnesite to be equal to or less than the average size of the crystals of the carbonate constituting the natural magnesite. A method for producing a magnesia sintered body, which comprises firing at C or higher.
JP04177058A 1992-07-03 1992-07-03 Method for producing dolomite and magnesia sintered body Expired - Lifetime JP3073100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04177058A JP3073100B2 (en) 1992-07-03 1992-07-03 Method for producing dolomite and magnesia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04177058A JP3073100B2 (en) 1992-07-03 1992-07-03 Method for producing dolomite and magnesia sintered body

Publications (2)

Publication Number Publication Date
JPH0624833A true JPH0624833A (en) 1994-02-01
JP3073100B2 JP3073100B2 (en) 2000-08-07

Family

ID=16024395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04177058A Expired - Lifetime JP3073100B2 (en) 1992-07-03 1992-07-03 Method for producing dolomite and magnesia sintered body

Country Status (1)

Country Link
JP (1) JP3073100B2 (en)

Also Published As

Publication number Publication date
JP3073100B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
TWI732944B (en) Spinel powder containing magnesium oxide and its manufacturing method
JP3121916B2 (en) Method for producing lime sintered body
CN106966708A (en) A kind of non-burning aluminum magnesia carbon brick and preparation method thereof
EP0188371B1 (en) Artificial lightweight aggregate
US2313746A (en) Process of making magnesia ceramics
JPH0158130B2 (en)
JP7438944B2 (en) Synthesis method for producing calcium zirconate-containing materials, as well as batch and crude ceramic refractory products with presynthesized calcium zirconate-containing particles
CN107098710A (en) One kind does not burn magnesia carbon brick and preparation method thereof
JP3073100B2 (en) Method for producing dolomite and magnesia sintered body
JP2004292230A (en) Wear resistant alumina sintered compact and method of manufacturing the same
US3378383A (en) High magnesia product and process of making the same
JP3153637B2 (en) Method for producing calcia clinker
JPH0733249B2 (en) Amorphous silica fine powder manufacturing method and concrete product containing amorphous silica fine powder
RU2005702C1 (en) Process for manufacturing ceramic articles
JPH0544428B2 (en)
US3712599A (en) Method of producing high density refractory grain from natural magnesite
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPH0463008B2 (en)
US4231978A (en) High density low porosity refractory product and process for making the same
JPH03146454A (en) Production of fine powder of ceramics and refractories
JPS6112871B2 (en)
JPH09241051A (en) Production of uncalcined aggregate
JPH0624728A (en) Production of cristobalite
EP0476655B1 (en) Process of producing a hydration resistant sintered lime
JP3746802B2 (en) Method for producing hollow fired body