JPH0624804A - Formation of water repelling film of carbon containing fluorine - Google Patents

Formation of water repelling film of carbon containing fluorine

Info

Publication number
JPH0624804A
JPH0624804A JP17570092A JP17570092A JPH0624804A JP H0624804 A JPH0624804 A JP H0624804A JP 17570092 A JP17570092 A JP 17570092A JP 17570092 A JP17570092 A JP 17570092A JP H0624804 A JPH0624804 A JP H0624804A
Authority
JP
Japan
Prior art keywords
water
bond
film
repellent
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17570092A
Other languages
Japanese (ja)
Inventor
Masaji Nakanishi
正次 中西
Ichiro Tajima
一郎 田嶋
Masahiko Ishii
昌彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP17570092A priority Critical patent/JPH0624804A/en
Publication of JPH0624804A publication Critical patent/JPH0624804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To improve introduction efficiency of a fluorine atom into the film, in a forming method of a water-repellent film which is formed by a PVC method or a CVD method together with a carbon source by using gas of compounds such as CF4, C2F2 and C3F6. CONSTITUTION:The gas of the compounds which has a C-F bond and the bond with a carbon whose bond energy is smaller than a bond energy of a C-F bond, is used as a fluorine source and the film is formed by the PVD method or CVD method together with the carbon source. Thus, since the bond with smaller bond energy is preferentially cut at the film forming time and a radical containing fluorime is formed, the introduction efficiency of fluorine into the film is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水膜などとして利用
される炭素フッ素複合層からなる被膜を形成する方法に
関する。得られた撥水膜は、自動車のフロントガラスな
どに利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film composed of a carbon-fluorine composite layer used as a water repellent film or the like. The obtained water-repellent film can be used for windshields of automobiles.

【0002】[0002]

【従来の技術】従来より、例えば反応管として利用され
る炭素被膜付きガラスとして、石英ガラスと、この石英
ガラスの表面に形成された炭素被膜と、からなるものが
知られている(特開平2-188447号公報)。この炭素被膜
は、例えば水素ガスで還元処理された石英ガラスの表面
に、炭素被膜形成原料を含むキャリアガスを供給するこ
とにより形成することができる。
2. Description of the Related Art Conventionally, as a glass with a carbon coating used as, for example, a reaction tube, there is known a glass comprising a quartz glass and a carbon coating formed on the surface of the quartz glass (Japanese Patent Laid-Open No. Hei 2). -188447 publication). This carbon coating can be formed, for example, by supplying a carrier gas containing a carbon coating forming raw material to the surface of quartz glass that has been subjected to reduction treatment with hydrogen gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炭素被
膜は撥水性を有するものの、水との接触角は約90度で
あり自動車用撥水ガラスとしては撥水性が不十分であ
る。また炭素被膜とガラスとの付着性が不十分であり、
炭素被膜の剥離が生じ易いという不具合もあった。そこ
で本願発明者らは、鋭意研究の結果、先に炭素フッ素複
合層からなる炭素被膜付きガラスを出願している(特願
平3-172212号)。この発明によれば、炭素被膜中にフッ
素原子が導入されているため、極めて高い撥水性が得ら
れる。
However, although the carbon coating has water repellency, the contact angle with water is about 90 degrees, which is insufficient as water repellency glass for automobiles. In addition, the adhesion between the carbon coating and the glass is insufficient,
There is also a problem that the carbon coating is easily peeled off. Then, as a result of earnest research, the inventors of the present application have previously applied for a glass with a carbon coating comprising a carbon-fluorine composite layer (Japanese Patent Application No. 3-172212). According to this invention, since the fluorine atom is introduced into the carbon coating, extremely high water repellency can be obtained.

【0004】ところで上記先願に係る発明では、炭素被
膜中にフッ素原子を導入するのにCF4 ,C2 2 ,C
3 6 などの化合物のガスを用い、炭素源とともにPV
D法あるいはCVD法にて成膜することとしている。し
かしながらこの方法では、被膜中へのフッ素導入効率が
低く、撥水性を向上させるために多量のフッ素原子を被
膜中に導入しようとすると、炭素の堆積速度を小さくし
なければならず多大な時間が必要となる。
In the invention according to the above-mentioned prior application, CF 4 , C 2 F 2 , C is used to introduce fluorine atoms into the carbon coating.
Using a gas of a compound such as 3 F 6 , PV with a carbon source
The film is formed by the D method or the CVD method. However, in this method, the efficiency of introducing fluorine into the film is low, and if a large amount of fluorine atoms are to be introduced into the film in order to improve water repellency, the deposition rate of carbon must be reduced and it takes a lot of time. Will be needed.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、上記特願平3-172212号に記載された発明を
さらに改良し、被膜中へのフッ素原子の導入効率を向上
させることを目的とする。
The present invention has been made in view of the above circumstances, and further improves the invention described in Japanese Patent Application No. 3-172212 to improve the efficiency of introducing fluorine atoms into the coating film. With the goal.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明のフッ素含有炭素撥水膜の形成方法は、C−F結合を
もつとともに炭素との結合であってその結合エネルギー
がC−F結合の結合エネルギーより小さい結合をもつ化
合物のガスをフッ素源として用い、炭素源とともにPV
D法またはCVD法により成膜することを特徴とする。
The method for forming a fluorine-containing carbon water-repellent film of the present invention, which solves the above-mentioned problems, has a C—F bond and is a bond with carbon whose bond energy is a C—F bond. A gas of a compound having a bond smaller than the bond energy of
It is characterized in that the film is formed by the D method or the CVD method.

【0007】フッ素源として用いられる化合物とは、C
−F結合をもち、かつ炭素との結合であってその結合エ
ネルギーがC−F結合の結合エネルギーより小さい結合
をもつ。炭素との結合であって、C−F結合より小さい
結合エネルギーの結合としては、C−H結合,C−Cl
結合,C−Br結合,C−I結合などがある。したがっ
てこれらの結合をもつ化合物としては、CHF3 ,CH
2 2 ,CH3 F,CF3 Cl,CF2 Cl2 ,CF3
Br,CF3 Iなど種々の化合物が挙げられる。短時間
で高い撥水性を得るためには、一分子中のフッ素原子の
数が多いものを用いることが好ましい。
The compound used as the fluorine source is C
It has a -F bond and a bond with carbon, the bond energy of which is smaller than that of the C-F bond. A bond with carbon, which has a bond energy smaller than that of a C-F bond, includes a C-H bond and a C-Cl bond.
There are a bond, a C-Br bond, a C-I bond and the like. Therefore, as a compound having these bonds, CHF 3 , CH
2 F 2 , CH 3 F, CF 3 Cl, CF 2 Cl 2 , CF 3
Various compounds such as Br and CF 3 I can be mentioned. In order to obtain high water repellency in a short time, it is preferable to use one having a large number of fluorine atoms in one molecule.

【0008】[0008]

【作用】例えばCF4 ガスをフッ素源として用いてスパ
ッタリングした場合、CF4 は各C−F結合の結合強度
は同一であるため、プラズマ中でCとFとに完全に分解
するものと考えられる。そのためフッ素が炭素被膜中に
導入されにくいものと考えられる。
When, for example, CF 4 gas is used as a fluorine source and is sputtered, CF 4 is considered to be completely decomposed into C and F in plasma because each C—F bond has the same bond strength. . Therefore, it is considered that fluorine is difficult to be introduced into the carbon coating.

【0009】一方本発明の形成方法では、フッ素源にC
−F結合の結合エネルギーより小さい結合をもつ化合物
を用いている。したがってプラズマ中では弱い結合が先
ず切断され、CF3 ラジカル、CF2 ラジカル、CFラ
ジカルなどが生成され易く、またプラズマ化効率も高く
なるために、フッ素が炭素被膜中へ導入され易くなるも
のと考えられる。
On the other hand, in the forming method of the present invention, the fluorine source is C
A compound having a bond smaller than the bond energy of the -F bond is used. Therefore, it is thought that weak bonds are first broken in plasma, CF 3 radicals, CF 2 radicals, CF radicals, etc. are easily generated, and plasma efficiency is also increased, so that fluorine is easily introduced into the carbon coating. To be

【0010】[0010]

【実施例】以下、実施例により具体的に説明する。 (実施例1)2元RFマグネトロンスパッタリング装置
の真空槽に、ガラス基板と、SiO 2 ターゲットと、C
ターゲットとを配置した。そして真空槽を2×10-3
a以下まで減圧し、ガラス基板を300℃に加熱した。
次いでArガスを真空槽内の圧力が0.1Paとなるま
で導入し、図1に示すように初期はSiO2 ターゲット
のみに印加し、次いでSiO2 ターゲットの印加電圧を
低くするとともにCターゲットの印加電圧を高くし、後
期はCターゲットのみに印加するようにして、スパッタ
リング成膜を行った。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) Binary RF magnetron sputtering apparatus
Glass substrate and SiO 2Target and C
Arranged with the target. And the vacuum chamber is 2 × 10-3P
The pressure was reduced to a or less and the glass substrate was heated to 300 ° C.
Next, Ar gas was added until the pressure in the vacuum chamber became 0.1 Pa.
Introduced in, and as shown in FIG.2target
Applied to only then SiO 22The applied voltage of the target
Lower the voltage applied to the C target and lower
In the period, sputter by applying only to the C target.
A ring film was formed.

【0011】次いでArガス中に20vol%のCHF
3 ガスを混合させ、それを真空槽内の圧力が0.1Pa
となるように導入し、基板ホルダに200WのRF電力
を印加してガラス基板近傍にプラズマを発生させ、上記
で得られた膜表面の表面フッ素化処理を行って撥水膜と
し、撥水ガラスを製造した。この撥水ガラスの撥水膜表
面から深さ方向の各元素の分布をAES(オージェ電子
分光分析)により定量分析したところ、図2に示すよう
にガラス基板10表面から順に、約100ÅのSiO2
11と、SiO2 とCからなり表面へ近づくほどCのモル
分率が高くなる約300Åの混合層12と、約100Åの
C層13とから構成されていた。そしてC層13の表面部分
にはF元素が存在し、撥水化されていることがわかる。 (実施例2)各ターゲットに印加する電圧を図3に示す
ように変化させ、かつArガスにCHF3 ガスを20v
ol%混合した混合ガスを導入したこと以外は実施例1
と同様にしてスパッタリング成膜した。そして特別な表
面フッ素化処理を行うことなくそのまま撥水ガラスとし
た。そして実施例1と同様にAESにより各元素の分布
を定量分析し、結果を図4に示す。
Next, 20 vol% CHF in Ar gas
3 gases are mixed, and the pressure in the vacuum chamber is 0.1 Pa
Then, RF power of 200 W is applied to the substrate holder to generate plasma in the vicinity of the glass substrate, and the surface of the film obtained above is fluorinated to form a water-repellent film. Was manufactured. The water repellent distribution of each element in the depth direction from the water-repellent film surface of glass was quantitatively analyzed by AES (Auger electron spectroscopy), in this order from the glass substrate 10 surface as shown in FIG. 2, from about 100 Å SiO 2 layer
11, a SiO 2 and C mixed layer 12 of about 300 Å in which the mole fraction of C increases toward the surface, and a C layer 13 of about 100 Å. It can be seen that the F element is present on the surface portion of the C layer 13 and is made water repellent. (Example 2) The voltage applied to each target was changed as shown in FIG. 3, and CHF 3 gas was 20 v for Ar gas.
Example 1 except that a mixed gas mixed with ol% was introduced.
A film was formed by sputtering in the same manner as in. The water-repellent glass was used as it was without any special surface fluorination treatment. Then, the distribution of each element was quantitatively analyzed by AES in the same manner as in Example 1, and the results are shown in FIG.

【0012】図4よりこの撥水膜では、ガラス基板20表
面から順に、SiO2 とFからなり約100Åの第1混
合層21と、SiO2 とF及びCからなり表面へ近づくほ
どCのモル分率が高くなる約300Åの第2混合層22
と、CとFからなり約100Åの第3混合層23とから構
成され、内部まで撥水化されていることがわかる。した
がって、この撥水膜では、表面部分が磨耗して削られて
も撥水性が確保されるため、高い耐久性を有している。 (実施例3)SiO2 ターゲットの代わりにAl2 3
ターゲットを用い、各ターゲットに印加する電圧を図5
に示すように変化させ、かつArガスにCHF3 ガスを
20vol%混合した混合ガスを導入したこと以外は実
施例1と同様にしてスパッタリング成膜し、特別な表面
フッ素化処理を行うことなくそのまま撥水ガラスとし
た。そして実施例1と同様にAESにより各元素の分布
を定量分析し、結果を図6に示す。
[0012] In this water-repellent film than 4, in order from the glass substrate 20 surface, a first mixed layer 21 of about 100Å made of SiO 2 and F, the closer to the surface consists of SiO 2 and F and C C mol The second mixed layer of about 300 Å that increases the fraction 22
And the third mixed layer 23 composed of C and F and having a thickness of about 100 Å, and it is understood that the inside is made water repellent. Therefore, the water-repellent film has high durability because the water-repellent property is secured even when the surface portion is worn and scraped. (Example 3) Al 2 O 3 instead of the SiO 2 target
Using the target, the voltage applied to each target is shown in FIG.
Except that the mixed gas in which CHF 3 gas was mixed in an amount of 20 vol% was introduced into Ar gas was sputter-deposited in the same manner as in Example 1 and was directly subjected to no special surface fluorination treatment. Water repellent glass was used. Then, as in Example 1, the distribution of each element was quantitatively analyzed by AES, and the results are shown in FIG.

【0013】図6よりこの撥水膜では、ガラス基板30表
面から順に、Al2 3 とFからなり約100Åの第1
混合層31と、Al2 3 とF及びCからなり表面へ近づ
くほどCのモル分率が高くなる約300Åの第2混合層
32と、CとFからなり約100Åの第3混合層33とから
構成され、内部まで撥水化されていることがわかる。し
たがって、この撥水膜では、表面部分が磨耗して削られ
ても撥水性が確保されるため、高い耐久性を有してい
る。 (実施例4)各ターゲットに印加する電圧を図7に示す
ように変化させ、かつArガスにCHF3 ガスを20v
ol%混合した混合ガスを導入したこと以外は実施例1
と同様にしてスパッタリング成膜し、特別な表面フッ素
化処理を行うことなくそのまま撥水ガラスとした。そし
て実施例1と同様にAESにより各元素の分布を定量分
析し、結果を図8に示す。
As shown in FIG. 6, the water-repellent film is composed of Al 2 O 3 and F in order from the surface of the glass substrate 30 and has a first thickness of about 100 Å.
Mixed layer 31 and second mixed layer of about 300Å consisting of Al 2 O 3 and F and C, in which the mole fraction of C increases toward the surface.
It can be seen that it is composed of 32 and the third mixed layer 33 composed of C and F and having a thickness of about 100 Å, and that the inside is made water repellent. Therefore, the water-repellent film has high durability because the water-repellent property is secured even when the surface portion is worn and scraped. (Example 4) The voltage applied to each target was changed as shown in FIG. 7, and CHF 3 gas was 20 v as Ar gas.
Example 1 except that a mixed gas mixed with ol% was introduced.
A film was formed by sputtering in the same manner as described above, and the water-repellent glass was used as it was without any special surface fluorination treatment. Then, as in Example 1, the distribution of each element was quantitatively analyzed by AES, and the results are shown in FIG.

【0014】図8よりこの撥水膜では、ガラス基板40表
面にSiO2 とC及びFからなり約200Åの混合層41
が形成され、内部まで撥水化されていることがわかる。
したがって、この撥水膜でも、表面部分が磨耗して削ら
れても撥水性が確保されるため、高い耐久性を有してい
る。 (実施例5)各ターゲットに印加する電圧を図3に示す
ように変化させ、かつArガスにCH2 2 ガスを20
vol%混合した混合ガスを導入したこと以外は実施例
1と同様にしてスパッタリング成膜した。そして特別な
表面フッ素化処理を行うことなくそのまま撥水ガラスと
した。そして実施例1と同様にAESにより各元素の分
布を定量分析し、結果を図9に示す。
As shown in FIG. 8, in this water repellent film, a mixed layer 41 of SiO 2 and C and F of about 200 Å is formed on the surface of the glass substrate 40.
It can be seen that the water-repellent material is formed even inside.
Therefore, even with this water repellent film, the water repellency is ensured even when the surface portion is worn and scraped off, and thus has high durability. (Example 5) The voltage applied to each target was changed as shown in FIG. 3, and the CH 2 F 2 gas was changed to 20 as Ar gas.
A film was formed by sputtering in the same manner as in Example 1 except that a mixed gas mixed with vol% was introduced. The water-repellent glass was used as it was without any special surface fluorination treatment. Then, as in Example 1, the distribution of each element was quantitatively analyzed by AES, and the results are shown in FIG.

【0015】図9よりこの撥水膜では、ガラス基板50表
面から順に、SiO2 とFからなり約100Åの第1混
合層51と、SiO2 とF及びCからなり表面へ近づくほ
どCのモル分率が高くなる約300Åの第2混合層52
と、CとFからなり約100Åの第3混合層53とから構
成され、内部まで撥水化されていることがわかる。した
がって、この撥水膜では、表面部分が磨耗して削られて
も撥水性が確保されるため、高い耐久性を有している。 (実施例6)RFプラズマCVD装置に、実施例1にお
ける表面フッ素化処理前の炭素薄膜付きガラスを基板と
して配置し、10-3Pa以下まで減圧する。その後反応
ガスとして、CHF3 とCH4 の混合ガス(CHF3
CH4 =9/1)を0.2Paになるように導入する。
その後400WのRF電力を投入し、60分間の成膜を
行った。そして実施例1と同様にAESにより各元素の
分布を定量分析し、結果を図10に示す。
[0015] In this water-repellent film than 9, in order from the glass substrate 50 surface, a first mixed layer 51 of about 100Å made of SiO 2 and F, the closer to the surface consists of SiO 2 and F and C C mol The second mixed layer 52 of about 300 Å which increases the fraction
And the third mixed layer 53 composed of C and F and having a thickness of about 100 Å, and it is understood that the inside is made water repellent. Therefore, the water-repellent film has high durability because the water-repellent property is secured even when the surface portion is worn and scraped. (Example 6) The glass with a carbon thin film before the surface fluorination treatment in Example 1 is placed as a substrate in an RF plasma CVD apparatus, and the pressure is reduced to 10 -3 Pa or less. Then, as a reaction gas, a mixed gas of CHF 3 and CH 4 (CHF 3 /
CH 4 = 9/1) is introduced so that the pressure becomes 0.2 Pa.
After that, RF power of 400 W was applied to form a film for 60 minutes. Then, the distribution of each element was quantitatively analyzed by AES in the same manner as in Example 1, and the results are shown in FIG.

【0016】図10よりこの撥水膜は、ガラス基板60表
面から順に、約100ÅのSiO2層61と、SiO2
びCからなり表面へ近づくほどCのモル分率が高くなる
約300Åの混合層62と、約100ÅのC層63と、Cと
Fからなり約1000Åの複合層64とから構成され、内
部まで撥水化されていることがわかる。したがって、こ
の撥水膜では、表面部分が磨耗して削られても撥水性が
確保されるため、高い耐久性を有している。 (比較例1)実施例1における表面フッ素化処理前の炭
素薄膜付きガラスを比較例1の撥水ガラスとした。この
撥水ガラスの撥水膜中の元素組成は、Fが存在しないこ
と以外は実施例1と同様である。 (比較例2)各ターゲットに印加する電圧を図3に示す
ように変化させ、かつArガスにCF4 ガスを20vo
l%混合した混合ガスを導入したこと以外は実施例1と
同様にしてスパッタリング成膜し、特別な表面フッ素化
処理を行うことなくそのまま撥水ガラスとした。そして
実施例1と同様にAESにより各元素の分布を定量分析
し、結果を図11に示す。
As shown in FIG. 10, this water-repellent film is a mixture of a SiO 2 layer 61 of about 100 Å in order from the surface of the glass substrate 60, and a mixture of about 300 Å which is composed of SiO 2 and C and has a higher mole fraction of C as it gets closer to the surface. It can be seen that the layer 62, the C layer 63 of about 100 Å, and the composite layer 64 of C and F of about 1000 Å are made water repellent to the inside. Therefore, the water-repellent film has high durability because the water-repellent property is secured even when the surface portion is worn and scraped. Comparative Example 1 The glass with a carbon thin film before the surface fluorination treatment in Example 1 was used as the water repellent glass in Comparative Example 1. The elemental composition of the water-repellent film of this water-repellent glass is the same as in Example 1 except that F does not exist. (Comparative Example 2) The voltage applied to each target was changed as shown in FIG. 3, and CF 4 gas was 20 vo for Ar gas.
A film was formed by sputtering in the same manner as in Example 1 except that a mixed gas mixed with 1% was introduced, and the water-repellent glass was used as it was without any special surface fluorination treatment. Then, as in Example 1, the distribution of each element was quantitatively analyzed by AES, and the results are shown in FIG.

【0017】図11よりこの撥水膜では、ガラス基板70
表面から順に、SiO2 とFからなり約100Åの第1
混合層71と、SiO2 とF及びCからなり表面へ近づく
ほどCのモル分率が高くなる約300Åの第2混合層72
と、CとFからなり約100Åの第3混合層73とから構
成され、内部まで撥水化されていることがわかる。した
がって、この撥水膜では、表面部分が磨耗して削られて
も撥水性が確保されるため、高い耐久性を有している。 (評価)上記各実施例及び比較例の撥水ガラスの撥水膜
の水との接触角を測定し、結果を表1に示す。またサン
シャインウェザオメータ(63℃水有り)で2000時
間促進試験を行い、その後の撥水膜の水との接触角を測
定し、結果を表1に示す。さらに、撥水膜の表面を30
0g/cm2 の荷重で3000回往復する条件で、乾燥
したネル布で摩擦し、撥水膜の剥離の有無を調べた結果
も合わせて表1に示す。
As shown in FIG. 11, in this water repellent film, the glass substrate 70 is used.
The first from about 100Å consisting of SiO 2 and F in order from the surface
The mixed layer 71 and the second mixed layer 72 of SiO 2 and F and C, which has a mole fraction of C which increases toward the surface, of approximately 300Å.
It can be seen that the inner part is made water repellent and is composed of C and F and the third mixed layer 73 of about 100 liters. Therefore, the water-repellent film has high durability because the water-repellent property is secured even when the surface portion is worn and scraped. (Evaluation) The contact angle with water of the water-repellent film of the water-repellent glass of each of the above Examples and Comparative Examples was measured, and the results are shown in Table 1. Further, a 2000-hour accelerated test was carried out with a sunshine weatherometer (with water at 63 ° C.), and the contact angle of the water-repellent film with water was measured thereafter, and the results are shown in Table 1. Furthermore, the surface of the water-repellent film is
Table 1 also shows the results of examining the presence or absence of peeling of the water-repellent film by rubbing with a dry flannel cloth under the condition of reciprocating 3000 times with a load of 0 g / cm 2 .

【0018】[0018]

【表1】 表1より、各実施例と比較例2の撥水ガラスでは、Fが
導入されているため、比較例1の炭素薄膜よりなる撥水
膜をもつ撥水ガラスに比べて撥水性に優れている。また
比較例1では、促進耐候性試験1000時間で接触角が
60度に低下したが、他のものは2000時間経過後も
十分な撥水性を有している。
[Table 1] From Table 1, since the water-repellent glass of each Example and Comparative Example 2 contains F, it is superior in water repellency to the water-repellent glass having the water-repellent film made of the carbon thin film of Comparative Example 1. . Further, in Comparative Example 1, the contact angle decreased to 60 degrees in 1000 hours of the accelerated weather resistance test, but the others have sufficient water repellency even after 2000 hours.

【0019】また含Fガスの種類が異なること以外は同
条件で成膜された実施例2、実施例5及び比較例2を比
較してみると、初期及び促進後とも実施例2及び実施例
5の方が高い撥水性を示している。これは、例えば実施
例2のCHF3 のC−H結合がC−F結合より結合エネ
ルギーが小さいため、実施例2では成膜時にC−H結合
が選択的に切断され、CF3 ラジカルが生成したこと、
及びプラズマ効率も高くなったことから、炭素中へのフ
ッ素の複合化効率が比較例2に比べて向上したことを示
している。
Comparing Example 2, Example 5 and Comparative Example 2 which were formed under the same conditions except that the type of F-containing gas was different, Example 2 and Example were obtained both at the initial stage and after the promotion. No. 5 has higher water repellency. This is because, for example, the C—H bond of CHF 3 in Example 2 has a smaller binding energy than that of the C—F bond, so that in Example 2, the C—H bond is selectively broken during film formation to generate a CF 3 radical. What you did
Also, since the plasma efficiency was also increased, it indicates that the efficiency of compounding fluorine into carbon was improved as compared with Comparative Example 2.

【0020】図4、図9、図11を比較してみると、膜
中のFの原子濃度はCHF3 >CH 2 2 >CF4 とな
り、上記機構が裏付けられている。
Comparing FIG. 4, FIG. 9 and FIG.
The atomic concentration of F is CHF3> CH 2F2> CFFourTona
The above mechanism is supported.

【0021】[0021]

【発明の効果】すなわち本発明のフッ素含有炭素撥水膜
の形成方法によれば、膜中のフッ素の導入効率が高いた
め、高い撥水性を有する炭素被膜を容易にかつ確実に形
成することができる。
That is, according to the method for forming a fluorine-containing carbon water-repellent film of the present invention, since the efficiency of introducing fluorine into the film is high, a carbon coating having high water repellency can be easily and reliably formed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における撥水膜形成時の、各ターゲッ
トへの電圧印加条件を示すグラフである。
FIG. 1 is a graph showing voltage application conditions to each target when forming a water-repellent film in Example 1.

【図2】実施例1で形成された撥水膜の、深さ方向の原
子組成を示すグラフである。
FIG. 2 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 1.

【図3】実施例2及び比較例2における撥水膜形成時
の、各ターゲットへの電圧印加条件を示すグラフであ
る。
FIG. 3 is a graph showing voltage application conditions to each target when forming a water repellent film in Example 2 and Comparative Example 2.

【図4】実施例2で形成された撥水膜の、深さ方向の原
子組成を示すグラフである。
FIG. 4 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 2.

【図5】実施例3における撥水膜形成時の、各ターゲッ
トへの電圧印加条件を示すグラフである。
FIG. 5 is a graph showing voltage application conditions to each target when forming a water-repellent film in Example 3.

【図6】実施例3で形成された撥水膜の、深さ方向の原
子組成を示すグラフである。
FIG. 6 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 3.

【図7】実施例4における撥水膜形成時の、各ターゲッ
トへの電圧印加条件を示すグラフである。
FIG. 7 is a graph showing voltage application conditions to each target when forming a water repellent film in Example 4.

【図8】実施例4で形成された撥水膜の、深さ方向の原
子組成を示すグラフである。
FIG. 8 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 4.

【図9】実施例5で形成された撥水膜の、深さ方向の原
子組成を示すグラフである。
FIG. 9 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 5.

【図10】実施例6で形成された撥水膜の、深さ方向の
原子組成を示すグラフである。
FIG. 10 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Example 6.

【図11】比較例2で形成された撥水膜の、深さ方向の
原子組成を示すグラフである。
11 is a graph showing the atomic composition in the depth direction of the water repellent film formed in Comparative Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田嶋 一郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 石井 昌彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Tajima, Nagakute-cho, Aichi-gun, Aichi Prefecture, 1-41, Yokoshiro, Toyota Central Research Institute Co., Ltd. 41, Yokoshiro Road Inside Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素−フッ素(C−F)結合をもつとと
もに炭素との結合であってその結合エネルギーが該炭素
−フッ素結合の結合エネルギーより小さい結合をもつ化
合物のガスをフッ素源として用い、炭素源とともにPV
D法またはCVD法により成膜することを特徴とするフ
ッ素含有炭素撥水膜の形成方法。
1. A gas of a compound having a carbon-fluorine (CF) bond and a bond with carbon, the bond energy of which is smaller than the bond energy of the carbon-fluorine bond, is used as a fluorine source. PV with carbon source
A method for forming a fluorine-containing carbon water-repellent film, which comprises forming the film by the D method or the CVD method.
JP17570092A 1992-07-02 1992-07-02 Formation of water repelling film of carbon containing fluorine Pending JPH0624804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17570092A JPH0624804A (en) 1992-07-02 1992-07-02 Formation of water repelling film of carbon containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17570092A JPH0624804A (en) 1992-07-02 1992-07-02 Formation of water repelling film of carbon containing fluorine

Publications (1)

Publication Number Publication Date
JPH0624804A true JPH0624804A (en) 1994-02-01

Family

ID=16000721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17570092A Pending JPH0624804A (en) 1992-07-02 1992-07-02 Formation of water repelling film of carbon containing fluorine

Country Status (1)

Country Link
JP (1) JPH0624804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068128A1 (en) * 2004-12-21 2006-06-29 Zeon Corporation Optical device
KR20200093512A (en) 2020-07-30 2020-08-05 차양수 Fermentation and destruction apparatus for feed waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068128A1 (en) * 2004-12-21 2006-06-29 Zeon Corporation Optical device
KR20200093512A (en) 2020-07-30 2020-08-05 차양수 Fermentation and destruction apparatus for feed waste

Similar Documents

Publication Publication Date Title
JP2929779B2 (en) Water-repellent glass with carbon coating
JP5107494B2 (en) Hydrophobic coating containing DLC on substrate
Hammer et al. Synthesis of carbon nitride films at low temperatures
US6572935B1 (en) Optically transparent, scratch-resistant, diamond-like carbon coatings
JPS6171626A (en) Method of accumulating hard carbonaceous film by glow discharge and semiconductor device having accumulated film by same method
JPH07242493A (en) Method of depositing diamondlike carbon film on substrate
US6130002A (en) Process for producing organically modified oxide, oxynitride or nitride layers by vacuum deposition
JPH0624804A (en) Formation of water repelling film of carbon containing fluorine
JP2571957B2 (en) Carbon-based or carbon-based coating via buffer layer and method of making same
Toth et al. Chemical structure of silicon-, oxygen-and nitrogen-containing aC: H films prepared by RF plasma beam CVD
JP3370318B2 (en) Member provided with diamond-like carbon film
JPH07268607A (en) Article having diamondlike carbon thin film and its production
JPH01246115A (en) Method for forming coating film of carbon or material composed mainly of carbon
JPH05163044A (en) Method for forming fluorine-containing carbon film
Fracassi et al. Plasma-assisted deposition of tungsten-containing siloxane thin films
JP2564627B2 (en) Member covered with carbon film and manufacturing method thereof
JPH05202211A (en) Abrasion-resistant plastic molding and its production
JP2775263B2 (en) Member covered with carbon film
JP3281354B2 (en) Method for producing diamond-like carbon film
JP3057072B2 (en) Method for producing diamond-like carbon film
JP3256212B2 (en) Method for producing diamond-like carbon film
Bertóti et al. Effect of Ar+, N2+, He+ and H2+ bombardment on the composition and structure of CNx layers
JP3194513B2 (en) Fluoropolymer gradient film
JP2923275B2 (en) Insulating translucent member
JP3254202B2 (en) A member provided with a carbon film or a film containing carbon as a main component