JPH0624799A - Production of fluoride glass preform for optical waveguide - Google Patents

Production of fluoride glass preform for optical waveguide

Info

Publication number
JPH0624799A
JPH0624799A JP17695392A JP17695392A JPH0624799A JP H0624799 A JPH0624799 A JP H0624799A JP 17695392 A JP17695392 A JP 17695392A JP 17695392 A JP17695392 A JP 17695392A JP H0624799 A JPH0624799 A JP H0624799A
Authority
JP
Japan
Prior art keywords
glass
optical waveguide
fluoride glass
melting
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17695392A
Other languages
Japanese (ja)
Other versions
JP3154274B2 (en
Inventor
Makoto Furuguchi
誠 古口
Yoshitaka Iida
義隆 飯田
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17695392A priority Critical patent/JP3154274B2/en
Publication of JPH0624799A publication Critical patent/JPH0624799A/en
Application granted granted Critical
Publication of JP3154274B2 publication Critical patent/JP3154274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject preform capable of getting high gain by the excitation with a low-power laser beam by repeating the crushing, melting and casting of a specific glass several times. CONSTITUTION:A ZBLAN-type fluoride glass having a composition of ZrF4- BaF2-LaF3-AlF3-NaF is incorporated with about 2,000ppm of praseodymium (Pr) and optionally about 8mol% of Pb and the mixture is melted and cast to form a glass for core, etc. The glass is crushed to powder having particle diameter of 100-500mum, melted and cast. The procedures are repeated once or more to obtain the objective fluoride glass preform for optical waveguide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として光通信システ
ムの中継部に使用される光増幅用光導波路(光ファイバ
を含む)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification optical waveguide (including an optical fiber) used mainly in a repeater section of an optical communication system.

【0002】[0002]

【従来技術】光通信システムは発光部、中継部および受
光部から構成され、これらの間は光導波路で結ばれてい
る。この中継部は伝送する信号光が光導波路中を伝搬す
る際の伝送損失およびパルスの広がりを補償するもので
あり、従来その構成は信号光を一度電気信号に変換して
補償した後、半導体レーザを用いて信号光に変換すると
いうものであった。しかしながら、この方法は装置の構
成が極めて複雑であるため高価であるという欠点があっ
た。そこで最近、発光源として希土類元素、例えばPrを
用いて、これをホストガラスにドープしたものをコア部
として光導波路を作製し、この光導波路により波長が
1.3μmまたは1.55μmの信号光を直接増幅することが
試みられている。
2. Description of the Related Art An optical communication system comprises a light emitting section, a relay section and a light receiving section, and an optical waveguide is connected between them. This repeater is for compensating the transmission loss and the spread of the pulse when the signal light to be transmitted propagates in the optical waveguide. Conventionally, the configuration has been such that the signal light is once converted into an electric signal and compensated, and then the semiconductor laser is compensated. Was used to convert to signal light. However, this method has a drawback in that it is expensive because the structure of the apparatus is extremely complicated. Therefore, recently, a rare earth element such as Pr was used as a light emitting source, and a host glass was doped with this to form an optical waveguide, and a wavelength was generated by this optical waveguide.
Attempts have been made to directly amplify signal light of 1.3 μm or 1.55 μm.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Pr、具
体的には例えば PrF3 をドープした ZBLAN系ガラスのシ
ングルモード型光導波路では 1.3μmでの光増幅が可能
であるものの、高出力のレーザを用いて励起しなければ
低い利得しか得られないという問題があった。具体的に
は、 1.3μmで約10dBの利得を得るためには、波長が1.
02μmで 500〜900mW の励起光をコアに入れる必要があ
り、この出力はチタンサファイアレーザを用いれば達成
可能であるものの、汎用の半導体レーザ (出力約 100〜
150mW)では達成不可能の値である。
However, although a single mode optical waveguide of ZBLAN glass doped with Pr, specifically PrF 3, for example, is capable of optical amplification at 1.3 μm, a high output laser is used. There is a problem that only a low gain can be obtained unless it is excited by using it. Specifically, in order to obtain a gain of about 10 dB at 1.3 μm, the wavelength is 1.
It is necessary to put excitation light of 500-900mW at 02μm into the core. This output can be achieved by using a titanium sapphire laser, but a general-purpose semiconductor laser (output about 100-
It is a value that cannot be achieved at 150 mW).

【0004】[0004]

【目的】本発明の目的は、低出力のレーザによる励起で
も 1.3μmで高利得となる光増幅用光導波路を得るため
の母材の製造方法を提供することにある。
[Object] An object of the present invention is to provide a method of manufacturing a base material for obtaining an optical amplification optical waveguide having a high gain of 1.3 μm even when excited by a low-power laser.

【0005】[0005]

【課題を解決するための手段】本発明は、組成が主とし
て ZBLAN系のフッ化物ガラスに、Prを含有してなるフッ
化物ガラスの原料を溶解し鋳込むことによって、フッ化
物ガラス光導波路の母材を製造する方法において、溶解
・鋳込み後のガラスを粉砕し、しかる後、再度これを溶
解し、かつ再度鋳込むという一連の工程を一回以上繰り
返して、光導波路母材、具体的にはロッド状のガラスま
たは必要によりパイプを製造することを特徴とするもの
である。
[Means for Solving the Problems] The present invention relates to a mother glass of a fluoride glass optical waveguide by melting and casting a fluoride glass raw material containing Pr in a ZBLAN type fluoride glass having a composition mainly. In the method of manufacturing a material, the glass after melting and casting is crushed, and then, a series of steps of melting it again and casting again is repeated one or more times, specifically, an optical waveguide base material, specifically, It is characterized in that rod-shaped glass or a pipe is manufactured if necessary.

【0006】[0006]

【作用】本発明を見いだすに至った技術的背景を以下に
述べる。 1.3μmの光増幅のためには、Prの電子準位から考え
て、中心波長が約1.02μmのレーザを用いた励起が必要
であるが、本質的にこの波長における吸収は少ない。し
かしながら、ガラス中のPrが効率よくエネルギーを吸収
すればより低出力での励起でも利得が向上するはずであ
る。Prが効率よくエネルギーを吸収しない原因としてガ
ラス中でのPrのクラスター生成が考えられ、このためエ
ネルギーを吸収するPrの割合が少なくなっているものと
考えられる。 そこでガラスを粉砕し再度溶解・鋳込みをするという
工程を数回繰り返してコア用ガラスを作製することによ
り、Prをガラス中に均一に分散させる。そうすれば、低
出力のレーザ光でも高利得を得ることができるようにな
る。
The technical background that led to the discovery of the present invention will be described below. For 1.3 μm optical amplification, pumping with a laser having a center wavelength of about 1.02 μm is necessary considering the Pr electron level, but absorption at this wavelength is essentially small. However, if Pr in the glass efficiently absorbs energy, the gain should be improved even when pumping at a lower output. The reason why Pr does not absorb energy efficiently is thought to be the formation of Pr clusters in the glass, which is why the proportion of Pr that absorbs energy is considered to be low. Then, the step of crushing the glass and melting and casting again is repeated several times to produce the glass for the core, whereby Pr is uniformly dispersed in the glass. Then, high gain can be obtained even with low-power laser light.

【0007】[0007]

【実施例】以下に本発明の実施例1を詳細に説明する。
Prを 2000ppmと 8mol%のPbを含む ZBLAN系ガラスを得る
ため、原料の秤量、溶解および急冷、鋳込みを行った。
このようにして得たコア用ガラス (総重量50g)を粉末状
(粒径は約 100μm〜 500μm) に粉砕し、再度溶解お
よび急冷し、鋳型に鋳込むことにより、外径が15mmのコ
ア用ロッドを作製した。前記ロッドを機械的に研磨した
後、不活性ガス、具体的には窒素ガス中で加熱、延伸し
て外径 3mmのコア用ロッドを得た。また屈折率を下げる
ためにハフニウム(Hf)を50mol%ドープした ZBLAN系ガラ
スを溶解し鋳型に鋳込むことにより外径15mmのロッドを
作製し、これに超音波ドリルで穴開け加工を施してクラ
ッド用のパイプを得た。このパイプに前記コア用のロッ
ドを挿入した状態で両者を約 300℃に加熱して一体化し
た後に、更に延伸することを繰り返してシングルモード
型光導波路用プリフォームを作製した。このプリフォー
ムを常法により線引し、外径 125μm、コア径3.1μ
m、比屈折率差Δ3%のファイバ型の光導波路を得た。図
1に示す測定系を用いてこの光導波路の光増幅特性を調
べたところ、表1に示すように、波長 1.3μmでの利得
は42dBであった。
EXAMPLE Example 1 of the present invention will be described in detail below.
In order to obtain a ZBLAN glass containing 2000 ppm of Pr and 8 mol% of Pb, the raw materials were weighed, melted, rapidly cooled, and cast.
The core glass (total weight 50 g) thus obtained was powdered.
(The particle size is about 100 μm to 500 μm), melted and quenched again, and cast into a mold to produce a core rod having an outer diameter of 15 mm. After mechanically polishing the rod, it was heated and stretched in an inert gas, specifically nitrogen gas, to obtain a core rod having an outer diameter of 3 mm. Also, in order to lower the refractive index, ZBLAN glass doped with 50 mol% of hafnium (Hf) was melted and cast into a mold to make a rod with an outer diameter of 15 mm, which was punched with an ultrasonic drill and clad. Got a pipe for. A preform for a single mode type optical waveguide was produced by repeating the process of heating both at about 300 ° C. and integrating them with the rod for the core inserted in this pipe. This preform was drawn by a conventional method to obtain an outer diameter of 125 μm and a core diameter of 3.1 μ.
m, and a fiber type optical waveguide having a relative refractive index difference Δ3% was obtained. When the optical amplification characteristics of this optical waveguide were examined using the measurement system shown in FIG. 1, as shown in Table 1, the gain at a wavelength of 1.3 μm was 42 dB.

【0008】図1は、この光導波路の光増幅特性を調べ
るため用いた装置である。チタンサファイアレーザ1か
らの励起光 (波長約1.02μm) をレンズ2aを介してシ
ングルモードのダミーファイバ7aに入射し、他方に半
導体レーザ3から 1.3μmの信号光をダミーファイバ7
bに入射して、これらをカップラー4を用いて合波させ
た。この光をレンズ2bを用いて本発明の光導波路、す
なわちファイバ5に入射し、スペクトルアナライザ6で
測定した。その結果、表1に示すように波長 1.3μmで
42dBの利得が得られた。
FIG. 1 shows an apparatus used for examining the optical amplification characteristic of this optical waveguide. Excitation light (wavelength: about 1.02 μm) from the titanium sapphire laser 1 is incident on the single mode dummy fiber 7a via the lens 2a, and on the other hand, signal light of 1.3 μm from the semiconductor laser 3 is input to the dummy fiber 7a.
It was incident on b and was multiplexed by using the coupler 4. This light was made incident on the optical waveguide of the present invention, that is, the fiber 5 using the lens 2b, and was measured by the spectrum analyzer 6. As a result, as shown in Table 1, at the wavelength of 1.3 μm,
A gain of 42 dB was obtained.

【0009】[0009]

【表1】 [Table 1]

【0010】実施例2として、実施例1と同様に、原料
の秤量、溶解および急冷を行って得たフッ化物ガラスを
粉末状に粉砕した後に、再度溶解および急冷、鋳込みす
ること、すなわち粉砕、溶解・鋳込みの一連の工程を10
回繰り返して最終的に外径15mmのコア用ロッドを作製し
た。このロッドを先の実施例1と同様の方法で作成した
クラッド用パイプと組み合わせてプリフォームの作製お
よび線引を行った。得られたファイバ型の光導波路の利
得を図1に示す測定系で測定したところ、55dBであっ
た。
As Example 2, as in Example 1, the fluoride glass obtained by weighing, melting and quenching the raw materials was crushed into a powder, and then melted, quenched and cast again, that is, crushed, 10 steps of melting and casting
By repeating this, a core rod having an outer diameter of 15 mm was finally manufactured. This rod was combined with a clad pipe prepared in the same manner as in Example 1 to prepare a preform and draw it. When the gain of the obtained fiber type optical waveguide was measured by the measurement system shown in FIG. 1, it was 55 dB.

【0011】比較例として、実施例1、2と同一の組成
でコア用ガラスを作製した後に、粉砕および再溶解を行
わずに単に溶解して鋳込むことによりコア用ガラスロッ
ドを作製して、以下の工程は実施例1、2と全て同様の
方法で作製したフッ化物ガラス光導波路の利得は24dBで
あった。
As a comparative example, a core glass having the same composition as in Examples 1 and 2 was prepared, and then a glass rod for core was prepared by simply melting and casting without crushing and remelting. In the following steps, the gain of the fluoride glass optical waveguide manufactured by the same method as in Examples 1 and 2 was 24 dB.

【0012】[0012]

【発明の効果】本発明によれば、光導波路の製造過程に
おいて ZBLAN系ガラスの粉砕および再溶解・再鋳込みを
数回繰り返すことにより、主として低出力のレーザを用
いた励起によっても高利得となる光導波路を得ることが
できる。すなわち、同一の出力による励起でもより高利
得を得られるフッ化物ガラス光導波路を得ることができ
る。
According to the present invention, by crushing, remelting, and recasting ZBLAN glass several times in the process of manufacturing an optical waveguide, a high gain can be obtained mainly by pumping with a low-power laser. An optical waveguide can be obtained. That is, it is possible to obtain a fluoride glass optical waveguide that can obtain a higher gain even when excited by the same output.

【図面の簡単な説明】[Brief description of drawings]

【図1】光増幅特性測定系の概略図。FIG. 1 is a schematic diagram of an optical amplification characteristic measurement system.

【符号の説明】[Explanation of symbols]

1 チタンサファイアレーザ 2 レンズ 3 半導体レーザ 4 カップラー 5 ZBLAN 系ファイバ 6 スペクトルアナライザ 7 ダミーファイバ 1 Titanium sapphire laser 2 Lens 3 Semiconductor laser 4 Coupler 5 ZBLAN fiber 6 Spectrum analyzer 7 Dummy fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料を溶解し鋳込むことによって、組成
が主として ZrF4 -BaF2 -LaF3 -AlF3 -NaF (ZBLAN)系の
フッ化物ガラスに、プラセオジウム (Pr)を含有してな
るフッ化物ガラス光導波路母材を製造する方法におい
て、溶解・鋳込み後のガラスを粉砕し、しかる後、再溶
解・再鋳込みする一連の工程を一回以上繰り返して、前
記光導波路母材を製造することを特徴とするフッ化物ガ
ラス光導波路母材の製造方法。
1. A fluorine glass whose composition is mainly ZrF 4 -BaF 2 -LaF 3 -AlF 3 -NaF (ZBLAN) type by melting and casting a raw material, and a fluoride glass containing praseodymium (Pr). In the method for producing a compound glass optical waveguide preform, crushing the glass after melting / casting, and then repeating the series of steps of remelting / recasting once or more to produce the optical waveguide preform. A method for producing a fluoride glass optical waveguide base material, comprising:
JP17695392A 1992-07-03 1992-07-03 Manufacturing method of fluoride glass optical waveguide base material Expired - Fee Related JP3154274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17695392A JP3154274B2 (en) 1992-07-03 1992-07-03 Manufacturing method of fluoride glass optical waveguide base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17695392A JP3154274B2 (en) 1992-07-03 1992-07-03 Manufacturing method of fluoride glass optical waveguide base material

Publications (2)

Publication Number Publication Date
JPH0624799A true JPH0624799A (en) 1994-02-01
JP3154274B2 JP3154274B2 (en) 2001-04-09

Family

ID=16022612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17695392A Expired - Fee Related JP3154274B2 (en) 1992-07-03 1992-07-03 Manufacturing method of fluoride glass optical waveguide base material

Country Status (1)

Country Link
JP (1) JP3154274B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805020B2 (en) * 1996-05-31 2006-08-02 富士通株式会社 Method of assembling a disk medium into a magnetic disk device

Also Published As

Publication number Publication date
JP3154274B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
Stevenson et al. Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass–ceramics
Adam Lanthanides in non-oxide glasses
RU2302066C1 (en) Fiber optic conductor for optical intensification of radiation at wavelengths ranging between 1000 and 1700 nm, methods for its manufacture, and fiber laser
US7336413B2 (en) Nonlinear fiber, wavelength conversion method and wavelength conversion device
CN109704569A (en) A kind of ZBYA fluoride glass and preparation method thereof
US5973824A (en) Amplification by means of dysprosium doped low phonon energy glass waveguides
US5338607A (en) 1.3 micrometer-band amplifying optical fiber preform
US8805133B1 (en) Low-loss UV to mid IR optical tellurium oxide glass and fiber for linear, non-linear and active devices
CA2493689A1 (en) Optical fiber for raman amplification
EP0482630B1 (en) Optical functioning glass, optical fiber waveguide device, and optically active device
JP3154274B2 (en) Manufacturing method of fluoride glass optical waveguide base material
Milanese et al. Nonsilica oxide glass fiber laser sources: part I
US6587633B2 (en) Active optical fibre doped with rare earth elements
Shixun et al. Fabrication and gain performance of Er3+/Yb3+-codoped tellurite glass fiber
JP3493165B2 (en) Amplifying optical fiber and optical fiber amplifier
WO2004028992A1 (en) Tellurite glass, optical fibre, optical amplifier and light source
JP2931694B2 (en) Optical functional glass
JPH0558674A (en) Optically functional glass
JPH0529699A (en) Optical functional glass
Lucas et al. Rare-earth doped fluoride glass fibres
EP0787694B1 (en) Fluoride glass fiber
JPH04349151A (en) Optical fluoride fiber
JP3088790B2 (en) Optical functional glass
EP1139518A1 (en) Active optical fibre doped with rare earth elements
JPH04358130A (en) Optical functional glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees