JPH06246818A - Extrusion molding method of internal helix rib or grooved synthetic resin pipe - Google Patents

Extrusion molding method of internal helix rib or grooved synthetic resin pipe

Info

Publication number
JPH06246818A
JPH06246818A JP5033116A JP3311693A JPH06246818A JP H06246818 A JPH06246818 A JP H06246818A JP 5033116 A JP5033116 A JP 5033116A JP 3311693 A JP3311693 A JP 3311693A JP H06246818 A JPH06246818 A JP H06246818A
Authority
JP
Japan
Prior art keywords
core
synthetic resin
resin pipe
mold
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5033116A
Other languages
Japanese (ja)
Other versions
JP3398407B2 (en
Inventor
Eiichi Kagoshima
榮一 籠島
Hiromi Oonuma
浩身 大沼
Mitsuhiro Watanabe
満博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP03311693A priority Critical patent/JP3398407B2/en
Publication of JPH06246818A publication Critical patent/JPH06246818A/en
Application granted granted Critical
Publication of JP3398407B2 publication Critical patent/JP3398407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To continuously mold parisons having helix ribs or helix grooves by extrusion molding without rotating them in the peripheral direction, by setting a rotating speed of a rotating part of a core and a lead angle of recessed grooves or protruding streaks so as not to rotate a synthetic resin pipe to be continuously extruded from a mold in the peripheral direction. CONSTITUTION:In an extrusion mold 2, a plurality of recessed grooves 23c or protruding streaks which reach an end part at an outlet of a core and have a predetermined lead angle are formed on a surface of a rotating part 23 of the core at a predetermined pitch. A synthetic resin pipe having helix ribs or grooves corresponding to rotation condition of the rotating part 23 of the core and the recessed grooves 23c or the protruding streaks is molded continuously by extrusion molding on the inner face. The rotating speed of the rotating part 23 of the core and a lead angle alpha of the recessed groove 23c or the protruding streak are set so as not to rotate the synthetic resin pipe to be extruded continuously from the mold 2 in the peripheral direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内面螺旋リブまたは溝
付き合成樹脂管の押出成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extrusion molding a synthetic resin pipe having an inner spiral rib or groove.

【0002】[0002]

【従来の技術】建築物の排水縦管として使用される内面
螺旋リブ付き合成樹脂管を連続的に製造する方法とし
て、特開平2−78517号公報にみるような製造方法
が提案されている。この方法は、図7に示すように、押
出成形金型101のコア(内ダイ)102の外周に所定
のリード角を有し、コア先端(金型出口側端)に抜ける
凹溝103を所定ピッチごとに形成するとともに、この
コア102を中心軸回りに回転させながら、ランド(外
ダイ)104とコア102との隙間から溶融樹脂を押し
出して内面に螺旋リブを有する溶融状態の合成樹脂管
(以下、「パリソン」と記す)を連続的に押出成形する
と言うものである。
2. Description of the Related Art As a method for continuously manufacturing a synthetic resin pipe with an inner spiral rib used as a drainage vertical pipe for a building, a manufacturing method as disclosed in Japanese Patent Laid-Open No. 2-78517 has been proposed. In this method, as shown in FIG. 7, a predetermined lead angle is provided on the outer periphery of a core (inner die) 102 of an extrusion molding die 101, and a recessed groove 103 that is pulled out to the tip of the core (end on the die exit side) is predetermined. The molten resin is extruded from the gap between the land (outer die) 104 and the core 102 by rotating the core 102 around the central axis while forming the pitch for each pitch, and a synthetic resin pipe in a molten state having a spiral rib on the inner surface ( Hereinafter, "parison" will be referred to as continuous extrusion molding.

【0003】[0003]

【発明が解決しようとする課題】ところで、通常、金型
101から押し出されてきたパリソンは、フォーミング
装置、冷却槽を通して所定の外形を整えた状態で固化さ
せて所望の合成樹脂管としたのち、引き取り機で連続的
に引き取られるようになっているが、上記押出成形方法
では、コア102の回転に伴ってパリソンも軸周方向に
回転しながら金型101から押し出されてくる。
By the way, normally, the parison extruded from the mold 101 is solidified into a desired synthetic resin tube in a state where a predetermined external shape is adjusted through a forming device and a cooling tank, Although it is designed to be continuously drawn by a take-up machine, in the above extrusion molding method, the parison is also pushed out from the mold 101 while rotating in the axial direction with the rotation of the core 102.

【0004】したがって、引取機では、パリソン部分に
捩や変形が生じないように、パリソンの押出速度(線
速)と周方向の自転速度に同調させるように合成樹脂管
を引き取るようにしなければならない。しかし、上記の
ようにパリソンの押出速度と自転速度に同調させて引き
取ることができるようにするには、特殊な引取機を用意
しなければならないため、設備コストがかかるととも
に、成形スタート時に押出速度と自転速度の両方に合う
ように引き取り速度を調整しなければならないので、作
業性が非常に悪い。
Therefore, in the take-up machine, it is necessary to take out the synthetic resin pipe in synchronization with the extrusion speed (linear velocity) of the parison and the rotation speed in the circumferential direction so that the parison portion is not twisted or deformed. . However, in order to be able to pick up the parison in synchronization with the extrusion speed and rotation speed as described above, a special take-up machine must be prepared, which requires equipment cost and the extrusion speed at the start of molding. Since the take-up speed must be adjusted to suit both the rotation speed and the rotation speed, the workability is extremely poor.

【0005】本発明は、このような事情に鑑みて、内面
に螺旋リブまたは螺旋溝が形成されたパリソンを周方向
に自転させることなく連続的に押出成形できる内面螺旋
リブまたは溝付き合成樹脂管の押出成形方法を提供する
ことを目的としている。
In view of the above circumstances, the present invention has an inner surface spiral rib or grooved synthetic resin tube which can continuously extrude a parison having a spiral rib or spiral groove formed on the inner surface without rotating in the circumferential direction. It is an object of the present invention to provide an extrusion molding method.

【0006】[0006]

【課題を解決するための手段】本発明にかかる内面螺旋
リブまたは溝付き合成樹脂管の押出成形方法は、このよ
うな目的を達成するために、コアの少なくとも金型出口
側が中心軸回りに回転自在で、このコアの回転部表面に
コアの出口側端部まで達して所定のリード角を有する複
数の凹溝または突条が所定ピッチで形成されている押出
成形金型を用い、内面に前記コアの回転部の回転条件と
凹溝または突条とに対応した螺旋リブまたは溝が形成さ
れた合成樹脂管を連続的に押出成形する内面螺旋リブま
たは溝付き合成樹脂管の押出成形方法であって、金型か
ら連続的に押し出される合成樹脂管が周方向に回転しな
い条件に前記コアの回転部の回転速度、および、凹溝ま
たは突条のリード角を設定する構成とした。
In order to achieve such an object, the extrusion molding method of the inner surface spiral rib or grooved synthetic resin pipe according to the present invention is such that at least the die outlet side of the core rotates about the central axis. Use an extrusion molding die in which a plurality of recessed grooves or ridges having a predetermined lead angle are formed at a predetermined pitch on the surface of the rotating portion of the core and reach the outlet side end of the core. It is an extrusion molding method of an inner surface spiral rib or a grooved synthetic resin pipe for continuously extruding a synthetic resin pipe having spiral ribs or grooves corresponding to the rotation conditions of the rotating portion of the core and the concave groove or ridge. Then, the rotational speed of the rotating portion of the core and the lead angle of the groove or protrusion are set under the condition that the synthetic resin pipe continuously extruded from the mold does not rotate in the circumferential direction.

【0007】上記構成において、金型の方式としては、
ストレートダイ方式でもクロスダイ方式でも構わない。
コアは、コア全体が中心軸回りに回転する方式のもので
もよいし、凹溝または突条が形成された部分のみを回転
する方式のものでも構わない。コアの回転部の回転数
は、凹溝または突条のリード角、溝の深さまたは突条の
高さ、得ようとする管の肉厚、口径、押出量によって適
宜変更され、予めテストにより設定される。
In the above structure, the mold system is as follows.
The straight die method or the cross die method may be used.
The core may be of a type in which the entire core rotates around the central axis, or may be of a type in which only the portion where the groove or the ridge is formed is rotated. The number of rotations of the rotating part of the core is appropriately changed depending on the lead angle of the concave groove or the ridge, the depth of the groove or the height of the ridge, the wall thickness of the pipe to be obtained, the bore diameter, and the extrusion amount. Is set.

【0008】すなわち、金型から押し出されるパリソン
が周方向に回転しないようにするための、コアの回転部
の回転速度と、凹溝または突条のリード角との関係は、
下記表1を参考にして説明すると、つぎのようにして求
めることができる。
That is, the relationship between the rotational speed of the rotating portion of the core and the lead angle of the groove or protrusion for preventing the parison extruded from the mold from rotating in the circumferential direction is as follows:
Explaining with reference to Table 1 below, it can be obtained as follows.

【0009】[0009]

【表1】 [Table 1]

【0010】たとえば、凹溝のリード角が、金型の樹脂
出口からみて右方向に傾斜(回転)して形成されている
とき、樹脂には表1に示すように凹溝によって右方向へ
常に一定の回転力が付与される。そこで、コアの回転部
を左回転させて徐々に回転速度を上げてゆくと、コアの
回転部による回転力と凹溝による回転力とが打ち消しあ
って溶融樹脂の相対的な回転が0となる。そして、回転
部の回転数をさらに上昇させていくと、回転部による回
転力が凹溝による回転力を上回り、表1に示すようにパ
リソンが左回転しながら押し出されてくることになる。
For example, when the lead angle of the concave groove is formed so as to be inclined (rotated) to the right when viewed from the resin outlet of the die, as shown in Table 1, the resin always has the concave groove to the right. A constant torque is applied. Therefore, when the rotating part of the core is rotated counterclockwise to gradually increase the rotating speed, the rotating force of the rotating part of the core and the rotating force of the concave groove cancel each other out, and the relative rotation of the molten resin becomes zero. . Then, when the rotation speed of the rotating portion is further increased, the rotating force of the rotating portion exceeds the rotating force of the concave groove, and as shown in Table 1, the parison is pushed out while rotating counterclockwise.

【0011】凹溝または突条のリード角は、樹脂の押出
量によっても制約されるが、75度以下とすることが好
ましい。凹溝または突条の長さは、樹脂の流れを乱さな
い(滞留,偏流等)範囲であれば、長い方が好ましい。
管を形成する合成樹脂としては、特に限定されないが、
たとえば、ポリ塩化ビニル、後塩素化ポリ塩化ビニル、
ポリエチレン,ナイロン等が挙げられ、たとえば、上記
のように固定コアの出口側に螺旋リブを設ける方法で管
を押出成形する場合には、見掛け粘度1000ポイズ以
上になる合成樹脂が特に好ましい。
The lead angle of the groove or protrusion is also limited by the amount of resin extruded, but is preferably 75 degrees or less. The length of the groove or the protrusion is preferably long as long as it does not disturb the flow of the resin (retention, drift, etc.).
The synthetic resin forming the tube is not particularly limited,
For example, polyvinyl chloride, post-chlorinated polyvinyl chloride,
Examples thereof include polyethylene and nylon. For example, when a pipe is extruded by the method of providing a spiral rib on the outlet side of a fixed core as described above, a synthetic resin having an apparent viscosity of 1000 poise or more is particularly preferable.

【0012】すなわち、見掛け粘度が1000ポイズ未
満になると、溶融樹脂が凹溝にスムーズに導かれず、一
旦凹溝に入った溶融樹脂が溝のない部分に押し出された
りする。したがって、管の内面の本来平滑であるべき部
分、すなわち、リブを形成していない部分に凹凸が生じ
たり、不連続なリブが形成されたり、リブにささくれが
生じたりする恐れがある。また、押し出された後も粘度
が低いため、パリソン(半溶融状態の樹脂)がドローダ
ウンしやすく真円の管にフォーミングしにくくなる傾向
がある。
That is, when the apparent viscosity is less than 1000 poise, the molten resin is not smoothly guided to the groove, and the molten resin once entering the groove is extruded to a portion having no groove. Therefore, there is a possibility that unevenness may occur, a discontinuous rib may be formed, or a rib may be swelled on a portion of the inner surface of the tube that should be smooth, that is, a portion where the rib is not formed. Further, since the viscosity is low even after being extruded, the parison (resin in a semi-molten state) is liable to draw down, and tends to be difficult to form into a perfectly circular tube.

【0013】因に、通常、見掛け粘度が1000ポイズ
未満の樹脂であっても炭酸カルシウム等を樹脂中にブレ
ンドするか、シランカップリング剤などによる化学架橋
等を利用すれば、見掛け粘度を1000ポイズ以上に調
整することができる。また、凹溝または突条の断面形状
は、特に限定されないが、たとえば、略V字、略U字
形、略半円形等が挙げられ、その深さまたは高さは、適
宜でよいが、管内径に対して1/20〜1/50程度が
好ましく、1/25〜1/35程度が特に好ましい。
Incidentally, even if the resin has an apparent viscosity of less than 1000 poise, the apparent viscosity is usually 1000 poise by blending calcium carbonate or the like into the resin or utilizing chemical crosslinking with a silane coupling agent or the like. The above can be adjusted. The cross-sectional shape of the concave groove or the ridge is not particularly limited, and examples thereof include a substantially V shape, a substantially U shape, and a substantially semicircular shape. However, about 1/20 to 1/50 is preferable, and about 1/25 to 1/35 is particularly preferable.

【0014】一方、螺旋リブまたは螺旋溝の条数は、排
水能力の限界水準の設定によって異なり、1条でもよい
し複数条にしても構わないが、内径80〜200mmの管
の場合、8〜15条で、しかも、円周方向に均等に配置
することが好ましい。
On the other hand, the number of threads of the spiral ribs or grooves varies depending on the setting of the limit level of drainage capacity, and may be one or more, but in the case of a pipe having an inner diameter of 80 to 200 mm, it is 8 to It is preferable that the number of threads be 15 and that they be evenly arranged in the circumferential direction.

【0015】[0015]

【作用】上記構成によれば、パリソンは、内面に螺旋リ
ブまたは螺旋溝が形成されながら、自転せずに直線的に
押し出されてくる。したがって、このパリソンをフォー
ミング装置および冷却槽で整形冷却固化させたのち、押
出方向にのみ直線的に引き取る通常のパイプの引取機を
用い、連続的に引き取ることができる。
According to the above structure, the parison is extruded linearly without rotating, while forming the spiral rib or spiral groove on the inner surface. Therefore, after the parison is shaped and cooled and solidified by the forming device and the cooling tank, the parison can be continuously drawn by using an ordinary pipe drawing machine that draws linearly only in the extrusion direction.

【0016】[0016]

【実施例】以下に、本発明を、その実施例をあらわす図
面を参照しつつ詳しく説明する。図1は本発明にかかる
押出成形方法に使用する押出成形金型の1実施例をあら
わしている。図にみるように、この金型2は、固定ラン
ド21、固定コア22、回転コア(先端コア)23、回
転シャフト24、アダプターリング25を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing the embodiments thereof. FIG. 1 shows an embodiment of an extrusion molding die used in an extrusion molding method according to the present invention. As shown in the figure, the mold 2 includes a fixed land 21, a fixed core 22, a rotary core (tip core) 23, a rotary shaft 24, and an adapter ring 25.

【0017】固定コア22は、図2ないし図4に示すよ
うに、本体22aを挟んでフランジ22bとオイルレス
ベアリング22cとが設けられていて、本体22aの中
心軸に沿って回転シャフト24の挿通孔22dが設けら
れている。また、本体22aの表面には、段落ち部22
eが形成されている。回転コア23は、図1、図5およ
び図6に示すように、本体23aと本体23aの固定コ
ア22側端面に設けられたオイルレスベアリグ23bと
から構成されている。
As shown in FIGS. 2 to 4, the fixed core 22 is provided with a flange 22b and an oilless bearing 22c with the main body 22a interposed therebetween, and the rotary shaft 24 is inserted along the central axis of the main body 22a. A hole 22d is provided. In addition, on the surface of the main body 22a,
e is formed. As shown in FIGS. 1, 5 and 6, the rotary core 23 is composed of a main body 23a and an oilless bear rig 23b provided on the end surface of the main body 23a on the fixed core 22 side.

【0018】本体23aは、その周面に複数本(図では
8本)の凹溝23cが形成されていて、中心軸に沿って
回転シャフト24の挿通孔23dが設けられている。凹
溝23cは、溶融樹脂の入口側から徐々に深くなり、一
定の深さまでくるとその状態で平行に金型2の出口まで
設けられているとともに、回転軸に対して所定のリード
角αを有している。
A plurality of (eight in the figure) concave grooves 23c are formed on the peripheral surface of the main body 23a, and an insertion hole 23d for the rotary shaft 24 is provided along the central axis. The groove 23c is gradually deepened from the inlet side of the molten resin, and when it reaches a certain depth, the groove 23c is provided in parallel to the outlet of the mold 2, and a predetermined lead angle α is set with respect to the rotation axis. Have

【0019】そして、固定コア22と回転コア23と
は、挿通孔22d,23dに回転シャフト24を挿通さ
せ、回転シャフト24にナット27を締め込むことで、
回り止め26との間で強固に挟まれて、対面する2つの
オイルレスベアリング22c,23cが摺動自在に圧接
されている。なお、回転シャフト24は、固定コア22
の挿通孔22d内で、図1に示すように、オイルレスベ
アリング22f,22f,22fによって回転自在に支
持されているとともに、回転コア23のキー溝23eに
キー(図示せず)を打ち込むことで、回転コア23と一
体に回転するようになっている。
The fixed core 22 and the rotary core 23 are inserted into the through holes 22d and 23d through the rotary shaft 24, and the nut 27 is tightened onto the rotary shaft 24.
The two oilless bearings 22c and 23c facing each other are sandwiched firmly between the rotation stopper 26 and slidably pressed against each other. The rotating shaft 24 is fixed to the fixed core 22.
As shown in FIG. 1, the insertion hole 22d is rotatably supported by oilless bearings 22f, 22f, 22f, and a key (not shown) is driven into a key groove 23e of the rotary core 23. The rotary core 23 and the rotary core 23 rotate together.

【0020】従って、チェーン81を介して無段階で変
速可能な駆動装置(図示せず)と連結された回転シャフ
ト24が回転すると、回転シャフト24の回転に伴って
回転コア23のみがスムーズに回転する。しかも、固定
コア22と回転コア23とがオイルレスベアリング22
c,23cを介して圧接されているので、溶融樹脂が隙
間などに入り込まない。もちろん、駆動装置を停止すれ
ば、回転コア23も回転を停止するようになっている。
Therefore, when the rotary shaft 24 connected to a continuously variable transmission device (not shown) via the chain 81 rotates, only the rotary core 23 smoothly rotates as the rotary shaft 24 rotates. To do. In addition, the fixed core 22 and the rotating core 23 form the oilless bearing 22.
Since they are pressed against each other via c and 23c, the molten resin does not enter the gap or the like. Of course, when the driving device is stopped, the rotating core 23 also stops rotating.

【0021】固定ランド21は、図1に示すように、固
定コア22および回転コア23を外側から囲繞し、固定
コア22の段落ち部22eおよび回転コア23の外周面
との間に押出機1から押し出されてくる溶融樹脂の流路
(樹脂通過部)29を形成するとともに、フランジ22
bにボルト止めされて固定コア22と一体化されてい
る。
As shown in FIG. 1, the fixed land 21 surrounds the fixed core 22 and the rotary core 23 from the outside, and the extruder 1 is provided between the fixed land 22 and the stepped-down portion 22e of the fixed core 22 and the outer peripheral surface of the rotary core 23. The flow path (resin passage portion) 29 of the molten resin extruded from the flange 22 is formed.
It is bolted to b and integrated with the fixed core 22.

【0022】アダプターリング25は、図1に示すよう
に固定ランド21の側部に設けられていて、押出機(図
示せず)から押し出されてくる溶融樹脂を金型2内へ注
入する注入口となっている。なお、各オイルベアリング
22c,22f,23cの材質は、金属,合金,セラミ
ック等が挙げられ、管成形温度(通常160〜300
℃)、回転速度、耐磨耗性等を考慮して自由に選択する
ことができる。
The adapter ring 25 is provided on the side of the fixed land 21 as shown in FIG. 1, and is an injection port for injecting the molten resin extruded from the extruder (not shown) into the mold 2. Has become. The materials of the oil bearings 22c, 22f, 23c include metals, alloys, ceramics, etc., and the tube molding temperature (usually 160 to 300).
℃), rotation speed, wear resistance, etc. can be taken into consideration.

【0023】すなわち、この金型2では、押出機から金
型2へ送られた溶融樹脂が、図2に示すように、固定コ
ア22の本体22a表面に設けられた段落ち部22eと
固定ランド21との間に形成された第1樹脂通過部29
aを通り、次に回転コア23と固定ランド21との間に
形成される第2樹脂通過部29bを通ってパリソンとな
って金型2外へ押し出されるようになっている。しか
も、回転コア23が回転と、凹溝23cとの作用によっ
て、パリソンの内面に螺旋リブが形成されながら押し出
されるようになっている。
That is, in this mold 2, the molten resin sent from the extruder to the mold 2 has a step-down portion 22e and a fixed land 22e provided on the surface of the main body 22a of the fixed core 22, as shown in FIG. 21 and the first resin passage portion 29 formed between
After passing through a and then through a second resin passage portion 29b formed between the rotary core 23 and the fixed land 21, it becomes a parison and is pushed out of the mold 2. Moreover, due to the rotation of the rotary core 23 and the action of the concave groove 23c, the rotary core 23 is extruded while forming the spiral rib on the inner surface of the parison.

【0024】なお、この金型2では、第2樹脂通過部2
9bに溶融樹脂が入る前に、管軸(押出)方向)へ溶融
樹脂の速度が一定に調整しておくことが必要である。即
ち、上記のように速度が調整できていないと、第2樹脂
通過部29bで溶融樹脂が管の周方向で速度の速い遅い
が生じ、成形された内面螺旋リブ付き管は、ある方向に
曲がったものとなり商品価値が落ちる。そこで、この金
型2では、段落ち部22eに島状部22gを設け、押出
機から金型2内へ送られた溶融樹脂11を図2および図
3に矢印で示すように島状部22gを迂回させることで
直ちに管軸方向へ一定速度で押し出せるようにしてい
る。
In the mold 2, the second resin passage portion 2
Before the molten resin enters 9b, it is necessary to adjust the speed of the molten resin to the tube axis (extrusion direction) at a constant rate. That is, if the speed cannot be adjusted as described above, the molten resin causes a high speed and a slow speed in the circumferential direction of the pipe in the second resin passage portion 29b, and the formed inner surface spiral ribbed pipe bends in a certain direction. The product value is reduced. Therefore, in this mold 2, the stepped portion 22e is provided with an island-shaped portion 22g, and the molten resin 11 sent from the extruder into the mold 2 is filled with the island-shaped portion 22g as shown by an arrow in FIGS. By detouring, it is possible to immediately push out at a constant speed in the pipe axis direction.

【0025】つぎに、実施例をより具体的に説明する。 (実施例1)上記の金型2と同タイプの金型を用いて、
以下の成形条件で、口径が100A、リブ以外の部分の
管肉厚が3mm、螺旋ピッチが560mmのポリ塩化ビニル
製内面螺旋リブ付き合成樹脂管を成形したところ、パリ
ソンは、周方向に回転せず管軸方向に直線的に押し出さ
れてきた。
Next, the embodiment will be described more specifically. (Example 1) Using a mold of the same type as the above-mentioned mold 2,
Under the following molding conditions, a synthetic resin pipe with an inner surface spiral rib made of polyvinyl chloride having a bore of 100 A, a wall thickness of the portion other than the ribs of 3 mm, and a spiral pitch of 560 mm was molded, and the parison was rotated in the circumferential direction. Instead, it was extruded linearly in the tube axis direction.

【0026】したがって、特殊な回転式の引取機を用い
なくても、成形することができた。 成形条件 回転コアの溝深さ:6mm 溝のリード角:26°(押出方向に向かって右方向) 押出量:50kg/h 回転コア回転数:1rpm
Therefore, molding could be performed without using a special rotary type take-up machine. Molding conditions Groove depth of rotary core: 6 mm Lead angle of groove: 26 ° (to the right toward the extrusion direction) Extrusion rate: 50 kg / h Rotational core speed: 1 rpm

【0027】(実施例2)上記の金型2と同タイプの金
型を用いて、以下の成形条件で、口径が100A、リブ
以外の部分の管肉厚が2mm、螺旋ピッチが370mmのポ
リ塩化ビニル製内面螺旋リブ付き合成樹脂管を成形した
ところ、パリソンは、周方向に回転せず管軸方向に直線
的に押し出されてきた。
(Embodiment 2) Using a mold of the same type as the above-mentioned mold 2, under the following molding conditions, the diameter of the pipe is 100 A, the thickness of the pipe other than the rib is 2 mm, and the spiral pitch is 370 mm. When a synthetic resin pipe with an inner spiral rib made of vinyl chloride was molded, the parison was extruded linearly in the axial direction of the pipe without rotating in the circumferential direction.

【0028】したがって、特殊な回転式の引取機を用い
なくても、成形することができた。 成形条件 回転コアの溝深さ:3mm 溝のリード角:45°(押出方向に向かって右方向) 押出量:50kg/h 回転コア回転数:0.7rpm
Therefore, molding could be performed without using a special rotary type take-up machine. Molding conditions Groove depth of rotating core: 3 mm Lead angle of groove: 45 ° (right direction toward extrusion direction) Extrusion amount: 50 kg / h Rotating core rotation speed: 0.7 rpm

【0029】(比較例1)回転コア回転数を1.5rpm
とした以外は、実施例1と同様の成形条件で成形を行っ
たところ、パリソンが周方向に回転しながら押し出され
てきたため、周方向にも回転させつつ合成樹脂管を管軸
方向へ引き取る特殊な引取機を用いなければ、パリソン
部分に捩等の歪みが生じてうまく成形でなかった。
(Comparative Example 1) The rotating core rotation speed is 1.5 rpm.
Molding was carried out under the same molding conditions as in Example 1 except that the parison was extruded while rotating in the circumferential direction. Therefore, the synthetic resin pipe was pulled in the axial direction while rotating in the circumferential direction as well. Unless a special take-up machine was used, the parison portion was distorted due to distortion such as twisting, and the molding was not successful.

【0030】本発明にかかる押出成形方法は、上記の実
施例に限定されない。上記の実施例では、コアが固定コ
アと回転コアとから構成されていたが、図6に示した金
型101のようにコア全体が回転するような構造の金型
を用いるようにしてもよい。
The extrusion molding method according to the present invention is not limited to the above embodiments. In the above embodiment, the core is composed of the fixed core and the rotating core, but a mold having a structure in which the entire core rotates like the mold 101 shown in FIG. 6 may be used. .

【0031】[0031]

【発明の効果】本発明にかかる内面螺旋リブまたは溝付
き合成樹脂管の押出成形方法は、以上のように構成され
ているので、合成樹脂管を押出成形する際に通常使用さ
れている管軸方向に直線的に押し出されてきた管引き取
ることができる引取機を用いて所望の内面螺旋リブまた
は溝付き合成樹脂管を連続的に製造することができる。
Since the extrusion molding method of the inner surface spiral rib or grooved synthetic resin pipe according to the present invention is constituted as described above, the pipe shaft which is usually used when the synthetic resin pipe is extruded. A desired internal spiral rib or grooved synthetic resin pipe can be continuously manufactured using a take-out machine capable of taking out the pipe which has been extruded linearly in the direction.

【0032】したがって、設備コストが低減でき、生産
コストも低減できるようになる。
Therefore, the facility cost and the production cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる内面螺旋リブ付き合成樹脂管の
製造方法を実施するのに用いる金型の1例をあらわす断
面図である。
FIG. 1 is a cross-sectional view showing an example of a metal mold used for carrying out a method for manufacturing a synthetic resin pipe with an internal spiral rib according to the present invention.

【図2】図1の金型の固定コアの側面図である。FIG. 2 is a side view of a fixed core of the mold shown in FIG.

【図3】図2のB方向矢視図である。FIG. 3 is a view on arrow B in FIG.

【図4】図2のC方向矢視図である。FIG. 4 is a view in the direction of arrow C in FIG.

【図5】図1の金型の回転コアの側面図である。5 is a side view of the rotary core of the mold of FIG. 1. FIG.

【図6】図5のD方向矢視図である。FIG. 6 is a view in the direction of the arrow D in FIG.

【図7】公知の金型の断面図である。FIG. 7 is a cross-sectional view of a known mold.

【符号の説明】[Explanation of symbols]

2 金型 23 回転コア(コアの回転部) 23c 凹溝 α リード角 2 Mold 23 Rotating core (rotating part of core) 23c Recessed groove α Lead angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コアの少なくとも金型出口側が中心軸回り
に回転自在で、このコアの回転部表面にコアの出口側端
部まで達して所定のリード角を有する複数の凹溝または
突条が所定ピッチで形成されている押出成形金型を用
い、内面に前記コアの回転部の回転条件と凹溝または突
条とに対応した螺旋リブまたは溝が形成された合成樹脂
管を連続的に押出成形する内面螺旋リブまたは溝付き合
成樹脂管の押出成形方法であって、金型から連続的に押
し出される合成樹脂管が周方向に回転しない条件に前記
コアの回転部の回転速度、および、凹溝または突条のリ
ード角を設定することを特徴とする内面螺旋リブまたは
溝付き合成樹脂管の押出成形方法。
1. At least a die outlet side of a core is rotatable about a central axis, and a plurality of recessed grooves or ridges having a predetermined lead angle are formed on a surface of a rotating portion of the core to reach an end portion on an outlet side of the core. Using an extrusion molding die formed at a predetermined pitch, continuously extruding a synthetic resin pipe on the inner surface of which spiral ribs or grooves corresponding to the rotation conditions of the rotating portion of the core and concave grooves or ridges are formed. An extrusion molding method of a synthetic resin pipe with an inner spiral rib or a groove to be molded, wherein the rotational speed of the rotating portion of the core and the concave are provided under the condition that the synthetic resin pipe continuously extruded from the mold does not rotate in the circumferential direction. An extrusion molding method of an inner surface spiral rib or a grooved synthetic resin pipe, characterized in that a lead angle of the groove or the ridge is set.
JP03311693A 1993-02-23 1993-02-23 Extrusion molding method of synthetic resin pipe with inner spiral rib or groove Expired - Lifetime JP3398407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03311693A JP3398407B2 (en) 1993-02-23 1993-02-23 Extrusion molding method of synthetic resin pipe with inner spiral rib or groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03311693A JP3398407B2 (en) 1993-02-23 1993-02-23 Extrusion molding method of synthetic resin pipe with inner spiral rib or groove

Publications (2)

Publication Number Publication Date
JPH06246818A true JPH06246818A (en) 1994-09-06
JP3398407B2 JP3398407B2 (en) 2003-04-21

Family

ID=12377673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03311693A Expired - Lifetime JP3398407B2 (en) 1993-02-23 1993-02-23 Extrusion molding method of synthetic resin pipe with inner spiral rib or groove

Country Status (1)

Country Link
JP (1) JP3398407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151984B1 (en) * 2020-04-27 2020-09-04 이광희 Plastic pipe and forming apparatus thereof having flat outer surface and helical inner surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151984B1 (en) * 2020-04-27 2020-09-04 이광희 Plastic pipe and forming apparatus thereof having flat outer surface and helical inner surface

Also Published As

Publication number Publication date
JP3398407B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US5683767A (en) Ultra-high molecular weight polyethylene thin-wall pipe, and method of an apparatus for manufacturing the same
US3299908A (en) Hollow reinforced seamless tubular articles
US3666389A (en) Extrusion apparatus for making conduit pipe
JPH06246818A (en) Extrusion molding method of internal helix rib or grooved synthetic resin pipe
US5888555A (en) Extrusion die
JP3212387B2 (en) Extrusion molding method of synthetic resin pipe with inner spiral rib or groove
JP3212356B2 (en) Extrusion molding method of synthetic resin tube with inner spiral rib
JP2810787B2 (en) Extrusion mold
EP0868281B1 (en) Apparatus for shaping and cooling corrugated plastic pipes
JP3401052B2 (en) Extrusion molding device for synthetic resin tube with internal spiral ribs or spiral grooves
JP3821930B2 (en) Optical fiber support spacer
JP3359378B2 (en) Manufacturing method of synthetic resin tube with inner spiral rib or spiral groove
JPH05293873A (en) Extrusion molding method for synthetic resin tube with inner face helical ribs
JP3192749B2 (en) Extrusion molding method of synthetic resin tube with inner spiral rib
JPH05318557A (en) Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof
JP3377819B2 (en) Extrusion mold for manufacturing synthetic resin pipe and method for extruding synthetic resin pipe using this extrusion mold
JPH11170334A (en) Method and mold for producing tubular member
JP3057615B2 (en) Ultra high molecular weight polyethylene coated steel pipe
JP3051487B2 (en) Ultra-high molecular weight polyethylene shrink pipe, method and apparatus for producing the same
JPS5813335B2 (en) Method for manufacturing a spiral tubular body provided with reinforcing ribs
JPH0238029A (en) Manufacture of tube with spiral threads and apparatus therefor
JPH0467494B2 (en)
CN116277868A (en) Manufacturing method of double screw, double screw and extruder
JPH0278517A (en) Manufacture of plastic pipe with inner spiral rib
JPH06311624A (en) Manufacture of linear member pressure feeding pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term