JPH0624794A - Production of ultraviolet-shielding glass - Google Patents

Production of ultraviolet-shielding glass

Info

Publication number
JPH0624794A
JPH0624794A JP20447792A JP20447792A JPH0624794A JP H0624794 A JPH0624794 A JP H0624794A JP 20447792 A JP20447792 A JP 20447792A JP 20447792 A JP20447792 A JP 20447792A JP H0624794 A JPH0624794 A JP H0624794A
Authority
JP
Japan
Prior art keywords
glass
cucl
chlorine
fine particles
mother glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20447792A
Other languages
Japanese (ja)
Inventor
Naoki Sugimoto
直樹 杉本
Mineko Yamamoto
峰子 山本
Tsuneo Manabe
恒夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP20447792A priority Critical patent/JPH0624794A/en
Publication of JPH0624794A publication Critical patent/JPH0624794A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable the formation of various compositions at a relatively low temperature by diffusing copper ion in a chlorine-containing matrix glass, thereby depositing Curl fine particles in the glass. CONSTITUTION:A glass raw material containing Nail, etc., is melted and vitrified to obtain a matrix glass containing 0.001-10wt.% of chlorine. The ion such as Na<+> in the matrix glass is subjected to ion-exchange with copper ion of one or more compounds selected from CuCl, CuCl2, CuBr, CuBr2, CuI, CuSO4, Cu(NO3)2, Cu2O, CuO and CuS at a temperature between the glass transition temperature and the softening temperature of the matrix glass. An ultraviolet- shielding glass is produced by diffusing the copper ion in the matrix glass to effect the precipitation of Curl fine particles in the glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線をシャープにカ
ットする紫外線カットガラスの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultraviolet cut glass which sharply cuts ultraviolet rays.

【0002】[0002]

【従来の技術】CuClは紫外線領域にシャープな吸収
をもつことが知られている。このようなCuCl微粒子
を析出したガラスとして、特公昭46−3464号公報
や特開平3−174337号公報に記載のものが知られ
ている。これらのガラスは、CuCl成分を含む原料を
高温で溶解して、まずCuCl成分を含有するガラスを
作製し、このガラスを所定の温度で熱処理を行なうこと
によってガラス中にCuCl微粒子を析出させる、いわ
ゆる溶融析出法によって製造される。
CuCl is known to have sharp absorption in the ultraviolet region. As glass in which such CuCl fine particles are deposited, those described in JP-B-46-3464 and JP-A-3-174337 are known. In these glasses, a raw material containing a CuCl component is melted at a high temperature to first produce a glass containing a CuCl component, and the glass is heat-treated at a predetermined temperature to precipitate CuCl fine particles in the glass. It is manufactured by the melt precipitation method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法は、ガラスを高温で溶融するというプロセスが含まれ
るため、揮散しやすいCuCl成分をガラス中に含有さ
せるためには比較的低温で溶解する必要があり、そのた
めCuCl微粒子が析出可能なガラス組成は限定される
という課題があった。
However, since the above method includes a process of melting glass at a high temperature, it is necessary to melt the glass at a relatively low temperature in order to contain a CuCl component which is easily volatilized in the glass. Therefore, there is a problem that the glass composition in which the CuCl fine particles can be deposited is limited.

【0004】[0004]

【課題を解決するための手段】本発明は、前述の課題を
解決するためになされたもので、塩素を含有する母ガラ
スを製造し、母ガラスへ銅イオンを拡散してガラス中に
CuCl微粒子を析出することを特徴とする紫外線カッ
トガラスの製造方法を提供するものである。
The present invention has been made to solve the above-mentioned problems, and produces a mother glass containing chlorine, diffuses copper ions into the mother glass to form CuCl fine particles in the glass. The present invention provides a method for producing an ultraviolet cut glass, which comprises depositing

【0005】本発明の紫外線カットガラスの製造方法
は、母ガラスへ銅イオンを拡散する工程が比較的低温で
行なえるため、高温でCuCl成分をガラス中に溶融さ
せるプロセスを必要とせず、幅広い組成の母ガラス中に
CuCl微粒子を析出させることができる。したがっ
て、母ガラスの組成としては塩素を含有することを除き
特に限定されない。母ガラスとしては、後記するよう
に、塩素を原料に混合しそれをガラス化したものであっ
てもよく、塩素を含有しない多孔質ガラスを製造しその
細孔に塩素を導入し無孔化したものであってもよい。
In the method for producing the ultraviolet cut glass of the present invention, the step of diffusing copper ions into the mother glass can be carried out at a relatively low temperature, so that the process of melting the CuCl component into the glass at a high temperature is not required and the composition of a wide range can be obtained. CuCl fine particles can be deposited in the mother glass of. Therefore, the composition of the mother glass is not particularly limited except that it contains chlorine. As the mother glass, as will be described later, it may be one obtained by mixing chlorine with a raw material and vitrifying it, producing a chlorine-free porous glass and introducing chlorine into its pores to make it non-porous. It may be one.

【0006】母ガラスへの銅イオンの拡散方法として
は、銅イオンを単独で母ガラスに拡散させてもよいし、
母ガラスのイオンとのイオン交換によって銅イオンを母
ガラスに拡散させてもよい。イオン交換は、塩素を含有
する母ガラスを、銅を含む溶融塩やペーストと接触させ
ることにより行なうことが好ましいが、銅を含有する水
溶液と接触させることによっても行なえる。
As a method of diffusing copper ions into the mother glass, copper ions may be diffused into the mother glass alone,
Copper ions may be diffused into the mother glass by ion exchange with ions of the mother glass. The ion exchange is preferably carried out by bringing the mother glass containing chlorine into contact with a molten salt or paste containing copper, but can also be carried out by bringing it into contact with an aqueous solution containing copper.

【0007】イオン交換は、母ガラスに存在する、例え
ばNa+ 、Li+ 、K+ 、Rb+ などの1価イオンまた
はCa2+、Mg2+、Sr2+、Ba2+などの2価イオン
と、銅化合物の溶融塩、ペースト、水溶液などに存在す
るCu+ イオンまたはCu2+イオンとのイオン交換によ
って母ガラスへ銅イオンが拡散し、母ガラスの塩素と結
合することによってCuCl微粒子を析出する。この場
合、イオン交換によって母ガラスに銅イオンが拡散する
ため、1μm以上の深さまで母ガラスに銅イオンを導入
させることが可能となり、したがって、1μm以上の深
さまでCuCl微粒子を析出させることが可能となる。
Ion exchange is a molten salt of a copper compound with a monovalent ion such as Na +, Li +, K +, Rb + or a divalent ion such as Ca2 +, Mg2 +, Sr2 +, Ba2 + existing in the mother glass. Copper ions diffuse into the mother glass by ion exchange with Cu + ions or Cu2 + ions present in the paste, aqueous solution, etc., and bond with chlorine in the mother glass to precipitate CuCl fine particles. In this case, since copper ions diffuse into the mother glass by ion exchange, it is possible to introduce the copper ions into the mother glass to a depth of 1 μm or more, and thus it is possible to deposit CuCl fine particles to a depth of 1 μm or more. Become.

【0008】また、塩素を含有する母ガラスと銅イオン
の拡散を行なった後に、ガラスの転移温度以上の温度で
熱処理を行なうことによって、さらに多量のCuCl微
粒子をガラスに析出することも可能である。
It is also possible to deposit a larger amount of CuCl fine particles on the glass by diffusing the mother glass containing chlorine and the copper ions and then performing a heat treatment at a temperature higher than the transition temperature of the glass. .

【0009】母ガラス中の塩素の含有量は0.001〜
10重量%であることが好ましい。塩素の含有量が0.
001重量%未満の場合、CuCl微粒子のガラス中へ
の析出が得られ難く好ましくない。逆に、10重量%を
超える場合は、CuCl微粒子の粒径の制御が困難にな
るとともにガラスの耐候性が劣化してしまうため好まし
くない。そして、この範囲のうち、塩素の含有量が0.
01〜5重量%の場合、均一で制御されたCuCl微粒
子が容易に析出しうるので特に好ましい。
The content of chlorine in the mother glass is 0.001-
It is preferably 10% by weight. The chlorine content is 0.
When it is less than 001% by weight, it is difficult to obtain CuCl fine particles in the glass, which is not preferable. On the contrary, if it exceeds 10% by weight, it becomes difficult to control the particle diameter of the CuCl fine particles and the weather resistance of the glass deteriorates, which is not preferable. In this range, the chlorine content is 0.
The amount of 01 to 5% by weight is particularly preferable because uniform and controlled CuCl fine particles can be easily deposited.

【0010】塩素を含有する母ガラスの製造法としては
特に制限がないが、例えば、NaClなどの塩化物を含
むガラス原料バッチを溶融して、ガラス化することによ
り製造する方法、分相後、酸溶出して作製した多孔質ガ
ラス、ゾルゲル法により作製した多孔質ガラス、または
CVD法で作製した多孔質ガラスを高温で塩素処理後焼
結して無孔化することによって製造する方法等がある。
The method for producing the mother glass containing chlorine is not particularly limited, but for example, a method for producing by melting and vitrifying a glass raw material batch containing a chloride such as NaCl, after phase separation, There is a method in which a porous glass produced by elution with an acid, a porous glass produced by a sol-gel method, or a porous glass produced by a CVD method is treated by chlorine treatment at a high temperature and then sintered to render it non-porous. .

【0011】銅イオンは、CuCl、CuCl2 、Cu
Br、CuBr2 、CuI 、CuSO4 、Cu(NO3
)2 、Cu2 O、CuO、CuSのうち少なくとも1
つの化合物で形成されることがイオン交換を効率的に行
なう上で好ましい。銅を含有する溶融塩やペーストとガ
ラスとの間でイオン交換を行なう温度としては、塩素を
含むガラスのガラス転移温度以上軟化温度以下の温度範
囲でイオン交換を行なう場合と、ガラス転移温度以下の
温度で行なう場合があるが、いずれでもよい。
Copper ions are CuCl, CuCl2, Cu
Br, CuBr2, CuI, CuSO4, Cu (NO3
) 2, at least 1 of Cu2 O, CuO, CuS
It is preferable that the two compounds are formed for efficient ion exchange. As the temperature at which ion exchange is performed between the molten salt or paste containing copper and the glass, when performing ion exchange in the temperature range of the glass transition temperature of the glass containing chlorine or more and the softening temperature or less, and the glass transition temperature or less It may be carried out at temperature, but either may be used.

【0012】これらの化合物の融点等の熱特性は表1に
示したとおりで、各種ガラスの適正なイオン交換温度に
応じた融点等の熱特性をもつ化合物を選べばよい。ま
た、この化合物の融点を制御するために、例えばNaC
l、NaNO3 、Na2 SO4などの他の塩を適宜混合
することも可能である。
The thermal characteristics such as melting point of these compounds are as shown in Table 1, and it suffices to select the compound having the thermal characteristics such as melting point corresponding to the appropriate ion exchange temperature of various glasses. In order to control the melting point of this compound, for example, NaC
It is also possible to appropriately mix other salts such as 1, NaNO3 and Na2 SO4.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例】【Example】

[実施例1〜10]表2に示す組成(単位:重量%)を
有する母ガラスを溶融法により製造し、10×10×1
mmの大きさの板状試料を作製した。これらの試料を表
2に示す溶融塩(単位:重量%)中で表2に示すイオン
交換温度、イオン交換時間でイオン交換を行なった。得
られた試料の表面を洗浄後、試料を2つに割り、その断
面をEPMAを用いて分析し、ガラス表面からの銅の拡
散深さを求めた。
[Examples 1 to 10] A mother glass having a composition (unit: wt%) shown in Table 2 was produced by a melting method, and 10 x 10 x 1
A plate-shaped sample having a size of mm was prepared. These samples were subjected to ion exchange in the molten salt shown in Table 2 (unit: wt%) at the ion exchange temperature and ion exchange time shown in Table 2. After washing the surface of the obtained sample, the sample was divided into two, and the cross section was analyzed using EPMA to determine the diffusion depth of copper from the glass surface.

【0015】また、得られた試料の分光スペクトルの測
定を行なうとともに、透過型電子顕微鏡観察を行なうこ
とによってガラスに析出するCuCl微粒子の粒径を測
定した。その結果、いずれの試料にもCuClに特有な
吸収構造が現れ、ガラスに表2に示す粒径のCuCl微
粒子が析出していることがわかった。また、銅の拡散深
さは表2に示すように5〜400μmであることがわか
った。またこれらのガラスは、紫外線をシャープにカッ
トする性能を有することがわかった。
The particle size of the CuCl fine particles deposited on the glass was measured by measuring the spectral spectrum of the obtained sample and observing it with a transmission electron microscope. As a result, it was found that the absorption structure peculiar to CuCl appeared in any of the samples, and CuCl fine particles having the particle sizes shown in Table 2 were deposited on the glass. Further, it was found that the diffusion depth of copper was 5 to 400 μm as shown in Table 2. It was also found that these glasses have a property of sharply cutting ultraviolet rays.

【0016】[実施例11〜12]表2に示す組成のガ
ラスを実施例1と同様に作製し、表2に示す溶融塩中で
表2に示す温度・時間でイオン交換を行なった。イオン
交換終了後に試料を600℃で30分間熱処理を行なっ
た。得られた試料の評価は実施例1と同様に行なった。
その結果、これらの試料にはCuClに特有な吸収構造
が現れ、ガラス中に表2に示す粒径のCuCl微粒子が
析出していることがわかった。また、銅の拡散深さは表
1に示すように8〜10μmであることがわかった。ま
たこれらのガラスは、紫外線をシャープにカットする性
能を有することがわかった。
[Examples 11 to 12] Glasses having the compositions shown in Table 2 were prepared in the same manner as in Example 1 and subjected to ion exchange in the molten salt shown in Table 2 at the temperature and time shown in Table 2. After completion of the ion exchange, the sample was heat-treated at 600 ° C. for 30 minutes. Evaluation of the obtained sample was performed in the same manner as in Example 1.
As a result, it was found that an absorption structure peculiar to CuCl appeared in these samples, and CuCl fine particles having a particle size shown in Table 2 were precipitated in the glass. Further, it was found that the diffusion depth of copper was 8 to 10 μm as shown in Table 1. It was also found that these glasses have a property of sharply cutting ultraviolet rays.

【0017】[0017]

【表2】 [Table 2]

【0018】[実施例13]溶融・分相法により作製し
た平均細孔径400nm、厚さ1.2mmの多孔質ガラ
ス(ガラス組成;SiO2 :96重量%、B2 O3 :3
重量%、Al2 O3:0.3重量%、Na2 O:0.1
5重量%)を、5%Cl2 含有のN2 雰囲気中で120
0℃に加熱し、無孔化し、塩素を含有する母ガラスを作
製した。蛍光X線分析の結果、母ガラスには約0.3重
量%のClが均一に含まれていることがわかった。この
塩素を含有する母ガラスをCuCl溶融塩中に、100
0℃で30分間保持することによりイオン交換を行なっ
た。得られた試料の評価は実施例1と同様に行なった。
その結果、CuClに特有な吸収構造が現れ、ガラスに
粒径3.5nmのCuCl微粒子が析出していることが
わかった。また、銅は深さ方向に表面より中央部までほ
ぼ均一に拡散しており、その含有量は0.5重量%拡散
であった。またこのガラスは、紫外線をシャープにカッ
トする性能を有することがわかった。
[Example 13] Porous glass (glass composition; SiO2: 96% by weight, B2 O3: 3) having an average pore diameter of 400 nm and a thickness of 1.2 mm produced by the melting / phase separation method.
% By weight, Al2 O3: 0.3% by weight, Na2 O: 0.1
5% by weight) in an N2 atmosphere containing 5% Cl2.
A mother glass containing chlorine was prepared by heating to 0 ° C. to make it non-porous. As a result of fluorescent X-ray analysis, it was found that the mother glass uniformly contained about 0.3% by weight of Cl. The mother glass containing chlorine was added to CuCl molten salt in an amount of 100
Ion exchange was performed by holding at 0 ° C. for 30 minutes. Evaluation of the obtained sample was performed in the same manner as in Example 1.
As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 3.5 nm were deposited on the glass. Further, copper was diffused almost uniformly in the depth direction from the surface to the central portion, and its content was 0.5% by weight. It was also found that this glass has a property of sharply cutting ultraviolet rays.

【0019】[実施例14]実施例2と同様の方法で作
製した塩素含有母ガラスをCu2 O溶融塩中に、125
0℃で30間保持した。得られたガラスの評価は実施例
1〜12と同様に行なった。その結果、CuClに特有
な吸収構造が現れ、ガラス中に粒径6nmのCuCl微
粒子が析出していることがわかった。また、銅は深さ方
向に表面より中央部までほぼ均一に拡散しており、その
含有量は0.6重量%であった。またこのガラスは、紫
外線をシャープにカットする性能を有することがわかっ
た。
[Embodiment 14] A chlorine-containing mother glass prepared in the same manner as in Embodiment 2 was added to a molten Cu 2 O salt at a concentration of 125
Hold at 0 ° C. for 30 minutes. The obtained glass was evaluated in the same manner as in Examples 1-12. As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 6 nm were deposited in the glass. Further, copper diffused almost uniformly from the surface to the central portion in the depth direction, and its content was 0.6% by weight. It was also found that this glass has a property of sharply cutting ultraviolet rays.

【0020】[実施例15]Si(OCH3 )4 および
NaOCH3 を原料に用い、ゾルゲル法により10Na
2 O−95SiO2 組成の多孔質ゲルを作製した。得ら
れた多孔質ゲルを空気中に400℃で2時間保持後、5
%Cl2 含有のN2 雰囲気中に600℃で2時間保持
し、50mmφ×5mm厚の塩素含有母ガラスを作製し
た。蛍光X線分析の結果、この母ガラスは約1重量%の
Cl を含有していることがわかった。この塩素含有母ガ
ラスをCuBr溶融塩中に500℃で30分間保持し
た。得られたガラスの評価は実施例1と同様に行なっ
た。その結果、CuClに特有な吸収構造が現れ、ガラ
ス中に粒径4.5nmのCuCl微粒子が析出している
ことがわかった。また、銅の拡散深さは400μmであ
ることがわかった。またこのガラスは、紫外線をシャー
プにカットする性能を有することがわかった。
[Example 15] Si (OCH3) 4 and NaOCH3 were used as raw materials and 10 Na was obtained by the sol-gel method.
A porous gel having a composition of 2 O-95 SiO 2 was prepared. The obtained porous gel was kept in air at 400 ° C. for 2 hours, and then 5
It was kept at 600 ° C. for 2 hours in a N 2 atmosphere containing% Cl 2 to prepare a chlorine-containing mother glass having a thickness of 50 mmφ × 5 mm. As a result of X-ray fluorescence analysis, this mother glass was found to contain about 1% by weight of Cl. This chlorine-containing mother glass was kept in molten CuBr salt at 500 ° C. for 30 minutes. The obtained glass was evaluated in the same manner as in Example 1. As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 4.5 nm were precipitated in the glass. It was also found that the diffusion depth of copper was 400 μm. It was also found that this glass has a property of sharply cutting ultraviolet rays.

【0021】[0021]

【発明の効果】本発明によれば、高温でCuCl成分を
ガラス中に溶融するプロセスを必要としないので、幅広
い組成のガラスにCuCl微粒子を析出した紫外線カッ
トガラスを製造することができる。
According to the present invention, the process of melting the CuCl component in the glass at a high temperature is not required, so that it is possible to produce an ultraviolet cut glass in which CuCl fine particles are deposited on a glass having a wide range of compositions.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月11日[Submission date] September 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】イオン交換は、母ガラスに存在する、例え
ばNa+ 、Li+ 、K+ 、Rb+ などの1価イオンまた
はCa2+、Mg2+、Sr2+、Ba2+などの2価イオン
と、銅化合物の溶融塩、ペースト、水溶液などに存在す
るCu+ イオンまたはCu2+イオンとのイオン交換によ
って母ガラスへ銅イオンが拡散し、母ガラスの塩素と結
合することによってCuCl微粒子を析出する。この場
合、イオン交換によって母ガラスに銅イオンが拡散する
ため、1μm以上の深さまで母ガラスに銅イオンを導入
させることが可能となり、したがって、1μm以上の深
さまでCuCl微粒子を析出させることが可能となる。
Ion exchange is carried out by using monovalent ions existing in the mother glass such as Na + , Li + , K + and Rb + or divalent ions such as Ca 2+ , Mg 2+ , Sr 2+ and Ba 2+. an ion, a molten salt of a copper compound, paste, diffused copper ions into the base glass by ion exchange with Cu + ions or Cu 2+ ions present in such solution, the CuCl fine particles by combining with chlorine mother glass To deposit. In this case, since copper ions diffuse into the mother glass by ion exchange, it is possible to introduce the copper ions into the mother glass to a depth of 1 μm or more, and thus it is possible to deposit CuCl fine particles to a depth of 1 μm or more. Become.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】銅イオンは、CuCl、CuCl2 、Cu
Br、CuBr2 、CuI、CuSO4 、Cu(NO
32 、Cu2 O、CuO、CuSのうち少なくとも1
つの化合物で形成されることがイオン交換を効率的に行
なう上で好ましい。銅を含有する溶融塩やペーストとガ
ラスとの間でイオン交換を行なう温度としては、塩素を
含むガラスのガラス転移温度以上軟化温度以下の温度範
囲でイオン交換を行なう場合と、ガラス転移温度以下の
温度で行なう場合があるが、いずれでもよい。
Copper ions are CuCl, CuCl 2 , Cu
Br, CuBr 2 , CuI, CuSO 4 , Cu (NO
3 ) 2 , at least 1 of Cu 2 O, CuO, CuS
It is preferable that the two compounds are formed for efficient ion exchange. As the temperature at which ion exchange is performed between the molten salt or paste containing copper and the glass, when performing ion exchange in the temperature range of the glass transition temperature of the glass containing chlorine or more and the softening temperature or less, and the glass transition temperature or less It may be carried out at temperature, but either may be used.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】これらの化合物の融点等の熱特性は表1に
示したとおりで、各種ガラスの適正なイオン交換温度に
応じた融点等の熱特性をもつ化合物を選べばよい。ま
た、この化合物の融点を制御するために、例えばNaC
l、NaNO3 、Na2 SO4などの他の塩を適宜混合
することも可能である。
The thermal characteristics such as melting point of these compounds are as shown in Table 1, and it suffices to select the compound having the thermal characteristics such as melting point corresponding to the appropriate ion exchange temperature of various glasses. In order to control the melting point of this compound, for example, NaC
It is also possible to appropriately mix other salts such as 1, NaNO 3 , and Na 2 SO 4 .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】[0013]

【表1】 [Table 1]

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】[実施例13]溶融・分相法により作製し
た平均細孔径400nm、厚さ1.2mmの多孔質ガラ
ス(ガラス組成;SiO2 :96重量%、B23 :3
重量%、Al23:0.3重量%、Na2 O:0.1
5重量%)を、5%Cl2 含有のN2 雰囲気中で120
0℃に加熱し、無孔化し、塩素を含有する母ガラスを作
製した。蛍光X線分析の結果、母ガラスには約0.3重
量%のClが均一に含まれていることがわかった。この
塩素を含有する母ガラスをCuCl溶融塩中に、100
0℃で30分間保持することによりイオン交換を行なっ
た。得られた試料の評価は実施例1と同様に行なった。
その結果、CuClに特有な吸収構造が現れ、ガラスに
粒径3.5nmのCuCl微粒子が析出していることが
わかった。また、銅は深さ方向に表面より中央部までほ
ぼ均一に拡散しており、その含有量は0.5重量%拡散
であった。またこのガラスは、紫外線をシャープにカッ
トする性能を有することがわかった。
[Example 13] Porous glass having an average pore diameter of 400 nm and a thickness of 1.2 mm produced by the melting / phase separation method (glass composition; SiO 2 : 96% by weight, B 2 O 3 : 3).
% By weight, Al 2 O 3 : 0.3% by weight, Na 2 O: 0.1
5% by weight) in an N 2 atmosphere containing 5% Cl 2
A mother glass containing chlorine was prepared by heating to 0 ° C. to make it non-porous. As a result of fluorescent X-ray analysis, it was found that the mother glass uniformly contained about 0.3% by weight of Cl. The mother glass containing chlorine was added to CuCl molten salt in an amount of 100
Ion exchange was performed by holding at 0 ° C. for 30 minutes. Evaluation of the obtained sample was performed in the same manner as in Example 1.
As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 3.5 nm were deposited on the glass. Further, copper was diffused almost uniformly in the depth direction from the surface to the central portion, and the content thereof was 0.5% by weight diffusion. It was also found that this glass has a property of sharply cutting ultraviolet rays.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[実施例14]実施例2と同様の方法で作
製した塩素含有母ガラスをCu2 O溶融塩中に、125
0℃で30間保持した。得られたガラスの評価は実施例
1〜12と同様に行なった。その結果、CuClに特有
な吸収構造が現れ、ガラス中に粒径6nmのCuCl微
粒子が析出していることがわかった。また、銅は深さ方
向に表面より中央部までほぼ均一に拡散しており、その
含有量は0.6重量%であった。またこのガラスは、紫
外線をシャープにカットする性能を有することがわかっ
た。
[Embodiment 14] A chlorine-containing mother glass prepared in the same manner as in Embodiment 2 is added to a Cu 2 O molten salt in an amount of 125
Hold at 0 ° C. for 30 minutes. The obtained glass was evaluated in the same manner as in Examples 1-12. As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 6 nm were deposited in the glass. Further, copper diffused almost uniformly from the surface to the central portion in the depth direction, and its content was 0.6% by weight. It was also found that this glass has a property of sharply cutting ultraviolet rays.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[実施例15]Si(OCH34 および
NaOCH3 を原料に用い、ゾルゲル法により10Na
2 O−95SiO2 組成の多孔質ゲルを作製した。得ら
れた多孔質ゲルを空気中に400℃で2時間保持後、5
%Cl2 含有のN2 雰囲気中に600℃で2時間保持
し、50mmφ×5mm厚の塩素含有母ガラスを作製し
た。蛍光X線分析の結果、この母ガラスは約1重量%の
Clを含有していることがわかった。この塩素含有母ガ
ラスをCuBr溶融塩中に500℃で30分間保持し
た。得られたガラスの評価は実施例1と同様に行なっ
た。その結果、CuClに特有な吸収構造が現れ、ガラ
ス中に粒径4.5nmのCuCl微粒子が析出している
ことがわかった。また、銅の拡散深さは400μmであ
ることがわかった。またこのガラスは、紫外線をシャー
プにカットする性能を有することがわかった。
[Example 15] Si (OCH 3 ) 4 and NaOCH 3 were used as raw materials and 10 Na was obtained by the sol-gel method.
A porous gel having a composition of 2 O-95SiO 2 was prepared. The obtained porous gel was kept in air at 400 ° C. for 2 hours, and then 5
It was kept at 600 ° C. for 2 hours in a N 2 atmosphere containing% Cl 2 to prepare a chlorine-containing mother glass having a thickness of 50 mmφ × 5 mm. As a result of X-ray fluorescence analysis, this mother glass was found to contain about 1% by weight of Cl. This chlorine-containing mother glass was kept in molten CuBr salt at 500 ° C. for 30 minutes. The obtained glass was evaluated in the same manner as in Example 1. As a result, it was found that an absorption structure peculiar to CuCl appeared and CuCl fine particles having a particle diameter of 4.5 nm were precipitated in the glass. It was also found that the diffusion depth of copper was 400 μm. It was also found that this glass has a property of sharply cutting ultraviolet rays.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】塩素を含有する母ガラスを製造し、母ガラ
スへ銅イオンを拡散してガラス中にCuCl微粒子を析
出することを特徴とする紫外線カットガラスの製造方
法。
1. A method for producing an ultraviolet cut glass, which comprises producing a mother glass containing chlorine and diffusing copper ions into the mother glass to deposit CuCl fine particles in the glass.
【請求項2】母ガラスのイオンと銅イオンとをイオン交
換することにより母ガラスへ銅イオンを拡散する請求項
1の紫外線カットガラスの製造方法。
2. The method for producing an ultraviolet cut glass according to claim 1, wherein the copper ions are diffused into the mother glass by ion-exchanging the ions of the mother glass with the copper ions.
【請求項3】母ガラス中の塩素の含有量が0.001〜
10重量%であることを特徴とする請求項1または2の
紫外線カットガラスの製造方法。
3. The chlorine content of the mother glass is 0.001 to 0.001.
It is 10% by weight, and the method for producing the ultraviolet cut glass according to claim 1 or 2.
【請求項4】銅イオンがCuCl、CuCl2 、CuB
r、CuBr2 、CuI 、CuSO4 、Cu(NO3 )
2 、Cu2 O、CuO、CuSのうち少なくとも1つの
化合物より形成される請求項1、2または3の紫外線カ
ットガラスの製造方法。
4. Copper ions are CuCl, CuCl2, CuB
r, CuBr2, CuI, CuSO4, Cu (NO3)
The method for producing an ultraviolet cut glass according to claim 1, 2 or 3, which is formed of at least one compound selected from the group consisting of 2, Cu2 O, CuO and CuS.
JP20447792A 1992-07-08 1992-07-08 Production of ultraviolet-shielding glass Withdrawn JPH0624794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447792A JPH0624794A (en) 1992-07-08 1992-07-08 Production of ultraviolet-shielding glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447792A JPH0624794A (en) 1992-07-08 1992-07-08 Production of ultraviolet-shielding glass

Publications (1)

Publication Number Publication Date
JPH0624794A true JPH0624794A (en) 1994-02-01

Family

ID=16491180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447792A Withdrawn JPH0624794A (en) 1992-07-08 1992-07-08 Production of ultraviolet-shielding glass

Country Status (1)

Country Link
JP (1) JPH0624794A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078569A (en) * 2004-09-07 2006-03-23 Japan Science & Technology Agency Ultraviolet light filter
JPWO2005033031A1 (en) * 2003-10-06 2006-12-14 日本板硝子株式会社 UV transmitting glass and microplate using the same
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability
WO2022131275A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Glass plate, laminated glass, window glass for building, and window glass for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005033031A1 (en) * 2003-10-06 2006-12-14 日本板硝子株式会社 UV transmitting glass and microplate using the same
JP2006078569A (en) * 2004-09-07 2006-03-23 Japan Science & Technology Agency Ultraviolet light filter
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability
WO2022131275A1 (en) * 2020-12-18 2022-06-23 Agc株式会社 Glass plate, laminated glass, window glass for building, and window glass for vehicle

Similar Documents

Publication Publication Date Title
JP3153307B2 (en) Alkaline zinc halophosphate glass
TW201100348A (en) Glass substrate for display and display
JP2004083403A (en) Borosilicate glass and utilization of the same
EP1497484A1 (en) Quartz glass crucible and method for the production thereof
JPH02296747A (en) High refractive index photochromic glass
Lopes et al. Structural investigation of the surface of bioglass 45S5 enriched with calcium ions
TW591000B (en) Optical colored glass, its use, and an optical long-pass cutoff filter
JP2628014B2 (en) Polarized glass
JP2008105940A (en) Glass/frit with iron selenide complex
JP2008273791A (en) Phosphate-based glass, glass ceramic comprising the phosphate-based glass and methods for production thereof
JPH0624794A (en) Production of ultraviolet-shielding glass
US2948992A (en) Glass compositions and glass-to-metal seals
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JP2003300750A (en) Glass composition
JP3049379B2 (en) Base glass for ultraviolet shielding glass, and method for producing ultraviolet shielding glass
JP2013245124A (en) Method for manufacturing borosilicate glass
JPS6225618B2 (en)
JPH0623075B2 (en) Glass for tungsten-halogen lamp
JPH0624801A (en) Manufacture of nonlinear optical glass
US4108674A (en) Phototropic optical glass
JPS5857375B2 (en) Photochromic alkali aluminosilicate glass composition
JP3040708B2 (en) Method for producing soda-lime glass
DE1816391A1 (en) High temperature glasses
JPH11236241A (en) Antibacterial crystallized glass beads for building material
Banerjee et al. Physicochemical properties of Cs borosilicate glasses containing CaO

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005