JPH062480B2 - Delta Wing Structure with Fin Steering Surface at the Tip - Google Patents

Delta Wing Structure with Fin Steering Surface at the Tip

Info

Publication number
JPH062480B2
JPH062480B2 JP1320334A JP32033489A JPH062480B2 JP H062480 B2 JPH062480 B2 JP H062480B2 JP 1320334 A JP1320334 A JP 1320334A JP 32033489 A JP32033489 A JP 32033489A JP H062480 B2 JPH062480 B2 JP H062480B2
Authority
JP
Japan
Prior art keywords
wing
steering
fin
steering surface
delta wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1320334A
Other languages
Japanese (ja)
Other versions
JPH03182898A (en
Inventor
輝臣 中谷
三憲 柳沢
誠三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP1320334A priority Critical patent/JPH062480B2/en
Publication of JPH03182898A publication Critical patent/JPH03182898A/en
Publication of JPH062480B2 publication Critical patent/JPH062480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、離着陸時の低速領域及び巡航時の超音速領域
における、特に横すべり等の操舵性能の向上を図ること
ができる航空機や飛翔体のデルタ翼構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an aircraft or a flying vehicle capable of improving steering performance such as skidding especially in a low speed region during takeoff and landing and a supersonic region during cruising. Delta wing structure.

(従来の技術) 航空機は多くの空力要素技術を結集させ、それらの機能
を高揚力装置、操舵面等の動きに置き換え制御すること
で飛行の安定性が確保されている。
(Prior Art) An aircraft is provided with many aerodynamic element technologies, and their stability is ensured by controlling their functions by replacing them with movements of a high lift device and a steering surface.

従来、安定操縦に用いられている高揚力装置、操舵面に
は種々なものがある。高揚力装置には、フラップやボデ
ィーフラップ等の機械式後縁高揚力装置、USBフラッ
プ、ジェットフラップ、及びスラット等の機械式前縁高
揚力装置等がある。
Conventionally, there are various high lift devices and steering surfaces used for stable steering. The high lift devices include mechanical trailing edge lift devices such as flaps and body flaps, USB flaps, jet flaps, and mechanical leading edge lift devices such as slats.

また、操舵面には、補助翼、昇降舵、方向舵、カナー
ド、スポイラ等がある。補助翼はロール方向の安定、昇
降舵は縦方向の安定、方向舵は横方向の安定の役目を果
す。また、胴体に設けた可動小翼のカナードは運動性能
の向上の役目を果す。
The steering surface includes auxiliary wings, elevators, rudders, canards, spoilers, and the like. The aileron plays the role of stabilizing the roll, the elevator vertically stabilizing, and the rudder horizontally stabilizing. In addition, the canard of the movable winglet provided on the body serves to improve the exercise performance.

その他、一つの操舵面で二つの空力機能を別々に制御で
きるようにしたものに、エレボン、フラッペロン等があ
る。エレボンは、デルタ翼機のように水平尾翼のない無
尾翼の場合、昇降舵と補助翼の働きを兼ねて設けられて
いる。フラッペロンは、内フラップと外舷フラップ間に
設けられ、フラップと補助翼的な役目を果す。これらは
一つの操舵面で二つの働きをさせているが、二つの機能
を同時に操舵するわけではない。
In addition, there are elevons, flaperons, etc. that can control two aerodynamic functions separately on one steering surface. In the case of a tailless wing without a horizontal tail such as a Delta wing, the elevon is provided to function as both an elevator and an auxiliary wing. The flaperon is provided between the inner flap and the outer flap and serves as a flap and an aileron. Although they perform two functions on one steering surface, they do not steer two functions at the same time.

上記のように、従来の高揚力装置及び各種操舵面は一つ
の操舵面で一つの役目を受け持ち、同時に二つ以上の機
能を果す操舵面及び操舵方法はなかった。
As described above, the conventional high lift device and various steering surfaces have one role in one steering surface, and there has been no steering surface and steering method that perform two or more functions at the same time.

(発明が解決しようとする問題点) 前記のように、従来の操舵面はほとんどのものが一つの
役目をうけてもつ方式を取っている。そのため、宇宙往
還機等のようにアスペクト比の小さいデルタ翼機では、
特に横方向の安定が悪く離着陸形態時には高迎角に伴う
胴体、主翼の影響を受けるため、また超音速の巡航形態
においては胴体及び主翼からでる衝撃波の影響を受ける
ため、舵面の効きが悪くなるなど飛行運動性能に問題が
ある。該問題を解決するためには、そのような影響下で
も舵面の効きを有効にする新たな操舵面を設ける必要が
ある。しかしながら、新たな操舵面を設けてその数を増
やすと、増えれば増える程、それだけ操縦が複雑になる
と共に構造が複雑になり故障も増大する等の問題があ
る。
(Problems to be Solved by the Invention) As described above, most of the conventional steering surfaces have a function to play a role. Therefore, in a delta wing aircraft with a small aspect ratio such as a space shuttle,
In particular, the stability of the lateral direction is poor and the fuselage and main wing are affected by the high angle of attack during takeoff and landing, and the shock waves emitted from the fuselage and main wing are affected during supersonic cruise. There is a problem with the flight movement performance. In order to solve the problem, it is necessary to provide a new steering surface that makes the effectiveness of the steering surface effective even under such an influence. However, if a new steering surface is provided and the number thereof is increased, there is a problem that as the number of steering surfaces increases, the operation becomes more complicated and the structure becomes more complicated, resulting in more failures.

本発明は、上記従来の問題点を解決するために創案され
たものであって、一つの操舵面で二つ以上の複合機能を
有し、アスペクト比の小さい翼機の離着陸形態時及び高
速巡航形態時等における運動性能を向上させることがで
き、確実に空気力を運動力に変換しうる新しい操舵面を
有する翼を提供することを目的とするものである。
The present invention was devised to solve the above-mentioned conventional problems, and has two or more combined functions in one steering surface, and when the wing aircraft has a small aspect ratio in takeoff and landing mode and high speed cruising. It is an object of the present invention to provide a wing having a new steering surface that can improve the motion performance in the form and the like and can reliably convert aerodynamic force into motion force.

(問題点を解決するための手段) 上記問題点の解決のために本発明者は、一つの操舵面に
二つ以上の複合機能を持たせて、離着陸形態から巡航形
態までの飛行運動性能を確保する操舵方法が確保できれ
ば、操舵面の数を増やすことなく、飛行の安定確保がで
きるという点に着目し、その様な機能を満足させる操舵
面形状について研究を重ねた結果、本発明に到達したも
のである。
(Means for Solving Problems) In order to solve the above problems, the present inventor provides one steering surface with two or more combined functions to improve flight motion performance from takeoff and landing modes to cruise modes. Focusing on the fact that stable flight can be ensured without increasing the number of steering surfaces if a secure steering method can be secured, and as a result of repeated research on steering surface shapes that satisfy such functions, the present invention was reached. It was done.

即ち、上記目的を達成する本発明のデルタ翼構造は、デ
ルタ翼の両端にフィン操舵面を、操舵ヒンジ軸線が機体
の中心軸に対しトーアウト角をもたせて対称に設け、該
両フィン操舵面を翼内外に設けたアクチュエータで前記
ヒンジ軸線を中心にして上下にキャント角を独立して変
えるように能動制御し、前記デルタ翼両端のフィン操舵
面のキャント角の組合せにより補助翼・方向舵・フラッ
プの複合機能を奏するようにしたことを特徴とする翼端
にフィン操舵面を有するものである。
That is, in the delta wing structure of the present invention that achieves the above object, fin steering surfaces are provided at both ends of the delta wing symmetrically with the steering hinge axis having a toe-out angle with respect to the center axis of the airframe, and both fin steering surfaces are provided. Active control is performed by an actuator provided inside and outside the wing so as to independently change the cant angle up and down about the hinge axis, and by combining the cant angles of the fin steering surfaces at both ends of the delta wing, the auxiliary wing, rudder, and flap are combined. A fin steering surface is provided at the wing tip, which is characterized in that it has multiple functions.

上記フィン操舵面の形状及びトーアウト角は、航空機等
の巡航性能に対応した主翼形状によって決定される。
The shape of the fin steering surface and the toe-out angle are determined by the main wing shape corresponding to the cruising performance of an aircraft or the like.

(作用) 前記フィン操舵面は、翼端に操舵ヒンジ軸線が主翼基準
線上又は若干ずれた位置にあり、且つ航空機の機体中心
軸に対してトーアウト角をもたせて対称に設けられ、該
フィン操舵面の可動時には、常に機体軸に対し面が正対
しなうように制御される。
(Operation) The fin steering surface is provided so that the steering hinge axis line is located at the wing tip on the main wing reference line or at a position slightly displaced from the wing tip, and the fin steering surface is provided symmetrically with respect to the center axis of the aircraft body. When the robot is moving, the plane is controlled so that the surface does not face the axis of the aircraft.

上記のように配置された左右のフィン操舵面は、個別に
能動制御して、ヒンジ軸線を中心にして上下にキャント
舵角を変えて左右のフィン操舵面の位置に組合せによ
り、補助翼、方向舵及びフラップの夫々の役目を同時に
果す複合機能を有する。
The left and right fin steering surfaces arranged as described above are individually actively controlled to change the cant steering angle up and down about the hinge axis and combined with the positions of the left and right fin steering surfaces to assist the auxiliary wings and rudder. And has a combined function of simultaneously performing the respective functions of the flaps.

今、フィン操舵面をデルタ翼に採用した場合の該フィン
操舵面の機能の一例を確認するために、デルタ全翼機形
状をベースにフィン操舵面をおき各操舵面の面積を垂直
尾翼の1/2として、低速領域におる揚力性能及びヨーイ
ング回復性能について、数値計算を行なった。数値解法
には、亜音速以下では近似解として実績のあるパネル法
を用いた。デルタ翼機は、アスペクト比が小さいため
に、垂直尾翼を大きくするか、双尾翼にするのが普通で
ある。そこで方向舵と昇降舵の効きについて本フィン操
舵面の複合機能を確認するために、計算したものであ
る。その結果、第9図及び第10図のグラフに示すよう
な空力特性を示した。なお、本計算では、機体モーメン
ト中心を任意の位置(50%)にしているため、偏揺れ
モーメント係数Cn等は効きの比較としてのみ有効であ
る。
Now, in order to confirm an example of the function of the fin steering surface when the fin steering surface is adopted for the delta wing, the fin steering surface is set based on the Delta full wing machine shape, and the area of each steering surface is 1 As / 2, numerical calculation was performed on the lift performance and yawing recovery performance in the low speed range. The numerical method used was the panel method, which has a proven track record as an approximate solution below subsonic velocity. Due to the small aspect ratio of Delta wing aircraft, it is common to make the vertical tail larger or to make it a twin tail. Therefore, the effectiveness of the rudder and elevator was calculated in order to confirm the composite function of this fin steering surface. As a result, the aerodynamic characteristics shown in the graphs of FIGS. 9 and 10 were exhibited. In this calculation, since the center of the machine body moment is set to an arbitrary position (50%), the yaw moment coefficient Cn and the like are effective only as a comparison of effectiveness.

第9図のグラフは、マッハ0.1の低速領域において横
滑り角β=5°の状態で左右のフィン操舵面のキャント
角が10°、90°(水平)及び170°にした場合
の、迎角αと揚力係数Cnとの関係を示している。
The graph of FIG. 9 shows that when the cant angles of the left and right fin steering surfaces are 10 °, 90 ° (horizontal) and 170 ° in the low-speed region of Mach 0.1 with the sideslip angle β = 5 °. The relationship between the angle α and the lift coefficient Cn is shown.

該図から明らかなように、フィン操舵面のキャント角に
応じて揚力係数が変化し、フィン操舵面を下げた状態
(キャント角170°)では零揚力角が負の方向に移動
し一定迎角における揚力係数Cを増し、高揚力装置の
機能を果すことが判る。また、第10図から明らかなよ
うに、キャント角の変化に応じて偏揺れモーメント係数
Cnが変化するので、方向舵の機能を果し、フィン操舵
面を下げた状態では横方向の揺れ回復機能に効果を発揮
することが確認された。このことは、離着陸時に大きな
迎角を取るデルタ翼の場合、垂直尾翼が大面積の影に入
ってしまい方向舵のききが極端に低下するので、その機
能を補う意味で非常に有効である。
As is clear from the figure, the lift coefficient changes in accordance with the cant angle of the fin steering surface, and when the fin steering surface is lowered (cant angle 170 °), the zero lift angle moves in the negative direction and the angle of attack is constant. It can be seen that the coefficient of lift C L in the above equation is increased to fulfill the function of the high lift device. Further, as is apparent from FIG. 10, since the yaw moment coefficient Cn changes in accordance with the change in the cant angle, it functions as a rudder, and when the fin steering surface is lowered, it has a lateral shake recovery function. It was confirmed that the effect was exhibited. This is very effective in the case of a delta wing that takes a large angle of attack during takeoff and landing, because the vertical tail will fall into the shadow of a large area and the rudder's squeeze will be extremely reduced.

以上の2種類の数値解法によるシュミレーションの結果
だけでも、上記フィン操舵面を有効に機能させることに
よって、アスベスト比が小さいデルタ翼の欠点である離
着陸時の低速域における操舵性を改善することができる
ことが確認され、宇宙往還機、HST等への適用が期待
できる。
Only by the simulation results obtained by the above two numerical solutions, it is possible to improve the steerability in the low speed range during takeoff and landing, which is a drawback of the delta wing with a small asbestos ratio, by effectively functioning the fin steering surface. Is confirmed, and it can be expected to be applied to space shuttles, HST, etc.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明す
る。
(Example) Hereinafter, the Example of this invention is described in detail based on drawing.

第1図〜第8図は本発明のフィン操舵面を宇宙往還機に
適用した場合の実施例を示している。
1 to 8 show an embodiment in which the fin steering surface of the present invention is applied to a space shuttle.

図中、1が宇宙往還機であり、デルタ翼(オージー翼)
である主翼2の両翼端にフィン操舵面3を有している。
該フィン操舵面3は、ヒンジ軸線4が主翼基準線上にあ
って、且つ機体中心軸に対しトーアウト角γを持たせ
て、両翼対称に設けられ、他の操舵面と同様に翼内外に
設けられた図示しないアクチュエータによってヒンジ軸
線4を中心に揺動駆動され、任意のキャント角δcant位
置をとることができる。なお、ヒンジ軸線は、翼の形状
や構造によっては、主翼基準線上とずれて位置する場合
もある。
In the figure, 1 is a space shuttle, and Delta wings (Aussie wings)
The fin steering surfaces 3 are provided at both ends of the main wing 2.
The fin steering surface 3 is provided symmetrically on both wings with the hinge axis 4 on the main wing reference line and having a toe-out angle γ with respect to the center axis of the airframe, and is provided inside and outside the wing like other steering surfaces. It is swingably driven about the hinge axis 4 by an actuator (not shown) and can take an arbitrary cant angle δcant position. Note that the hinge axis may be displaced from the main wing reference line depending on the shape and structure of the wing.

フィン操舵面3の形状は、本実施例ではデルタ翼の翼端
の前縁延長線と後縁延長線及びヒンジ軸線とでなす三角
形状をなしているが、航空機の巡航性能に対応した翼形
状によって異なり、夫々の翼形状に合わせて最適形状が
決定される。同様に、トーアウト角γも翼形状によって
最適角度が決定される。また、フィン操舵面の大きさ
は、主翼面積、及び胴体と主翼との取付け位置(上翼、
中翼、下翼)等によって決定される。
Although the fin steering surface 3 has a triangular shape formed by the leading edge extension line and the trailing edge extension line of the delta wing tip and the hinge axis line in this embodiment, the wing shape corresponds to the cruising performance of the aircraft. The optimum shape is determined according to each blade shape. Similarly, the optimum toe-out angle γ is determined by the blade shape. Further, the size of the fin steering surface depends on the area of the main wing and the mounting position of the fuselage and the main wing (upper wing,
Middle wing, lower wing) etc.

なお、5は主翼後縁に設けられたエレボンであり、6は
垂直尾翼7に設けられた方向舵である。
Reference numeral 5 is an elevon provided at the trailing edge of the main wing, and 6 is a rudder provided at the vertical tail 7.

以上のような翼構造において、フィン操舵面の機能例を
第3図乃至第8図により説明する。
In the wing structure as described above, an example of the function of the fin steering surface will be described with reference to FIGS. 3 to 8.

宇宙往還機の大気圏再突入形態時には、第3図に示すよ
うに、フィン操舵面3を上げた状態(キャント角度が零
に近い状態)にすると、ヨーイングを押さえ横方向の姿
勢が安定し、極限環境下での翼端部の保護を図ることが
できる。また、旋回形態時には、第5図に示すように、
旋回方向と反対側の翼のフィン操舵面3のみを下げれ
ば、旋回方向の力を受け旋回する。同様にして、該フィ
ン操舵面の一方を作動させることによって、突風を受け
たり、横風によって発生する偏揺れモーメントに打ち勝
って横方の安定を得ることができる。
When the space vehicle is in the atmosphere re-entry mode, as shown in Fig. 3, when the fin steering surface 3 is raised (the cant angle is close to zero), yawing is suppressed and the lateral posture is stabilized, and The wing tip can be protected under the environment. In the turning mode, as shown in FIG.
If only the fin steering surface 3 of the blade on the side opposite to the turning direction is lowered, the turning force is applied to turn. Similarly, by operating one of the fin steering surfaces, lateral stability can be obtained by overcoming a yaw moment generated by a gust of wind or a side wind.

また、着陸形態時には、第7図及び第8図に示すよう
に、両フィン操舵面3とも下げれば、高揚力を得ること
ができると共に、横方向の安定を得ることができる。
Further, in the landing mode, as shown in FIGS. 7 and 8, if both fin steering surfaces 3 are lowered, a high lift force can be obtained and lateral stability can be obtained.

(効果) 本発明は、以上のような構成からなり、次のような格別
の効果を奏する。
(Effect) The present invention is configured as described above and has the following special effects.

上記のように配置された左右のフィン操舵面は、個別に
能動制御して、ヒンジ軸線を中心にしてキャント舵角を
変えて左右のフィン操舵面の舵角の組合せにより、補助
翼、方向舵及びフラップの夫々の役目を同時に果す複合
機能を有することができるので、舵面の数を減らすこと
ができ、安全性を向上させることができる。
The left and right fin steering surfaces arranged as described above are individually actively controlled to change the cant steering angle around the hinge axis, and the combination of the steering angles of the left and right fin steering surfaces allows the auxiliary wings, rudder and rudder Since it is possible to have a composite function that simultaneously fulfills the respective roles of the flaps, it is possible to reduce the number of control surfaces and improve safety.

また、アスペクト比が小さく飛行性能が不安定であるデ
ルタ翼機の飛行性能、特に離着陸時形態時等の低速時に
高揚力を得ることができ、デルタ翼機の離着陸時の高迎
角、及び高速度での離着陸に起因する問題点を改善する
ことができる。
In addition, the flight performance of a Delta-wing aircraft with a small aspect ratio and unstable flight performance, especially high lift at low speeds such as during takeoff and landing, can be obtained, and the high angle of attack and takeoff of the Delta wing aircraft during takeoff and landing Problems caused by takeoff and landing at speed can be improved.

さらに、デルタ翼機の超音速の巡航形態時において導
体、主翼からでる衝撃波の影響による舵面の効きが悪く
なるのを防ぎ、操舵安定性を改善することができる。
Further, in the supersonic cruise mode of the delta wing aircraft, it is possible to prevent the effectiveness of the control surface from being deteriorated due to the effect of the shock wave from the conductor and the main wing, and to improve the steering stability.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第6図は本発明をデルタ翼を持つ宇宙往還機に
適用した場合の構想図であり、第1図はその基本形態の
斜視図、第2図はその正面図、第3図は大気圏再突入形
態時の斜視図、第4図はその正面図、第5図は旋回形態
時の斜視図、第6図はその正面図、第7図は着陸形態時
の斜視図、第8図はその正面図、第9図は低速領域にお
けるフィン操舵面のキャント角をパラメータとする揚力
係数と迎角の関係を表すグラフ、第10図は低速領域に
おけるフィン操舵面のキャント角をパラメータとする偏
揺れモーメント係数Cnと迎角の関係を表すグラフであ
る。 1:宇宙往還機 2:主翼 3:フィン操舵面
4:フィンジ軸線 5:エレボン 6:方向舵
7:垂直尾翼
1 to 6 are conceptual views when the present invention is applied to a space shuttle having a delta wing, FIG. 1 is a perspective view of its basic form, FIG. 2 is its front view, and FIG. Is a perspective view in the atmosphere re-entry mode, FIG. 4 is its front view, FIG. 5 is a perspective view in the turning mode, FIG. 6 is its front view, FIG. 7 is a perspective view in the landing mode, and 8 FIG. 9 is a front view of the same, FIG. 9 is a graph showing the relationship between the lift coefficient and the attack angle with the cant angle of the fin steering surface in the low speed region as a parameter, and FIG. 7 is a graph showing the relationship between the yaw moment coefficient Cn and the angle of attack. 1: Space shuttle aircraft 2: Main wing 3: Fin steering surface
4: Finge axis 5: Elevon 6: Rudder
7: Vertical tail

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】デルタ翼を有する航空機又は宇宙機のデル
タ翼構造であって、前記デルタ翼の両端にフィン操舵面
を、操舵ヒンジ軸線が機体の中心軸に対しトーアウト角
をもたせて対称に設け、該両フィン操舵面を翼内外に設
けたアクチュエータで前記ヒンジ軸線を中心にして上下
にキャント角を独立して変えるように能動制御し、前記
デルタ翼両端のフィン操舵面のキャント角の組合せによ
り補助翼・方向舵・フラップの複合機能を奏するように
したことを特徴とする翼端にフィン操舵面を有するデル
タ翼構造。
1. A delta wing structure for an aircraft or a spacecraft having a delta wing, wherein fin steering surfaces are provided at both ends of the delta wing symmetrically with a steering hinge axis having a toe-out angle with respect to a central axis of the airframe. , The fin steering surfaces are actively controlled by actuators provided inside and outside the wing so as to independently change the cant angle up and down about the hinge axis, and by combining the cant angles of the fin steering surfaces at both ends of the delta wing. Delta wing structure with fin steering surface at the wing tip, which is designed to have a combined function of auxiliary wings, rudder and flaps.
【請求項2】前記フィン操舵面の形状は、航空機又は宇
宙機の飛行性能に対応した翼形状によって異なることを
特徴とする請求項1記載のデルタ翼構造。
2. The delta wing structure according to claim 1, wherein the shape of the fin steering surface is different depending on the wing shape corresponding to the flight performance of an aircraft or a spacecraft.
【請求項3】前記操舵面のヒンジ軸トーアウト角は、航
空機又は宇宙機の飛行性能に対応した翼形状によって異
なることを特徴とする請求項1記載のデルタ翼構造。
3. The delta wing structure according to claim 1, wherein the hinge axis toe-out angle of the steering surface varies depending on the wing shape corresponding to the flight performance of an aircraft or a spacecraft.
JP1320334A 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip Expired - Lifetime JPH062480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320334A JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320334A JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Publications (2)

Publication Number Publication Date
JPH03182898A JPH03182898A (en) 1991-08-08
JPH062480B2 true JPH062480B2 (en) 1994-01-12

Family

ID=18120324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320334A Expired - Lifetime JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Country Status (1)

Country Link
JP (1) JPH062480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474025B2 (en) * 2018-05-10 2024-04-24 川崎重工業株式会社 Non-vertical tail aircraft
CN113324443B (en) * 2021-04-22 2023-03-17 上海机电工程研究所 Pneumatic device of edge strip rudder with tip turbulence assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127300A (en) * 1974-08-28 1976-03-06 Mitsubishi Heavy Ind Ltd HOJOYOKU

Also Published As

Publication number Publication date
JPH03182898A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
US5094411A (en) Control configured vortex flaps
US6098923A (en) Aircraft structure to improve directional stability
US4485992A (en) Leading edge flap system for aircraft control augmentation
EP0202020B1 (en) Super agile aircraft and method of flying it in supernormal flight
US7997538B2 (en) Aerodynamic fan control effector
CN108622369B (en) Morphing aircraft wing structure
US4466586A (en) Directional control device for aircraft
CN112960101A (en) Extremely simple supersonic flying wing layout aircraft
US4132375A (en) Vortex-lift roll-control device
RU2310582C2 (en) System and method for control of flying vehicle
US5366180A (en) High-lift device for aircraft
AU2002326628A1 (en) System and method for controlling an aircraft
US11685516B2 (en) Passive gust-load-alleviation device
US3870253A (en) Aircraft vectored flight control means
CN105752319A (en) Fixed wing aircraft adopting full-DOF (degree of freedom) tail wing and operating method
CA2134407C (en) Aircraft crosswind control apparatus
JPH062480B2 (en) Delta Wing Structure with Fin Steering Surface at the Tip
US8876063B2 (en) Flight control using multiple actuators on primary control surfaces with tabs
US6793171B1 (en) Method and system for flying an aircraft
CN116985994B (en) Invisible aircraft
JPH11348894A (en) Full wing aircraft
CN117360767A (en) Pneumatic resistance device and layout of aircraft without vertical tail wing
JP4344821B2 (en) Variable delta wing aircraft and aircraft attitude control method
AU2017202056A1 (en) Joint Box Wing aircraft configuration, offering efficiency gains through aerodynamic advantage and improved structural efficiency through its unique geometry. Resulting in an increase in lift capability, range and endurance above traditional aircraft platforms.
JPH0466394A (en) Aircraft

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term