JPH05318557A - Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof - Google Patents
Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereofInfo
- Publication number
- JPH05318557A JPH05318557A JP4132321A JP13232192A JPH05318557A JP H05318557 A JPH05318557 A JP H05318557A JP 4132321 A JP4132321 A JP 4132321A JP 13232192 A JP13232192 A JP 13232192A JP H05318557 A JPH05318557 A JP H05318557A
- Authority
- JP
- Japan
- Prior art keywords
- spiral
- mold
- pipe
- core
- spiral grooves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、内面螺旋リブ付き合成
樹脂管の押出成形用金型に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a die for extrusion molding a synthetic resin tube having an inner spiral rib.
【0002】[0002]
【従来の技術】建築物の排水縦管として使用される内面
螺旋リブ付き合成樹脂管を連続的に製造する方法とし
て、特公昭49−42670号公報にみるような製造方
法が提案されている。この方法は、図8にみるように押
出機101の金型(ダイス)102から管内面に長さ方
向に1本又は2本以上の突条又は凹溝を有する熱可塑性
樹脂管103を連続的に押し出す。そして、押し出され
てくる軟化状の管103を直ちに外径フォーマー104
とその外側に設けた冷却用ジャケット105とによって
外径を規制しつつ冷却し、その後管軸に直交して単独で
回転しうる引取ロール106によって管103の軟化状
部分に捩じれを与えつつ引き取るようにしている。2. Description of the Related Art As a method for continuously manufacturing a synthetic resin pipe with an inner spiral rib used as a drainage vertical pipe of a building, a manufacturing method as disclosed in Japanese Examined Patent Publication No. 49-42670 has been proposed. In this method, as shown in FIG. 8, a thermoplastic resin tube 103 having one or two or more ridges or grooves in the length direction is continuously formed from a die (die) 102 of an extruder 101 on the inner surface of the tube. Extrude into. Then, the softened tube 103 pushed out is immediately replaced with the outer diameter former 104.
And a cooling jacket 105 provided on the outer side of the pipe 103 to cool the pipe 103 while controlling the outer diameter thereof, and then to draw it while twisting the softened portion of the pipe 103 by a take-up roll 106 that can rotate independently orthogonal to the pipe axis. I have to.
【0003】すなわち、外径フォーマー104を金型1
02の直後に設けることにより管103の膨張を防ぐと
ともに、外径フォーマー104の冷却用ジャケット10
5により管表面を急速に冷却して管表面部分が変形しな
いようにする。そして、管103に捩じれを与えつつ引
き取ることで、管103の内面側が捩じれ、突条又は凹
溝が螺旋状に成形されるようになっている。That is, the outer diameter former 104 is attached to the mold 1.
It is provided immediately after 02 to prevent expansion of the pipe 103 and to cool the jacket 10 of the outer diameter former 104.
The tube surface is rapidly cooled by 5 so that the tube surface portion is not deformed. Then, the pipe 103 is twisted and taken out, so that the inner surface side of the pipe 103 is twisted, and the ridge or the groove is formed in a spiral shape.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記方法で
は、管103の軟化状部分を強制的に捩じるようにして
成形するため、管外表面の歪み>管内表面の歪み>管中
央部の歪みと言うように管の外表面と内表面に残る歪み
に差が生じる。したがって、配管後に捩じれ等の変形が
生じやすい。また、特に、管内を温熱排水が流下したり
すると、管の温度が上がり弾性率が低下するため、管は
押出金型内の状態、つまり突条又は凹溝がない直管状態
に戻ろうとする。However, in the above method, since the softened portion of the pipe 103 is formed by forcibly twisting it, the distortion of the outer surface of the pipe> the distortion of the inner surface of the pipe> the central portion of the pipe. There is a difference between the strain remaining on the outer surface and the inner surface of the tube, which is called strain. Therefore, deformation such as twisting is likely to occur after the piping. Further, in particular, when hot waste water flows down in the pipe, the temperature of the pipe rises and the elastic modulus decreases, so that the pipe tries to return to the state in the extrusion die, that is, the straight pipe state without ridges or grooves. ..
【0005】すなわち、螺旋リブや溝が小さくなってし
まい、所定の排水能力が得られなくなることがある。そ
こで、本発明者らは、上記問題を解決するために、螺旋
リブに対応する断面形状の螺旋溝がコアーの出口側表面
に螺旋リブと同数だけ設けられた押出金型から合成樹脂
管を連続的に押し出すとともに、押し出された管を管の
管軸方向への押出速度および管の周方向の自転速度に同
調させて回転引取機で引き取る構成の内面螺旋リブ付き
合成樹脂管の押出成形方法を先に提案した。In other words, the spiral ribs and grooves may become smaller, and a predetermined drainage capacity may not be obtained. Therefore, in order to solve the above-mentioned problems, the present inventors continuously connect a synthetic resin pipe from an extrusion die in which spiral grooves having a cross-sectional shape corresponding to the spiral rib are provided on the outlet side surface of the core in the same number as the spiral rib. A method of extruding a synthetic resin pipe with an internal spiral rib that has a structure in which the extruded pipe is synchronized with the extrusion speed of the pipe in the axial direction of the pipe and the rotation speed in the circumferential direction of the pipe and is taken out by a rotary take-up machine. I proposed earlier.
【0006】この方法によれば、図9および図10にみ
るように、押出機1から金型202へ送られた溶融樹脂
11は、コアー226とランド227との間に形成され
た溶融樹脂通過部229を通り、金型202から所望形
状の軟化状態の管(パリソン)51となって押し出され
るのであるが、コアー226の出口側に螺旋溝228が
形成されているので、パリソン51は、金型202から
所定の押出速度で管軸方向へ押し出されるとともに、螺
旋溝228に対応する螺旋リブが内部に形成されつつ周
方向に自転しながら押し出される。そして、このパリソ
ン51を直ちに冷却槽付きフォーミングチューブ3内に
通して外径を整え冷却固化して所望形状の管5にしたの
ち、引取機4で管5の押出速度および自転速度に同調さ
せて管5を連続的に引き取るようになっている。また、
引取機4で引き取られた管5は、切断機6で所定の長さ
に切断されて排出機7に送られるようになっている。According to this method, as shown in FIGS. 9 and 10, the molten resin 11 sent from the extruder 1 to the die 202 passes through the molten resin formed between the core 226 and the land 227. Although it passes through the part 229 and is extruded from the mold 202 as a softened tube (parison) 51 having a desired shape, since the spiral groove 228 is formed on the outlet side of the core 226, the parison 51 is made of metal. It is extruded from the mold 202 at a predetermined extrusion speed in the tube axis direction, and is extruded while rotating in the circumferential direction while the spiral rib corresponding to the spiral groove 228 is formed inside. Then, the parison 51 is immediately passed through the forming tube 3 with a cooling tank to adjust the outer diameter to be cooled and solidified to form the tube 5 having a desired shape, and then the take-out machine 4 synchronizes with the extrusion speed and the rotation speed of the tube 5. The tube 5 is continuously drawn. Also,
The pipe 5 taken by the take-up machine 4 is cut into a predetermined length by the cutting machine 6 and sent to the discharge machine 7.
【0007】従って、従来のようにパリソン51部分に
捩じりを加えたりすることなく垂れ流し状態で金型20
2から押し出されると同時に内面に螺旋リブが形成され
管5の内外に歪みがなく内面に複数条の螺旋リブが形成
された内面螺旋リブ付き合成樹脂管5を得ることができ
ると言う優れたものである。しかしながら、上記のよう
な方法では、螺旋リブが管の内面に螺旋溝の数だけ形成
されるのであるが、成形された内面螺旋リブの断面形状
がコアーに設けた螺旋溝の断面形状とおりに製作できな
いため、あらかじめ変形を予想して螺旋溝の形状を設計
しなければならず、金型の設計が面倒であった本発明
は、このような事情に鑑みて、配管後に捩じれ等の変形
を起こしたり、内部を流れる温熱排水等の影響により螺
旋リブが小さくなったりせず、排水能力が半永久的に損
なわれることがない内面螺旋リブ付き合成樹脂管を製造
することができることは勿論のこと、コアーに設けた螺
旋溝と略同じ断面形状の螺旋リブを形成することができ
る押出成形用金型を提供することを目的としている。[0007] Therefore, the mold 20 is dripped in a state without twisting the parison 51 as in the prior art.
It is excellent that it is possible to obtain a synthetic resin pipe 5 with an inner surface spiral rib in which a spiral rib is formed on the inner surface at the same time as being extruded from No. 2 and there is no distortion inside and outside the tube 5, and a plurality of spiral ribs are formed on the inner surface Is. However, in the method as described above, the spiral ribs are formed on the inner surface of the pipe by the number of spiral grooves. However, the cross-sectional shape of the molded inner-surface spiral ribs is the same as the cross-sectional shape of the spiral groove provided on the core. Therefore, the shape of the spiral groove must be designed in advance in anticipation of deformation, and the present invention in which the design of the mold was troublesome, in view of such circumstances, deformation such as twisting occurs after piping. It is also possible to manufacture a synthetic resin pipe with an inner spiral rib that does not impair the drainage capacity semi-permanently because the spiral rib does not become smaller due to the effect of hot waste water flowing inside, etc. It is an object of the present invention to provide an extrusion molding die capable of forming a spiral rib having substantially the same cross-sectional shape as the spiral groove provided in the.
【0008】[0008]
【課題を解決するための手段】本発明にかかる押出成形
用金型は、このような目的を達成するために、螺旋リブ
に対応する断面形状の螺旋溝が固定コアーの金型出口側
表面に複数本設けられた内面螺旋リブ付き合成樹脂管の
押出成形用金型であって、前記固定コアーは、前記螺旋
溝が設けられた部分より金型入口側に、各螺旋溝の底の
頂部を円周方向に結ぶことで形成される円と略同じ外径
の最小径部が形成されている構成とした。In order to achieve such an object, the extrusion molding die according to the present invention has a spiral groove having a cross-sectional shape corresponding to the spiral rib on the surface of the fixed core on the die exit side. A die for extrusion molding of a plurality of synthetic resin pipes with spiral ribs on the inner surface, wherein the fixed core has a top portion at the bottom of each spiral groove on the die inlet side from the portion where the spiral groove is provided. A minimum diameter portion having an outer diameter substantially the same as the circle formed by connecting in the circumferential direction is formed.
【0009】上記構成において、螺旋溝は、特に限定さ
れないが、一定の深さになるまでコアーの出口側に向か
って除々に深くなるように形成しておくことが好まし
い。また、螺旋溝のピッチは、管軸方向の押出速度およ
び樹脂の溶融粘度に大きく依存するため、押出機の可塑
化能力が高く押出速度の速い場合には、螺旋溝のピッチ
を小さくするとよい。In the above structure, the spiral groove is not particularly limited, but it is preferable to form the spiral groove so that the spiral groove gradually becomes deeper toward the outlet side of the core. Further, the pitch of the spiral groove largely depends on the extrusion speed in the tube axis direction and the melt viscosity of the resin. Therefore, when the extruder has a high plasticizing ability and a high extrusion speed, the pitch of the spiral groove may be reduced.
【0010】因に、螺旋溝のピッチを100としたい場
合、螺旋溝の螺旋ピッチを35〜65程度に設定してお
くことが好ましい。そして、押出機の可塑化能力が高く
押出速度が速くなるに従って螺旋溝のピッチを35に近
づけるようにすればよい。また、螺旋溝の断面形状は、
特に限定されないが、たとえば、略V字、略U字形、略
半円形等が挙げられ、その深さは、適宜でよいが、管内
径に対して1/20〜1/50程度が好ましく、1/2
5〜1/35程度が特に好ましい。Incidentally, when it is desired to set the pitch of the spiral groove to 100, it is preferable to set the spiral pitch of the spiral groove to about 35 to 65. Then, the pitch of the spiral groove may be made closer to 35 as the extruder has a higher plasticizing ability and a higher extrusion speed. The cross-sectional shape of the spiral groove is
Although not particularly limited, examples thereof include a substantially V shape, a substantially U shape, and a substantially semicircular shape, and the depth thereof may be appropriate, but it is preferably about 1/20 to 1/50 with respect to the inner diameter of the pipe. / 2
About 5 to 1/35 is particularly preferable.
【0011】一方、螺旋溝の条数は、排水能力の限界水
準の設定によって異なり、1条でもよいし複数条にして
も構わないが、内径80〜200mmの管の場合、8〜1
5条で、しかも、円周方向に均等に配置することが好ま
しい。また、この金型を使用して形成できる管を構成す
る合成樹脂としては、特に限定されないが、たとえば、
ポリ塩化ビニル、後塩素化ポリ塩化ビニル、ポリエチレ
ン,ナイロン等が挙げられ、見掛け粘度1000ポイズ
以上になる合成樹脂が特に好ましい。On the other hand, the number of threads of the spiral groove depends on the setting of the limit level of drainage capacity and may be one or more, but in the case of a pipe having an inner diameter of 80 to 200 mm, it is 8 to 1
It is preferable that the number of threads is five, and they are evenly arranged in the circumferential direction. Further, the synthetic resin constituting the pipe that can be formed by using this mold is not particularly limited, for example,
Examples thereof include polyvinyl chloride, post-chlorinated polyvinyl chloride, polyethylene, nylon, and the like, and a synthetic resin having an apparent viscosity of 1000 poise or more is particularly preferable.
【0012】すなわち、見掛け粘度が1000ポイズ未
満になると、溶融樹脂が螺旋溝にスムーズに導かれず、
一旦螺旋溝に入った溶融樹脂が溝のない部分に押し出さ
れたりする。したがって、管の内面の本来平滑であるべ
き部分、すなわち、リブを形成していない部分に凹凸が
生じたり、不連続なリブが形成されたり、リブにささく
れが生じたりする恐れがある。また、押し出された後も
粘度が低いため、パリソン(半溶融状態の樹脂)がドロ
ーダウンしやすく真円の管にフォーミングしにくくなる
傾向がある。That is, when the apparent viscosity is less than 1000 poise, the molten resin is not smoothly guided to the spiral groove,
The molten resin once entering the spiral groove may be extruded to the part without the groove. Therefore, there is a possibility that unevenness may occur in a portion of the inner surface of the tube which should be originally smooth, that is, a portion where no rib is formed, a discontinuous rib may be formed, or a rib may be swelled. Further, since the viscosity is low even after being extruded, the parison (resin in a semi-molten state) is liable to draw down and tends to be difficult to form into a perfectly circular tube.
【0013】因に、通常、見掛け粘度が1000ポイズ
未満の樹脂であっても炭酸カルシウム等を樹脂中にブレ
ンドするか、シランカップリング剤などによる化学架橋
等を利用すれば、見掛け粘度を1000ポイズ以上に調
整することができる。Incidentally, even if the resin has an apparent viscosity of less than 1000 poise, the apparent viscosity is usually 1000 poise by blending calcium carbonate or the like into the resin or by utilizing chemical crosslinking with a silane coupling agent or the like. It can be adjusted to the above.
【0014】[0014]
【作用】上記構成によれば、押出機から金型内へ注入さ
れた溶融樹脂は、固定コアー(以下、「コアー」とのみ
記す)26とランド27によって形成される図1にみる
ように樹脂通過部29を通って管状になって金型から押
し出されるのであるが、コアー26の金型出口側表面に
複数本の螺旋溝28が設けられているため、螺旋溝28
の螺旋に沿って自転するとともに内面に螺旋溝28に対
応する螺旋リブを形成しつつ押し出される。According to the above construction, the molten resin injected from the extruder into the mold is the resin formed by the fixed core (hereinafter referred to as "core") 26 and the land 27 as shown in FIG. Although it is extruded from the mold in a tubular shape through the passing portion 29, the spiral groove 28 is provided on the surface of the core 26 on the mold outlet side, and thus the spiral groove 28 is provided.
While being rotated along the spiral, the spiral rib corresponding to the spiral groove 28 is formed on the inner surface and is extruded.
【0015】しかも、コアー26の螺旋溝28が形成さ
れた(ハ)部分より金型入口側(溶融樹脂入口側)の
(イ)部分(最小径部)が各螺旋溝28の底の頂部を円
周方向に結ぶことで形成される円と略同じ外径になって
おり、図1の(イ)部分でコアー表面を流れる溶融樹脂
は、(ロ)部分で流下断面が狭くなるため半径方向に圧
縮され、管軸方向(特に金型出口方向)へ伸びる。この
変形によって樹脂内に弾性エネルギーが大きく蓄積す
る。次に(ハ)部分に達すると、図2に示すように溝に
対応する部分の溶融樹脂Bは、溝の分だけ流下断面が広
くなるため、弾性回復し溝頂部に向かって一気に変形す
る(膨らむ)。しかも、溶融樹脂Bの両側の溶融樹脂
A,Cも(ハ)部分に達すると蓄積された弾性エネルギ
ーを開放しようと溶融樹脂B側に向かって変形して、溶
融樹脂Bをさらに溝頂部側に押し込む。したがって、パ
リソン(溶融状態の管状体)は、内面に螺旋溝と略同じ
断面形状の螺旋リブが形成されつつ金型から押し出され
ることになる。Moreover, the (a) portion (minimum diameter portion) on the die inlet side (molten resin inlet side) of the (c) portion of the core 26 where the spiral groove 28 is formed is the top of the bottom of each spiral groove 28. The outer diameter is almost the same as the circle formed by connecting in the circumferential direction, and the molten resin flowing on the core surface in the part (a) of FIG. Compressed in the direction of the tube axis and extends in the direction of the tube axis (especially the die outlet direction). Due to this deformation, a large amount of elastic energy is accumulated in the resin. Next, when it reaches the portion (c), as shown in FIG. 2, the molten resin B in the portion corresponding to the groove has a wider flow-down cross section corresponding to the groove, so that it elastically recovers and is deformed all at once toward the groove top ( Bulge). Moreover, when the molten resins A and C on both sides of the molten resin B reach the portion (C), they are deformed toward the molten resin B side in order to release the accumulated elastic energy, and the molten resin B is further moved to the groove top side. Push in. Therefore, the parison (a tubular body in a molten state) is extruded from the mold while forming spiral ribs having substantially the same cross-sectional shape as the spiral groove on the inner surface.
【0016】[0016]
【実施例】以下に、本発明を、その実施例をあらわす図
面を参照しつつ詳しく説明する。図3〜図5にみるよう
に、この金型2は、ブレーカプレート21、アダプター
22、後部23、トピード24、ブリッジ25、コアー
26、ランド27から構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing the embodiments thereof. As shown in FIGS. 3 to 5, the mold 2 is composed of a breaker plate 21, an adapter 22, a rear portion 23, a topede 24, a bridge 25, a core 26, and a land 27.
【0017】コアー26とランド27との間に形成され
る溶融樹脂通過部のクリアランスは、押し出し方向に向
かってブリッジ25より徐々に狭くなっていて、コアー
26の先端には、コアー平行部(コアー先端部)26a
が設けられている。コアー26は、コアー平行部26a
の表面に断面V字形の螺旋溝28が12条等間隔に形成
されていて、螺旋溝28の部分を除くとコアー平行部2
6aは、全長にわたってほぼ等しい径をしている。ま
た,ランド27とコアー平行部26aとの隙間は、管軸
(金型2の中心線)と平行である。The clearance of the molten resin passage portion formed between the core 26 and the land 27 is gradually narrower in the extrusion direction than the bridge 25, and the tip of the core 26 has a core parallel portion (core portion). Tip) 26a
Is provided. The core 26 is a core parallel portion 26a.
12 spiral grooves 28 having a V-shaped cross section are formed on the surface of the core at equal intervals. Except for the spiral groove 28, the core parallel portion 2 is formed.
6a has a substantially equal diameter over the entire length. The gap between the land 27 and the core parallel portion 26a is parallel to the tube axis (center line of the mold 2).
【0018】螺旋溝28は、図6にみるように、溝の始
端部(押出機側)28cが浅く不完全な溝になってお
り、途中から一定の深さの完全な溝28dになってい
る。また、このコアー26は、コアー平行部26aの螺
旋溝28が形成された部分より少し金型入口側寄りに最
小径部26bが形成されている。コアー平行部26aと
最小径部26bとの間には、大径部26cがリング状に
設けられている。As shown in FIG. 6, the spiral groove 28 is an incomplete groove having a shallow groove starting end portion (extruder side) 28c and a complete groove 28d having a constant depth from the middle. There is. Further, the core 26 has a minimum diameter portion 26b formed slightly closer to the die inlet side than the portion where the spiral groove 28 of the core parallel portion 26a is formed. A large diameter portion 26c is provided in a ring shape between the core parallel portion 26a and the minimum diameter portion 26b.
【0019】最小径部26bは、各螺旋溝28の底頂部
28aを円周方向に結んだ円と略同じ径になっている。
すなわち、本実施例の金型2を用いれば、図9の金型2
02と同様に、押出機1から金型2へ送られた溶融樹脂
11は、コアー26とランド27との間に形成された溶
融樹脂通過部29を通り、金型2から内面に螺旋リブが
形成されたパリソン51となって周方向に自転しながら
垂れ流し状態で金型2から押し出される。しかも、螺旋
溝28よりも金型入口側に最小径部26bが設けられて
いるので、溶融樹脂が螺旋溝28に密に充填され、ほぼ
螺旋溝28の断面形状とおりの螺旋リブが内面に形成さ
れる。そして、図9の金型202を用いる場合と同様
に、押し出されたパリソン51を押出速度と自転速度に
同調させて回転引取機で引き取ることで、従来のように
軟化状態のパリソン5部分に捩じりを加えたりすること
なく内面螺旋リブ付き管を得ることができる。The minimum diameter portion 26b has substantially the same diameter as the circle connecting the bottom apex portions 28a of the spiral grooves 28 in the circumferential direction.
That is, if the mold 2 of this embodiment is used, the mold 2 of FIG.
Similarly to 02, the molten resin 11 sent from the extruder 1 to the mold 2 passes through the molten resin passage portion 29 formed between the core 26 and the land 27, and spiral ribs are formed on the inner surface from the mold 2. The formed parison 51 is pushed out from the mold 2 in a running state while rotating in the circumferential direction. Moreover, since the minimum diameter portion 26b is provided closer to the die inlet side than the spiral groove 28, the molten resin is densely filled in the spiral groove 28, and a spiral rib having substantially the same cross-sectional shape as the spiral groove 28 is formed on the inner surface. To be done. Then, as in the case of using the mold 202 of FIG. 9, the extruded parison 51 is synchronized with the extrusion speed and the rotation speed and taken by a rotary take-off machine, so that the parison 5 in the softened state is twisted as in the conventional case. An inner spiral ribbed tube can be obtained without kinking.
【0020】因に、コアー平行部(長さ75mm、固定ラ
ンドとのクリアランス2mm)に断面V形(幅5mm,深さ
3mm)の螺旋溝28を円周に30度毎に12本設けた図
3と同形の金型を用い内径100mmの硬質塩ビ製内面螺
旋リブ付き管を成形したところ、内面螺旋リブ付き管の
リブは、高さが2.6 mm、螺旋ピッチが1600mmでリブ断面
形状は、螺旋溝28と略同じV形状であった。Incidentally, a diagram in which 12 spiral grooves 28 having a V-shaped cross section (width 5 mm, depth 3 mm) are provided on the circumference of the core parallel portion (length 75 mm, clearance with fixed land 2 mm) every 30 degrees around the circumference. When a hard PVC inner surface spiral rib tube with an inner diameter of 100 mm was molded using a mold of the same shape as 3, the ribs of the inner spiral rib tube had a height of 2.6 mm, a spiral pitch of 1600 mm, and a rib cross-sectional shape of spiral. The V shape was substantially the same as that of the groove 28.
【0021】一方、コアー平行部(長さ75mm、固定ラ
ンドとのクリアランス2mm)に断面V形(幅5mm,深さ
3mm)の螺旋溝28を円周に30度毎に12本設けた図
9と同形の金型を用い内径100mmの硬質塩ビ製内面螺
旋リブ付き管を成形したところ、得られた螺旋リブ付き
管は、リブの高さが1.4 mm、螺旋ピッチが1600mmでリブ
断面形状は、半径1.4 mmの半円状となっていた。On the other hand, 12 spiral grooves 28 having a V-shaped cross section (width 5 mm, depth 3 mm) are provided in the circumference of the core parallel portion (length 75 mm, clearance with fixed land 2 mm) at intervals of 30 degrees in FIG. When a hard PVC inner surface spiral rib tube with an inner diameter of 100 mm was molded using a mold of the same shape, the resulting spiral rib tube had a rib height of 1.4 mm, a spiral pitch of 1600 mm, and a rib cross-sectional shape of It had a semi-circular shape with a radius of 1.4 mm.
【0022】本発明にかかる内面螺旋リブ付き合成樹脂
管の押出成形金型は、上記の実施例に限定されない。た
とえば、上記の実施例では、コアー平行部26aと最小
径部26bとの間にリング状に大径部26cが形成され
ているが、図7のように大径部26cがなくても構わな
い。The extrusion molding die for the synthetic resin pipe with the inner surface spiral rib according to the present invention is not limited to the above embodiment. For example, in the above embodiment, the large diameter portion 26c is formed in a ring shape between the core parallel portion 26a and the minimum diameter portion 26b, but the large diameter portion 26c may be omitted as shown in FIG. ..
【0023】[0023]
【発明の効果】本発明にかかる内面螺旋リブ付き合成樹
脂管の押出成形金型は、以上のように構成されているの
で、金型を通って押し出されるパリソンは、所定の押出
速度で管軸方向へ押し出されるとともに、螺旋溝に対応
する螺旋リブが内部に形成されつつ周方向に自転しなが
ら押し出される。そして、このパリソンを引取機で押出
速度および自転速度に同調させて連続的に引き取るよう
にすれば、パリソンの部分に捩じり等の負荷がかずに内
面螺旋リブ付き管を得ることができる。EFFECT OF THE INVENTION Since the extrusion molding die for the synthetic resin pipe with the inner surface spiral rib according to the present invention is constructed as described above, the parison extruded through the die is a tube shaft at a predetermined extrusion speed. In addition to being extruded in the direction, the spiral rib corresponding to the spiral groove is formed inside and extruded while rotating in the circumferential direction. Then, if this parison is continuously drawn in synchronization with the extrusion speed and the rotation speed by a take-up machine, the inner spiral rib tube can be obtained without applying a load such as twisting to the parison portion.
【0024】したがって、得られた内面螺旋リブ付き合
成樹脂管は、大きな歪みが残っていないとともに、管の
内外で歪みに差がないものとなり、配管後に捩じれ等の
変形を起こしたり、内部を流れる温熱排水等の影響によ
り螺旋リブが小さくなったりしない。すなわち、この合
成樹脂管を中層、高層等の建築物の排水用縦管として用
いれば、排水の流下速度を効果的に減衰させ管内中心部
に充分な通気を確保する能力が半永久的に損なわれるこ
とがない。Therefore, in the obtained synthetic resin pipe with the inner surface spiral rib, a large strain does not remain, and there is no difference in the strain between the inside and outside of the pipe, which causes deformation such as twisting after the pipe or flows inside. The spiral rib does not become smaller due to the effect of hot water drainage. That is, if this synthetic resin pipe is used as a vertical pipe for drainage of buildings such as middle- and high-rise buildings, the ability to effectively reduce the downflow rate of drainage and ensure sufficient ventilation in the center of the pipe is impaired semipermanently. Never.
【0025】しかも、螺旋溝の断面形状と略同じ断面形
状の螺旋リブを形成することができ、金型の設計が容易
なものとなる。Moreover, it is possible to form a spiral rib having a cross-sectional shape substantially the same as the cross-sectional shape of the spiral groove, which facilitates the design of the mold.
【図1】樹脂通過部での樹脂の動きを模式的に説明する
樹脂通過部の横断面図である。FIG. 1 is a transverse cross-sectional view of a resin passage portion schematically illustrating movement of resin in the resin passage portion.
【図2】螺旋溝部分での樹脂の動きを模式的に説明する
樹脂通過部の縦断面図である。FIG. 2 is a vertical cross-sectional view of a resin passage portion for schematically explaining the movement of resin in a spiral groove portion.
【図3】本発明にかかる押出成形用金型の1実施例をあ
らわす断面図である。FIG. 3 is a cross-sectional view showing an example of an extrusion molding die according to the present invention.
【図4】図3の金型のコアーの半断面図である。FIG. 4 is a half cross-sectional view of the core of the mold of FIG.
【図5】図3のX方向矢視図である。5 is a view taken in the direction of the arrow X in FIG.
【図6】螺旋溝部分の形状をあらわす断面図である。FIG. 6 is a cross-sectional view showing the shape of a spiral groove portion.
【図7】別実施例の金型の樹脂通過部の断面図である。FIG. 7 is a cross-sectional view of a resin passage portion of a mold of another embodiment.
【図8】公知の内面螺旋リブ付き合成樹脂管の製造方法
をあらわす説明図である。FIG. 8 is an explanatory view showing a known method for manufacturing a synthetic resin pipe with an inner spiral rib.
【図9】先行例の金型をあらわす断面図である。FIG. 9 is a cross-sectional view showing a mold of a prior art example.
【図10】内面螺旋リブ付き合成樹脂管の製造方法を実
施するのに用いる合成樹脂管製造装置の1例をあらわす
斜視図である。FIG. 10 is a perspective view showing an example of a synthetic resin pipe manufacturing apparatus used for carrying out the method for manufacturing a synthetic resin pipe with an inner spiral rib.
2 金型 5 合成樹脂管 26 コアー 28 螺旋溝 26b 最小径部 28a 底頂部 2 mold 5 synthetic resin pipe 26 core 28 spiral groove 26b minimum diameter part 28a bottom top part
Claims (1)
定コアーの金型出口側表面に複数本設けられた内面螺旋
リブ付き合成樹脂管の押出成形用金型であって、前記固
定コアーは、前記螺旋溝が設けられた部分より金型入口
側に、各螺旋溝の底頂部を円周方向に結ぶことで形成さ
れる円と略同じ外径の最小径部が形成されていることを
特徴とする押出成形用金型。1. A mold for extrusion molding of a synthetic resin pipe with an inner surface spiral rib, wherein a plurality of spiral grooves having a cross-sectional shape corresponding to the spiral rib are provided on the surface of the fixed core on the mold outlet side, wherein the fixed core. Is that a minimum diameter part having substantially the same outer diameter as a circle formed by connecting the tops of the bottoms of the spiral grooves in the circumferential direction is formed on the die inlet side of the portion where the spiral grooves are provided. A die for extrusion molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4132321A JPH05318557A (en) | 1992-05-25 | 1992-05-25 | Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4132321A JPH05318557A (en) | 1992-05-25 | 1992-05-25 | Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05318557A true JPH05318557A (en) | 1993-12-03 |
Family
ID=15078586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4132321A Pending JPH05318557A (en) | 1992-05-25 | 1992-05-25 | Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05318557A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206247A (en) * | 1992-11-30 | 1994-07-26 | Furenzu Of Furiijia:Kk | Method for extrusion molding of profile pipes |
-
1992
- 1992-05-25 JP JP4132321A patent/JPH05318557A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206247A (en) * | 1992-11-30 | 1994-07-26 | Furenzu Of Furiijia:Kk | Method for extrusion molding of profile pipes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1088719A (en) | Process for the sizing of coextruded, multiple-layer extruded profiles from thermoplastic synthetic resins | |
CA1275773C (en) | Apparatus and a method for the protection of ribbed pipes | |
ZA200304340B (en) | Methods and apparatus for extruding a tubular film. | |
JPH0777765B2 (en) | Method for producing a tube with smooth inside and ribs on the outside from an extrudable plastic and an apparatus for carrying out the method | |
JP2007320056A (en) | Die for extrusion | |
US4036930A (en) | Method of manufacturing resin tubes alternately having a thick wall portion and a thin wall portion | |
US3299908A (en) | Hollow reinforced seamless tubular articles | |
JPH05318557A (en) | Mold for extrusion molding of synthetic resin pipe having spiral rib provided to inner surface thereof | |
FI77406B (en) | MUNSTYCKE FOER STRAENGSPRUTNINGSANORDNING. | |
JPH05293873A (en) | Extrusion molding method for synthetic resin tube with inner face helical ribs | |
JP3192749B2 (en) | Extrusion molding method of synthetic resin tube with inner spiral rib | |
KR102343188B1 (en) | Synthetic resin pipes with improved adhesion and external strength using bumps-type profiles, and their molding devices and manufacturing methods | |
JP3212387B2 (en) | Extrusion molding method of synthetic resin pipe with inner spiral rib or groove | |
JP3212356B2 (en) | Extrusion molding method of synthetic resin tube with inner spiral rib | |
JP3821930B2 (en) | Optical fiber support spacer | |
JP3398407B2 (en) | Extrusion molding method of synthetic resin pipe with inner spiral rib or groove | |
EP0868281B1 (en) | Apparatus for shaping and cooling corrugated plastic pipes | |
JP3359378B2 (en) | Manufacturing method of synthetic resin tube with inner spiral rib or spiral groove | |
JPH07504854A (en) | Extrusion mold | |
US8496460B2 (en) | Pipe extrusion die flow path apparatus and method | |
JPS6121216Y2 (en) | ||
JPH01188318A (en) | Annular die | |
JPH0238029A (en) | Manufacture of tube with spiral threads and apparatus therefor | |
JP3212386B2 (en) | Manufacturing method of synthetic resin pipe with inner spiral rib or groove and extrusion mold used for this manufacturing method | |
JP7215842B2 (en) | TUBE AND METHOD OF MANUFACTURING SAME TUBE |