JPH03182898A - Wing structure with fin steering plane on wing end - Google Patents

Wing structure with fin steering plane on wing end

Info

Publication number
JPH03182898A
JPH03182898A JP32033489A JP32033489A JPH03182898A JP H03182898 A JPH03182898 A JP H03182898A JP 32033489 A JP32033489 A JP 32033489A JP 32033489 A JP32033489 A JP 32033489A JP H03182898 A JPH03182898 A JP H03182898A
Authority
JP
Japan
Prior art keywords
wing
steering
aircraft
fin
control surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32033489A
Other languages
Japanese (ja)
Other versions
JPH062480B2 (en
Inventor
Teruomi Nakatani
輝臣 中谷
Mitsunori Yanagisawa
柳沢 三憲
Seizo Suzuki
誠三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP1320334A priority Critical patent/JPH062480B2/en
Publication of JPH03182898A publication Critical patent/JPH03182898A/en
Publication of JPH062480B2 publication Critical patent/JPH062480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Mechanical Control Devices (AREA)

Abstract

PURPOSE:In a wing structure having steering planes on wing ends of an aircraft or the like, to improve the steering performance of wings by providing fin steering panes on both wing ends so as that steering hinge axes are arranged on or near main wing reference lines and symmetrical to the central axis of the aircraft body with a toe-out angle respectively, and enabling the active control with actuators provided in and out the wings. CONSTITUTION:Fin steering planes 3 are attached to both wing ends of main wings 2 of an aircraft 1 so as that steering hinge axes 4 are arranged on main wing reference lines respectively. And the steering hinge axes are provided on both wings symmetrically to the central axis of the aircraft body with a toe-out angle gamma. And the planes are driven with actuators to swing around the hinge axes 4, and can be controlled to obtain an arbitrary cant angle deltaCANT. Thereby the steering performance can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、離着陸時の低速領域及び巡航時の超音速領域
における、特に横すべり等の操舵性能の向上を図ること
ができる航空機や飛翔体の翼構造、及び水中翼船の外洋
高速航行時又は蛇行時の航行安定の向上を図ることがで
きる水中買船の翼構造に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to an aircraft or flying object that can improve the steering performance, especially against sideslips, in the low-speed region during takeoff and landing and in the supersonic region during cruise. The present invention relates to a wing structure and a wing structure for an underwater boat that can improve navigation stability when the hydrofoil boat is sailing at high speed on the open sea or when meandering.

(従来の技術) 航空機は多くの空力要素技術を結集させ、それらの機能
を高揚力装置、操舵面等の動きに置き換え制御すること
で飛行の安定性が離係されている。
(Prior Art) Aircraft integrate many aerodynamic elemental technologies, and control these functions by replacing them with movements of high-lift devices, control surfaces, etc., thereby improving flight stability.

従来、安定操縦に用いられている高揚力装置、操舵面に
は種々なものがある。高揚力装置には、フラップやボデ
ィーフラップ等の機械式後縁高揚力装置、USBフラッ
プ、ジェットフラップ、及びスラッ1−等の機械式前縁
高揚力装置等がある。
Conventionally, there are various high-lift devices and control surfaces used for stable maneuvering. High-lift devices include mechanical trailing edge high-lift devices such as flaps and body flaps, mechanical leading-edge high-lift devices such as USB flaps, jet flaps, and Slack 1-.

また、操舵面には、補助翼、昇降舵、方向舵、カナード
、スポイラ等がある。補助翼はロール方向の安定、昇P
&舵は縦方向の安定、方向舵は横方向の安定の役目を果
す。また、胴体に設けた可動小翼のカナードは運動性能
の向上の役目を果す。
Further, the control surfaces include ailerons, elevators, rudders, canards, spoilers, and the like. Ailerons are stable in roll direction and increase P
&The rudder serves for longitudinal stability, and the rudder serves for lateral stability. In addition, the movable wing canards installed in the fuselage serve to improve maneuverability.

その他、一つの操舵面で二つの空力機能を別々に制御で
きるようにしたものに、ニレボン、フラッペロン等があ
る。ニレボンは、デルタ翼機のように水平尾翼のない無
尾翼の場合、昇降舵と補助翼の働きを兼ねて設けられる
。フラッペロンは、内フラツプと外航フラップ間に設け
られ、フラップと補助翼的な役目を果す。これらは一つ
の操舵面で二つの働きをさせている、が、二つの機能を
同時に操舵するわけではない。
Other examples that allow two aerodynamic functions to be controlled separately with one steering surface include the Nirebon and Flaperon. In the case of a tailless wing without a horizontal stabilizer, such as a delta-wing aircraft, the Nirebon is installed to serve as both an elevator and an aileron. The flaperon is installed between the inner flap and the oceangoing flap, and acts like a flap and an aileron. These have two functions on one steering surface, but they do not perform both functions at the same time.

上記のように、従来の高揚力装置及び各種操舵面は一つ
の操舵面で一つの役目を受は持ち、同時に二つ以上の機
能を果す操舵面及び操舵方法はなかった。
As described above, in conventional high-lift devices and various types of steering surfaces, one steering surface has one role, and there is no steering surface or steering method that can perform two or more functions at the same time.

(発明が解決しようとする問題点) 前記のように、従来の操舵面はとんどのものが一つの役
目をうけもつ方式を取っている。そのため、宇宙往還機
等のようにアスペクト比の小さいデルタ翼機では、特に
横方向の安定が悪く離着陸形態時には高迎角に伴う胴体
、主翼の影響を受けるため、また超音速の巡航形態にお
いては胴体及び主翼からでるm撃波の影響を受けるため
、舵面の効きが悪くなるなど飛行運動性能に問題がある
(Problems to be Solved by the Invention) As mentioned above, most conventional steering surfaces have a single role. For this reason, delta wing aircraft with a small aspect ratio, such as spacecraft, have poor lateral stability and are affected by the fuselage and main wings due to the high angle of attack during takeoff and landing, and in supersonic cruise mode. Because it is affected by the m attack waves emitted from the fuselage and main wings, there are problems with flight performance, such as reduced control surface effectiveness.

該問題を解決するためには、そのような影響下でも舵面
の効きを有効にする新たな操舵面を設ける必要がある。
In order to solve this problem, it is necessary to provide a new control surface that makes the control surface effective even under such influences.

しかしながら、新たな操舵面を設けてその数を増やすと
、増えれば増える程、それだけ操縦が複雑になると共に
構造が複雑になり故障も増大する等の問題がある。
However, when new steering surfaces are provided and the number thereof is increased, there are problems such as the more the number increases, the more complicated the maneuvering becomes, the more complicated the structure becomes, and the more failures occur.

本発明は、上記従来の問題点を解決するために創案され
たものであって、一つの操舵面で二つ以」二の複合機能
を有し、アスペクト比の小さい翼機の離着陸形態時及び
高速巡航形態時等における運動性能を向」ニさせること
ができ、確実に空気力を運動力に変換しうる新しい操舵
面を有する翼を提供することを目的とするものである。
The present invention has been devised to solve the above-mentioned conventional problems, and has two or more composite functions on one control surface, and is capable of controlling the take-off and landing configuration of a winged aircraft with a small aspect ratio. It is an object of the present invention to provide a wing having a new control surface that can improve maneuverability during high-speed cruising mode, etc., and can reliably convert aerodynamic force into kinetic force.

l′S (問題点を解決するための手段) 上記問題点の解決のために本発明者は、一つの操舵面に
二つ以上の複合機能を持たせて、離着陸形態時から巡航
形態までの飛行運動性能を確保する操舵方法が確保でき
れば、操舵面の数を増やすことなく、飛行の安定確保が
できるという点に着目し、その様な機能を満足させる操
舵面形状について研究を重ねた結果、本発明に到達した
ものである。
l'S (Means for Solving the Problems) In order to solve the above problems, the inventor of the present invention provided one control surface with two or more composite functions, so that the control surface can be controlled from the takeoff and landing mode to the cruising mode. We focused on the fact that if we could secure a steering method that ensures flight maneuverability, we could ensure flight stability without increasing the number of control surfaces, and as a result of repeated research on the shape of the control surfaces that would satisfy such functions, we found that: This has led to the present invention.

即ち、上記目的を達成する本発明の翼構造は、空機の運
動性能を確保するように翼内外に設けたアクチュエータ
で能動制御できるようにしたことを特徴とするものであ
る。
That is, the wing structure of the present invention that achieves the above object is characterized in that active control can be performed by actuators provided inside and outside the wing so as to ensure the maneuverability of the aircraft.

上記フィン操舵面の形状及びトーアウト角は、航空機等
の巡航性能に対応した主翼形状によって決定される。ま
た、フィン操舵面の制御方向は、4 機体ボディーと主翼の取り(=Jけ位置関係によって決
定される。該フィン操舵面を有する翼は、宇宙往還機等
の航空機やロケット等の飛翔体、及び高速水中翼船に適
用することができる。
The shape and toe-out angle of the fin control surface are determined by the shape of the main wing that corresponds to the cruising performance of the aircraft or the like. Furthermore, the control direction of the fin control surface is determined by the positional relationship between the aircraft body and the main wing. and can be applied to high-speed hydrofoils.

(作用) 前記フィン操舵面は、翼端に操舵ヒンジ軸線が主翼基準
線上又は若干ずれた位置にあり、且つ航空機の機体中心
軸に対しトーアウト角をもたせて対称に設けられ、該フ
ィン操舵面の可動時には。
(Function) The fin control surface is provided symmetrically with the steering hinge axis on the wing tip or at a position slightly shifted from the main wing reference line and with a toe-out angle with respect to the center axis of the aircraft body. When movable.

常に機体軸に対し面が正対しないように制御される。The surface is always controlled so that it does not directly face the aircraft axis.

上記のように配置された左右のフィン操舵面は、個別に
能動制御して、ヒンジ軸線を中心にして」二下にキャン
1へ舵角を変えて左右のフィン操舵面の位置の組合せに
より、補助翼、方向舵及びフラップの夫々の役目を同時
に果す複合機能をイアする。
The left and right fin control surfaces arranged as described above are individually actively controlled, and by changing the steering angle downward to can 1 with the hinge axis as the center, the position of the left and right fin control surfaces is combined. It has a complex function that simultaneously serves as an aileron, rudder, and flap.

今、フィン操舵面をデルタ翼に採用した場合の該フィン
操舵面の機能の一例を確認するために、デルタ全翼機形
状をベースにフィン操舵面をおき各操舵面の面積を垂直
尾翼の1/2として、低速領域における揚力性能及びヨ
ーイング回復性能について、数値Hf算を行なった。数
値解法には、亜音速以下では近似解として実績のあるパ
ネル法を用いた。デルタ翼機は、アスペク1〜比が小さ
いために、垂直尾翼を大きくするか、双尾麗にするのが
普通である。そこで方向舵と昇降舵の効きについて本フ
ィン操舵面の複合機能を確認するために、計算したもの
である。その結果、第9図及び第1O図のグラフに示す
ような空力特性を示した。なお、本計算では1接伴モー
メント中心を任意の位置(50%)にしているため、偏
揺れモーメント係数Cn等は効きの比較としてのみ有効
である。
Now, in order to confirm an example of the function of the fin control surface when the fin control surface is adopted for the delta wing, we will set the fin control surface based on the delta flying wing shape and calculate the area of each control surface to 1 /2, numerical Hf calculations were performed for lift performance and yawing recovery performance in the low speed region. For the numerical solution, we used the panel method, which has a proven track record as an approximate solution at subsonic speeds and below. Because delta wing aircraft have a small aspect ratio, they usually have a large vertical tail or twin tails. Therefore, we calculated the effectiveness of the rudder and elevator in order to confirm the combined function of this fin control surface. As a result, aerodynamic characteristics as shown in the graphs of FIG. 9 and FIG. 1O were exhibited. In addition, in this calculation, since the center of the 1-adjoint moment is set at an arbitrary position (50%), the yaw moment coefficient Cn, etc. are effective only as a comparison of effectiveness.

第9図のグラフは、マツハ0.1の低連領域において横
滑り角β=5°の状態で左右のフィン操舵面のキャン1
〜角が10’、900 (水平)及び170°にした場
合の、仰角αと揚力係数Cnとの関係を示している。
The graph in Figure 9 shows the can 1 of the left and right fin control surfaces when the sideslip angle β = 5° in the low range of Matsuha 0.1.
- shows the relationship between the elevation angle α and the lift coefficient Cn when the angle is 10', 900 (horizontal) and 170°.

核間から明らかなように、フィン操舵面のキャント角に
応じて揚力係数が変化し、フィン操舵操舵面を下げた状
態(キャント角170’)では零7 揚力角が負の方向に移動し一定迎角における揚力係数C
Lを増し、高揚力装置の機能を果すことが判る。また、
第10図から明らかなように、キャ)ント角の変化に応
じて偏揺れモーメント係数Cnが変化するので、方向舵
の機能を果し、フィン操着陸時に大きな迎角を取るデル
タ翼の場合、垂直尾翼が大面積の影に入ってしまい方向
舵のききが極端に低下するので、その機能を補う意味で
非常に有効である。
As is clear from the nucleus, the lift coefficient changes depending on the cant angle of the fin steering surface, and when the fin steering surface is lowered (cant angle 170'), it becomes zero7. The lift angle moves in the negative direction and remains constant. Lift coefficient C at angle of attack
It can be seen that by increasing L, it functions as a high-lift device. Also,
As is clear from Fig. 10, the yaw moment coefficient Cn changes as the cant angle changes. This is very effective in the sense of supplementing the function of the tail, which is in the shadow of a large area and the rudder becomes extremely difficult to operate.

以上の2種類の数値解法によるシュミレーションの結果
だけでも、に記フィン操舵面を有効に機能させることに
よって、アスベス1〜比が小さいデルタ翼の欠点である
離着陸時の低速域における操舵特性を改善することがで
きることが確認され、宇宙往還機、HS T等への適用
が期待できる。また、同様に開発が期待されている超高
速の水中翼船に適用しても同様な効果、特に横揺れ防止
に有効であると推測される。
The simulation results using the above two types of numerical methods alone show that by making the fin control surface function effectively, the steering characteristics in the low speed range during takeoff and landing, which is a drawback of delta wings with a small asbeth ratio of 1 to 1, can be improved. It has been confirmed that this technology can be used for spacecraft, HST, etc. It is also assumed that the same effect will be achieved when applied to ultra-high-speed hydrofoil ships, which are also expected to be developed, particularly in preventing rolling.

(実に例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Actual Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

往還機に適用した場合の実施例を示している。An example in which the present invention is applied to a shuttle plane is shown.

を有している。該フィン操舵面3は、ヒンジ軸線4が主
翼基準線上にあって、且つ機体中心軸に対しトーアウト
角γを持たせて1両翼対称に設けられ、他の操舵面と同
様に翼内外に設けられた図示しないアクチュエータによ
ってヒンジ軸線4を中心に揺動原動され、任意のキャン
ト角δcant位置をとることができる。なお、ヒンジ
軸線は、翼の形状や構造によっては、主翼基準線上とず
れて位置する場合もある。
have. The fin control surface 3 is provided symmetrically on both wings with the hinge axis 4 on the main wing reference line and having a toe-out angle γ with respect to the center axis of the fuselage, and is provided inside and outside the wing like the other control surfaces. It is driven to swing around the hinge axis 4 by an actuator (not shown), and can take any cant angle δcant position. Note that the hinge axis may be located out of alignment with the main wing reference line depending on the shape and structure of the wing.

フィン操舵面3の形状は、本実施例ではデルタ翼の翼端
の前縁延長線と後縁延長線及びヒンジ軸線とでなす三角
形状をなしているが、航空機の巡航性能に対応した翼形
状によって異なり、夫々の翼形状に合わせて最適形状が
決定される。FiJ様に、i〜−アウト角αも翼形状に
よって最適角度が決定される。また、フィン操舵面の大
きさは、主翼面積、及び胴体と主翼との取付け位U(上
翼、中翼、下翼)等によって決定される。
In this embodiment, the shape of the fin control surface 3 is a triangle formed by the leading edge extension line, the trailing edge extension line, and the hinge axis of the wing tip of the delta wing, but the shape of the fin control surface 3 is a triangle shape that corresponds to the cruising performance of the aircraft. The optimum shape is determined depending on the shape of each blade. Similar to FiJ, the optimum angle of the i~-out angle α is also determined depending on the blade shape. Further, the size of the fin control surface is determined by the area of the main wing, the attachment position U between the fuselage and the main wing (upper wing, middle wing, lower wing), and the like.

なお、5は主翼後縁に設けられたニレボンであり、6は
垂直圧x7に設けられた方向舵である。
In addition, 5 is a Nirebon provided at the trailing edge of the main wing, and 6 is a rudder provided at the vertical pressure x7.

以」二のような翼構造において、フィン操舵面の機能例
を第3図乃至第8図により説明する。
Functional examples of the fin control surface in the following wing structure will be explained with reference to FIGS. 3 to 8.

宇宙往還機の大気圏再突入形態時には、第3図に示すよ
うに、フィン操舵面3を上げた状態(キャント角度が零
に近い状態)にすると、ヨーイングを押さえ横方向の安
定を果たす。また、旋回形態時には、第5図に示すよう
に、旋回方向と反対側の翼のフィン操舵面3のみを下げ
れば、旋回方向の力を受は旋回する。同様にして、該フ
ィン操舵面の一方を作動させることによって、突風を受
けたり、横風によって発生する偏揺れモーメンi・に打
ち勝って横方向の安定を得ることができる。
When the spacecraft re-enters the atmosphere, as shown in FIG. 3, when the fin control surface 3 is raised (the cant angle is close to zero), yaw is suppressed and lateral stability is achieved. Further, in the turning mode, as shown in FIG. 5, by lowering only the fin control surface 3 of the wing on the opposite side to the turning direction, the force in the turning direction can be applied to the receiver to make the turn. Similarly, by actuating one of the fin steering surfaces, lateral stability can be obtained by overcoming the yaw moment i· caused by gusts or crosswinds.

また、着陸形態時には、第7図及び第8図に示すように
、両フィン操舵面3とも下げれば、高揚力を得ることが
できると共に、横方向の安定を得ることができる。
Furthermore, in the landing configuration, as shown in FIGS. 7 and 8, by lowering both fin control surfaces 3, high lift can be obtained and lateral stability can be obtained.

以上は、本発明のフィン操舵面を有する翼構造を宇宙往
還機に適用した場合の実施例を示したが、本発明は、宇
宙往還機等の航空機に限らず、その他ロケット等の飛翔
体、及び高速の水中翼船にも適用が可能である。
Although the embodiments above have been shown in which the wing structure having a fin control surface of the present invention is applied to a spacecraft, the present invention is applicable not only to aircraft such as spacecraft, but also to other flying objects such as rockets, etc. It can also be applied to high-speed hydrofoils.

(効果) 本発明は、以」二のような構成からなり、次のような#
)別の効果を奏する。
(Effects) The present invention consists of the following configurations, and has the following features.
) has a different effect.

」二定のように配置された左右のフィン操舵面は、個別
に能動制御して、ヒンジ軸線を中心にしてキャン1〜舵
角を変えて左右のフィン操舵面の舵角の組合せにより、
補助糞、方向舵及びフラップの夫々の役目を同時に果す
複合機能を有することができるので、前面の数を減らす
ことができ、安全性を向上させることができる。
The left and right fin control surfaces, which are arranged in a fixed manner, are individually actively controlled to change the rudder angle from can 1 to the hinge axis, and by combining the rudder angles of the left and right fin control surfaces,
Since it can have a composite function of simultaneously serving as an auxiliary turret, a rudder, and a flap, the number of front surfaces can be reduced and safety can be improved.

また、アスペクト比の小さい翼に適用した場合、離着陸
形態時の高迎角形態時における胴体及び主翼の影響、ま
た超音速の巡航形態時において胴体、主翼からでる衝撃
波の影響による舵面の効きが悪くなるのを防ぎ、操舵特
性をQl ’tNすることができることができる。
In addition, when applied to wings with a small aspect ratio, the effect of the fuselage and main wings during high angle of attack during takeoff and landing, and the effect of the control surface due to the influence of shock waves from the fuselage and main wings during supersonic cruise mode. It is possible to prevent the steering characteristics from becoming worse and improve the steering characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明をデルタ翼を持つ宇宙往還機に
適用した場合の構想図であり、第1図はその基本形態の
斜視図、第2同はその正面図、第3図は大気圏再突入形
態時の斜視図、第4図はその正直図、第5図は旋回形態
時の斜視図、第6図はその正面図、第7図は着陸形態時
の斜視図、第8図はその正面図、第9図は低速領域にお
けるフィン操舵面のキャント角をパラメータとする揚力
係数と迎角の関係を表すグラフ、第10図は低速領域に
おけるフィン操舵面のキャン(・角をパラメータとする
偏揺れモーメント係数Cnと迎角の関係を表すグラフで
ある。 1:宇宙往還機  2:主翼  3:フィン操舵面  
4:フィンジ軸線  5:エレボン6:方向舵  7:
垂直尾翼 腐習E(幇 腐v7/:(−’i’#閣門
Figures 1 to 6 are conceptual drawings when the present invention is applied to a spacecraft with delta wings, with Figure 1 being a perspective view of its basic form, Figure 2 being a front view thereof, and Figure 3 is a perspective view in atmospheric re-entry mode, Fig. 4 is a straight view, Fig. 5 is a perspective view in turning mode, Fig. 6 is a front view, Fig. 7 is a perspective view in landing mode, and Fig. 8 Figure 9 is a graph showing the relationship between the lift coefficient and the angle of attack with the cant angle of the fin control surface as a parameter in the low speed region, and Figure 10 is the cant angle of the fin control surface in the low speed region. This is a graph showing the relationship between the yaw moment coefficient Cn as a parameter and the angle of attack. 1: Spacecraft 2: Main wing 3: Fin control surface
4: Finge axis 5: Elevon 6: Rudder 7:
Vertical tail rotten E (furrow v7/: (-'i'#Kakumon

Claims (1)

【特許請求の範囲】 1)航空機の翼端にフィン操舵面を、操舵ヒンジ軸線が
主翼基準線上又はその付近にあり且つ航空機の機体中心
軸に対しトーアウト角をもたせて対称に設け、該フィン
操舵面を翼内外に設けたアクチュエータで能動制御でき
るようにしたことを特徴とする翼端にフィン操舵面を有
する翼構造。 2)前記フィン操舵面の形状は、航空機の巡航性能に対
応した翼形状によって異なることを特徴とする請求項1
記載の翼構造。 3)前記操舵面のヒンジ軸トーアウト角は、航空機の巡
航性能に対応した翼形状によって異なることを特徴とす
る請求項1記載の翼構造。 4)前記フィン操舵面の制御方向は、機体ボディーと主
翼の取り付け位置関係によって決定されることを特徴と
する請求項1記載の翼構造。 5)飛翔体に適用した請求項1、2、3又は4記載の翼
構造。 6)水中翼船に適用した請求項1、2、3又は4記載の
翼構造。
[Scope of Claims] 1) A fin steering surface is provided on the wing tip of the aircraft symmetrically so that the steering hinge axis is on or near the main wing reference line and has a toe-out angle with respect to the aircraft body center axis, and the fin steering surface is provided symmetrically with respect to the center axis of the aircraft body. A wing structure having a fin control surface at a wing tip, characterized in that the surface can be actively controlled by actuators provided inside and outside the wing. 2) The shape of the fin control surface differs depending on the shape of the wing corresponding to the cruising performance of the aircraft.
Described wing structure. 3) The wing structure according to claim 1, wherein the hinge axis toe-out angle of the control surface varies depending on the shape of the wing corresponding to the cruising performance of the aircraft. 4) The wing structure according to claim 1, wherein the control direction of the fin control surface is determined by the attachment positional relationship between the fuselage body and the main wing. 5) The wing structure according to claim 1, 2, 3 or 4 applied to a flying object. 6) The wing structure according to claim 1, 2, 3 or 4 applied to a hydrofoil boat.
JP1320334A 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip Expired - Lifetime JPH062480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320334A JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320334A JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Publications (2)

Publication Number Publication Date
JPH03182898A true JPH03182898A (en) 1991-08-08
JPH062480B2 JPH062480B2 (en) 1994-01-12

Family

ID=18120324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320334A Expired - Lifetime JPH062480B2 (en) 1989-12-08 1989-12-08 Delta Wing Structure with Fin Steering Surface at the Tip

Country Status (1)

Country Link
JP (1) JPH062480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196123A (en) * 2018-05-10 2019-11-14 川崎重工業株式会社 Vertical tailless aircraft
CN113324443A (en) * 2021-04-22 2021-08-31 上海机电工程研究所 Pneumatic device of edge strip rudder with tip turbulence assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127300A (en) * 1974-08-28 1976-03-06 Mitsubishi Heavy Ind Ltd HOJOYOKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127300A (en) * 1974-08-28 1976-03-06 Mitsubishi Heavy Ind Ltd HOJOYOKU

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196123A (en) * 2018-05-10 2019-11-14 川崎重工業株式会社 Vertical tailless aircraft
CN113324443A (en) * 2021-04-22 2021-08-31 上海机电工程研究所 Pneumatic device of edge strip rudder with tip turbulence assembly

Also Published As

Publication number Publication date
JPH062480B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US7367530B2 (en) Aerospace vehicle yaw generating systems and associated methods
US5094411A (en) Control configured vortex flaps
US4485992A (en) Leading edge flap system for aircraft control augmentation
US4566657A (en) Span loaded flying wing control
US4466586A (en) Directional control device for aircraft
CN112960101A (en) Extremely simple supersonic flying wing layout aircraft
US6641086B2 (en) System and method for controlling an aircraft
US5542625A (en) Gull wing aircraft
US5366180A (en) High-lift device for aircraft
US4132375A (en) Vortex-lift roll-control device
JP2008524058A (en) Method for improving roll control of aircraft and aircraft using the same
AU2002326628A1 (en) System and method for controlling an aircraft
CN217049012U (en) Extremely simple supersonic flying wing layout aircraft
CN103523223B (en) Transverse course control system and transverse course control method for flying wing configuration
US3870253A (en) Aircraft vectored flight control means
US11685516B2 (en) Passive gust-load-alleviation device
US6543720B2 (en) Directional control and aerofoil system for aircraft
WO2006057575A2 (en) Lifting-type aeroplane fuselage
CA2134407C (en) Aircraft crosswind control apparatus
CN1007143B (en) Aileron for an airplane wing
JPH03182898A (en) Wing structure with fin steering plane on wing end
CN206265289U (en) A kind of aircraft pitch, rollover, yaw control system
CN117360767A (en) Pneumatic resistance device and layout of aircraft without vertical tail wing
JPH11348894A (en) Full wing aircraft
AU2017202056A1 (en) Joint Box Wing aircraft configuration, offering efficiency gains through aerodynamic advantage and improved structural efficiency through its unique geometry. Resulting in an increase in lift capability, range and endurance above traditional aircraft platforms.

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term