JPH04349151A - Optical fluoride fiber - Google Patents

Optical fluoride fiber

Info

Publication number
JPH04349151A
JPH04349151A JP3152654A JP15265491A JPH04349151A JP H04349151 A JPH04349151 A JP H04349151A JP 3152654 A JP3152654 A JP 3152654A JP 15265491 A JP15265491 A JP 15265491A JP H04349151 A JPH04349151 A JP H04349151A
Authority
JP
Japan
Prior art keywords
fluoride
glass
bef2
optical
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152654A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
古口 誠
Kunio Ogura
邦男 小倉
Akira Iino
顕 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3152654A priority Critical patent/JPH04349151A/en
Publication of JPH04349151A publication Critical patent/JPH04349151A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • C03C3/326Fluoride glasses containing beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions

Abstract

PURPOSE:To obtain optical fluoride fibers capable of optical amplification at 1.30mum wavelength and having high gain. CONSTITUTION:An optical fluoride fiber of claim 1 uses fluoride glass contg. BeF2 and Pr as at least the material of the core. An optical fluoride fiber of claim 2 contains >=60mol% BeF2 in the fluoride glass of the claim 1. An optical fluoride fiber of claim 3 contains Al in the fluoride glass of the claim 2. The optical fluoride fiber of the claim 1 has a compsn. of the core consisting of >=91mol% BeF2, <=2mol% PrF3 and <=7mol% AlF3. This optical fluoride fibers are fibers capable of optical amplification at 1.30mum and having high gain.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は主として光通信システム
の中継部に使用される光増幅器用のフッ化物光ファイバ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluoride optical fiber for optical amplifiers used primarily in relay sections of optical communication systems.

【0002】0002

【従来の技術】光通信システムは発光部、中継部及び受
光部から構成され、それらの間は光ファイバで結ばれて
いる。中継部は伝送する信号光がファイバ中を伝搬する
際の伝送損失及びパルス広がりを補償するものであり、
従来その構成は信号光を一度電気信号に変換して補償し
た後、半導体レ−ザ−を用いて信号光に変換するという
ものであった。しかしながら、この中継部は構成が極め
て複雑で、高価になるという欠点があった。そこで最近
は、発光源として希土類元素を用い、これをホストガラ
スにド−プしたファイバ型光増幅器を作製し、これによ
り波長1.3又は1.55μmの信号光を直接増幅する
ことが試みられている。
2. Description of the Related Art An optical communication system is composed of a light emitting section, a relay section, and a light receiving section, which are connected by optical fibers. The relay section compensates for transmission loss and pulse spread when the transmitted signal light propagates through the fiber.
Conventionally, the configuration was such that signal light was once converted into an electrical signal and compensated, and then converted into signal light using a semiconductor laser. However, this relay section has the drawbacks of being extremely complex and expensive. Recently, attempts have been made to fabricate a fiber-type optical amplifier in which a rare earth element is used as a light emitting source and doped into a host glass, thereby directly amplifying signal light with a wavelength of 1.3 or 1.55 μm. ing.

【0003】0003

【発明が解決しようとする課題】しかしながら、1.3
μm増幅用のNdをド−プしたZBLAN(ZrF4 
−BaF2 −LaF3−AlF3 −NaF)系フッ
化物ガラスでは約1.33から1.34μmの信号光は
増幅できるが、実際に光通信で使用されている1.30
から1.31μmの信号光を増幅できないという問題が
あった。
[Problem to be solved by the invention] However, 1.3
Nd-doped ZBLAN (ZrF4
-BaF2 -LaF3-AlF3 -NaF) type fluoride glass can amplify signal light of approximately 1.33 to 1.34 μm, but the 1.30 μm wavelength actually used in optical communications
There was a problem that a signal light of 1.31 μm could not be amplified.

【0004】0004

【発明の目的】本発明の目的は、実際に光通信で使用さ
れている波長1.30μmの光を増幅可能で、さらに利
得が高いフッ化物光ファイバを実現することにある。
OBJECTS OF THE INVENTION An object of the present invention is to realize a fluoride optical fiber that can amplify light with a wavelength of 1.30 μm, which is actually used in optical communications, and has a higher gain.

【0005】[0005]

【課題を解決するための手段】本発明のうち請求項1の
フッ化物光ファイバは、少なくともコアがフッ化ベリリ
ウム(BeF2 )およびプラセオジウム(Pr)を含
むフッ化物ガラスからなるものである。本発明のうち請
求項2のフッ化物光ファイバは、請求項1のフッ化物ガ
ラスが60モルパ−セント以上のBeF2 を含むこと
を特徴とするものである。本発明のうち請求項3のフッ
化物光ファイバは、請求項2のフッ化物ガラスがアルミ
ニウム(Al)を含むことを特徴とするものである。本
発明のうち請求項4のフッ化物光ファイバは、コアの組
成がBeF2 (91モルパ−セント以上)+PrF3
 (2モルパ−セント以下)+AlF3 (7モルパ−
セント以下)であることを特徴とするものである。本件
発明者らは本発明のフッ化物光ファイバの開発に先立っ
て鋭意研究を重ねた結果、プラセオジウム(Pr)をド
−プしたフッ化ベリリウム(BeF2 )系ガラスを用
いることにより1.30μmで光増幅が可能となること
を見出した。結晶化せず透明なPrド−プガラスが得ら
れる組成で、このガラス中のBeF2濃度と増幅できる
波長の関係を調べた結果が図3である。同図の■■■■
■は表1に示す■〜■の組成の光ファイバに対応する。
A fluoride optical fiber according to claim 1 of the present invention has at least a core made of fluoride glass containing beryllium fluoride (BeF2) and praseodymium (Pr). The fluoride optical fiber according to claim 2 of the present invention is characterized in that the fluoride glass according to claim 1 contains 60 mole percent or more of BeF2. The fluoride optical fiber according to claim 3 of the present invention is characterized in that the fluoride glass according to claim 2 contains aluminum (Al). In the fluoride optical fiber according to claim 4 of the present invention, the core composition is BeF2 (91 mole percent or more) + PrF3
(2 mole percent or less) + AlF3 (7 mole percent
cent or less). As a result of intensive research prior to the development of the fluoride optical fiber of the present invention, the inventors of the present invention found that by using beryllium fluoride (BeF2) glass doped with praseodymium (Pr), light at 1.30 μm was produced. We have discovered that amplification is possible. FIG. 3 shows the results of investigating the relationship between the BeF2 concentration in this glass and the wavelength that can be amplified, using a composition that yields a transparent Pr-doped glass without crystallization. ■■■■ of the same figure
(2) corresponds to the optical fibers having compositions (1) to (2) shown in Table 1.

【0006】[0006]

【表1】[Table 1]

【0007】図3から明らかなように、BeF2 濃度
が60モルパ−セント(mol%)未満の場合は、その
他の添加陽イオンの影響によって増幅できる波長が長波
長側にシフトしてしまうことがわかる。増幅波長が1.
30から1.31μm以上にシフトする理由は、ガラス
中のBe以外の陽イオンがPrの電子準位に影響を及ぼ
すためと予想される。従って1.30μmで光増幅する
ためにはBeF2 濃度は60mol%以上がよい。
As is clear from FIG. 3, when the BeF2 concentration is less than 60 mol percent (mol%), the wavelength that can be amplified shifts to the longer wavelength side due to the influence of other added cations. . The amplification wavelength is 1.
The reason for the shift from 30 to 1.31 μm or more is expected to be that cations other than Be in the glass affect the electronic level of Pr. Therefore, in order to amplify light at 1.30 μm, the BeF2 concentration is preferably 60 mol% or more.

【0008】本件発明者らは本発明のフッ化物光ファイ
バを高利得とするため更に研究を進めた結果、Alを添
加することによりガラス中のPrがより分散して利得が
増加するのではと考えた。これを実験で確かめた結果、
後記する実施例で詳細に説明するように、適量のAlF
3 をPrF3 と共に添加したBeF2 を用いるこ
とによって高利得のファイバを得ることができた。高利
得のファイバが得られるガラスの組成を調べた結果、適
切な領域はBeF2 (91mol%以上)+PrF3
(2mol%以下)+AlF3 (7mol%以下)で
あることがわかった。利得はガラス中のPrF3 濃度
が高いほど高くなったが、2mol%以上ではほぼ一定
の値となった。Prが高価であることも考慮すると、工
業的にはPrF3 濃度は2mol%以下であることが
好ましい。またAlF3が7mol%以下である理由は
、これより多く添加した場合には溶解し冷却する際にガ
ラスの白濁が多発するためである。一方、クラッドガラ
スは適量のAlF3 をPrF3 と共に添加したBe
F2 でも単体のBeF2 でも或は他の材料でもよい
。但し、光ファイバ中を光が伝わるため、コアガラスよ
り小さい屈折率の材料であることが必要とされる。
[0008] The inventors of the present invention have conducted further research to increase the gain of the fluoride optical fiber of the present invention, and have found that adding Al may cause the Pr in the glass to be further dispersed, increasing the gain. Thought. As a result of confirming this through experiments,
As will be explained in detail in the examples below, an appropriate amount of AlF
By using BeF2 doped with PrF3 and PrF3, a high gain fiber could be obtained. As a result of investigating the composition of glass from which high-gain fibers can be obtained, the appropriate region is BeF2 (91 mol% or more) + PrF3
(2 mol% or less)+AlF3 (7 mol% or less). The gain increased as the PrF3 concentration in the glass increased, but it remained almost constant at 2 mol% or more. Considering that Pr is expensive, it is preferred industrially that the PrF3 concentration be 2 mol% or less. The reason why AlF3 is 7 mol % or less is that if more than this is added, the glass frequently becomes cloudy during dissolution and cooling. On the other hand, clad glass is made of Be with a suitable amount of AlF3 added together with PrF3.
F2, single BeF2, or other materials may be used. However, since light travels through the optical fiber, the material needs to have a refractive index smaller than that of the core glass.

【0009】[0009]

【実施例1】原料としてBeF2 、AlF3 および
PrF3 を混合し、溶解急冷し、組成が94.0mo
l%BeF2 +5.5mol%AlF3 +0.5m
ol%PrF3のコア用のガラス塊を作製した。このガ
ラス塊を粉砕し、Ar雰囲気中で再溶解し、カ−ボン製
の鋳型に流し込んで図1に示すコアロッド1を作製した
。このコアロッド1を図1に示すように線引きし、その
外周にクラッド用紫外線硬化型樹脂4をダイス3を用い
て被覆して、外径125μmのファイバ15を作製した
。図1において2は電気炉、5は前記クラッド用紫外線
硬化型樹脂4に紫外線を照射して硬化させる紫外線照射
硬化装置、6はキャプスタンである。
[Example 1] BeF2, AlF3 and PrF3 were mixed as raw materials, melted and rapidly cooled, and the composition was 94.0 mo.
1%BeF2 +5.5mol%AlF3 +0.5m
A glass lump for a core of ol%PrF3 was produced. This glass lump was crushed, remelted in an Ar atmosphere, and poured into a carbon mold to produce the core rod 1 shown in FIG. 1. This core rod 1 was drawn as shown in FIG. 1, and the outer periphery of the core rod 1 was coated with an ultraviolet curing resin 4 for cladding using a die 3 to produce a fiber 15 having an outer diameter of 125 μm. In FIG. 1, 2 is an electric furnace, 5 is an ultraviolet irradiation curing device for curing the ultraviolet curable resin 4 for cladding by irradiating it with ultraviolet rays, and 6 is a capstan.

【0010】0010

【実施例2】実施例1と同様の方法により組成が99.
5mol%BeF2 +0.5mol%PrF3 のコ
ア用のガラス塊を作製した。このようにして作製したコ
ア用ガラス塊を粉砕し、Ar雰囲気中で再溶解し、カ−
ボン製の鋳型に流し込んでコアロッドを作製した。これ
を実施例1と同様の方法で線引きし、外径が125μm
のファイバを作製した。
[Example 2] The composition was determined to be 99.9% by the same method as in Example 1.
A glass lump for a core containing 5 mol% BeF2 + 0.5 mol% PrF3 was prepared. The core glass lump produced in this way is crushed, remelted in an Ar atmosphere, and then
A core rod was produced by pouring it into a Bonn mold. This was drawn in the same manner as in Example 1, and the outer diameter was 125 μm.
A fiber was fabricated.

【0011】[0011]

【比較例】実施例1と同様の方法で、組成が500pp
mのNdをド−プしたZBLAN(ZrF4 −BaF
2 −LaF3 −AlF3 −NaF)系フッ化物ガ
ラスのコア用のガラス塊を作製した。このコア用ガラス
塊を粉砕し、Ar雰囲気中で再溶解し、カ−ボン製の鋳
型に流し込んでコアロッドを作製した。これを実施例1
と同様の方法で線引きし、外径が125μmのファイバ
(ZBLAN系フッ化物ガラスを用いた従来のファイバ
)を作製した。前記実施例1、2及び比較例で作製した
3種類のファイバの光増幅特性を図2に示す測定装置を
用いて測定した。ちなみに、同図の7は1.064μm
励起用の光源、8は1.3μm光源、9はレンズ、10
はハ−フミラ−、11はレンズ、12は実施例1、2、
比較例で製造されたフッ化物ガラス光ファイバ、13は
スペクトルアナライザである。この結果、表2に示すよ
うに1.30μmでは、比較例のファイバは利得が得ら
れなかったのに対し、実施例1、2のファイバでは4〜
13dBの利得を得ることができた。
[Comparative example] Using the same method as in Example 1, the composition was 500pp.
m Nd-doped ZBLAN (ZrF4-BaF
A glass lump for a core of 2-LaF3-AlF3-NaF)-based fluoride glass was produced. This core glass lump was crushed, remelted in an Ar atmosphere, and poured into a carbon mold to produce a core rod. Example 1
A fiber (conventional fiber using ZBLAN-based fluoride glass) having an outer diameter of 125 μm was produced by drawing in the same manner as described above. The optical amplification characteristics of the three types of fibers produced in Examples 1 and 2 and Comparative Example were measured using the measuring device shown in FIG. 2. By the way, 7 in the same figure is 1.064μm
Excitation light source, 8 is a 1.3 μm light source, 9 is a lens, 10
is a half mirror, 11 is a lens, 12 is an example 1, 2,
A fluoride glass optical fiber manufactured in a comparative example, 13 is a spectrum analyzer. As a result, as shown in Table 2, at 1.30 μm, the fiber of the comparative example could not obtain a gain, whereas the fiber of Examples 1 and 2 had a gain of 4 to 4 μm.
A gain of 13 dB could be obtained.

【0012】0012

【表2】[Table 2]

【0013】[0013]

【発明の効果】本発明のフッ化物光ファイバは1.30
μmでの光増幅が可能で、利得の大きいものとなる。
[Effect of the invention] The fluoride optical fiber of the present invention has a 1.30
Optical amplification in μm is possible, and the gain is large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】線引き装置の概略図。FIG. 1 is a schematic diagram of a wire drawing device.

【図2】ファイバの増幅特性測定装置の模式図。FIG. 2 is a schematic diagram of a fiber amplification characteristic measuring device.

【図3】ガラス中のBeF2 濃度と増幅波長の関係を
示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between BeF2 concentration in glass and amplification wavelength.

【符号の説明】[Explanation of symbols]

1  コア用ガラスロッド 2  電気炉 3  ダイス 4  樹脂 5  紫外線照射硬化装置 6  キャプスタン 1 Glass rod for core 2 Electric furnace 3 Dice 4 Resin 5 Ultraviolet irradiation curing device 6 Capstan

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  少なくともコアがフッ化ベリリウム(
BeF2 )およびプラセオジウム(Pr)を含むフッ
化物ガラスからなることを特徴とするフッ化物光ファイ
バ。
Claim 1: At least the core is beryllium fluoride (
A fluoride optical fiber comprising a fluoride glass containing BeF2) and praseodymium (Pr).
【請求項2】  前記フッ化物ガラスが60モルパ−セ
ント以上のBeF2を含むことを特徴とする請求項1の
フッ化物光ファイバ。
2. The fluoride optical fiber of claim 1, wherein said fluoride glass contains 60 mole percent or more of BeF2.
【請求項3】  前記フッ化物ガラスがアルミニウム(
Al)を含むことを特徴とする請求項1又は請求項2の
フッ化物光ファイバ。
3. The fluoride glass is made of aluminum (
The fluoride optical fiber according to claim 1 or claim 2, characterized in that the fluoride optical fiber contains Al).
【請求項4】  コアの組成が、BeF2 (91モル
パ−セント以上)+PrF3 (2モルパ−セント以下
)+AlF3 (7モルパ−セント以下)であることを
特徴とする請求項3のフッ化物光ファイバ。
4. The fluoride optical fiber according to claim 3, wherein the composition of the core is BeF2 (91 mole percent or more) + PrF3 (2 mole percent or less) + AlF3 (7 mole percent or less).
JP3152654A 1991-05-28 1991-05-28 Optical fluoride fiber Pending JPH04349151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152654A JPH04349151A (en) 1991-05-28 1991-05-28 Optical fluoride fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152654A JPH04349151A (en) 1991-05-28 1991-05-28 Optical fluoride fiber

Publications (1)

Publication Number Publication Date
JPH04349151A true JPH04349151A (en) 1992-12-03

Family

ID=15545159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152654A Pending JPH04349151A (en) 1991-05-28 1991-05-28 Optical fluoride fiber

Country Status (1)

Country Link
JP (1) JPH04349151A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2286390A (en) * 1994-02-09 1995-08-16 Univ Brunel Infrared transmitting optical fibre materials
US6037285A (en) * 1995-08-15 2000-03-14 Btg International Limited Infrared transmitting optical fiber materials
KR100744545B1 (en) * 2005-12-12 2007-08-01 한국전자통신연구원 All-fiber laser device for mid-infrared wavelength band

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2286390A (en) * 1994-02-09 1995-08-16 Univ Brunel Infrared transmitting optical fibre materials
GB2286390B (en) * 1994-02-09 1997-12-10 Univ Brunel Infrared transmitting optical fibre materials
US6037285A (en) * 1995-08-15 2000-03-14 Btg International Limited Infrared transmitting optical fiber materials
KR100744545B1 (en) * 2005-12-12 2007-08-01 한국전자통신연구원 All-fiber laser device for mid-infrared wavelength band

Similar Documents

Publication Publication Date Title
US6620748B1 (en) Light-amplifying glass, light-amplifying medium and resin-coated light-amplifying medium
JPS6311916A (en) Apparatus containing raman active optical fiber
US5973824A (en) Amplification by means of dysprosium doped low phonon energy glass waveguides
US5338607A (en) 1.3 micrometer-band amplifying optical fiber preform
JPH07149538A (en) Glass for optical fiber amplifier containing praseodymium
CA1306793C (en) Fluorozirconate fiber laser
US20070081777A1 (en) Nonlinear fiber, wavelength conversion method and wavelength conversion device
JP2007537118A (en) Glass for optical amplifier fiber
JPH04349151A (en) Optical fluoride fiber
US6560392B2 (en) Optical amplifying glass fiber
JP4314468B2 (en) Optical amplification glass and optical waveguide
JP2004277252A (en) Optical amplification glass and optical waveguide
JP3078050B2 (en) Optical functional glass
JP3371343B2 (en) Fluoride glass and optical fiber for optical amplification
JP2746716B2 (en) Rare earth doped multi-component glass fiber
JPH04243235A (en) Fluoride glass
JPH04289830A (en) Glass fluoride optical fiber
JP3108210B2 (en) Fluoride glass optical waveguide
JP2005145759A (en) Method for manufacturing optical amplification glass and optical waveguide
JPH0524883A (en) Fluoride optical fiber
JP2931694B2 (en) Optical functional glass
JP3154274B2 (en) Manufacturing method of fluoride glass optical waveguide base material
JPH0529699A (en) Optical functional glass
WO2004028992A1 (en) Tellurite glass, optical fibre, optical amplifier and light source
JP2977914B2 (en) Optical fiber for amplification